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ABSTRACT 

Cell expansion is a significant contributor to organ growth and is driven by the accumulation of 

osmolytes to increase cell turgor pressure. Metabolic modelling has the potential to provide 

insights into the processes that underpin osmolyte synthesis and transport, but the main 

computational approach for predicting metabolic network fluxes, flux balance analysis (FBA), 

typically uses biomass composition as the main output constraint and ignores potential changes 

in cell volume. Here we present GrOE-FBA (Growth by Osmotic Expansion- Flux Balance Analysis), 

a framework that accounts for both the metabolic and ionic contributions to the osmotica that 

drive cell expansion, as well as the synthesis of protein, cell wall and cell membrane components 

required for cell enlargement. Using GrOE-FBA, the metabolic fluxes in dividing and expanding 

cell were analyzed, and the energetic costs for metabolite biosynthesis and accumulation in the 

two scenarios were found to be surprisingly similar. The expansion phase of tomato fruit growth 

was also modelled using a multi-phase single optimization GrOE-FBA model and this approach 

gave accurate predictions of the major metabolite levels throughout fruit development as well 

as revealing a role for transitory starch accumulation in ensuring optimal fruit development.  

INTRODUCTION 

Flux balance analysis (FBA), a method for predicting and analysing steady-state metabolic fluxes, 

has been widely applied in the study of unicellular and multicellular plant systems (Sweetlove 

and Ratcliffe, 2011; Nikoloski et al., 2015; de Oliveira Dal’Molin and Nielsen, 2018). The approach 

requires a matrix of metabolic reaction stoichiometries and an objective function that represents 

the optimisation target of the biological system (Feist and Palsson, 2010). In simple unicellular 

organisms growing in a nutrient-rich environment, where life cycle events involve only growth 

and reproduction, the maximization of flux representing the accumulation of biomass elements 

has proved to be a reasonable objective function (Varma and Palsson, 1994; Feist et al., 2007; 

Feist and Palsson, 2010). In complex biological systems, however, accumulation of biomass may 

not be the primary purpose of every cell type in the organism. For example, the principal 

metabolic objective of fully expanded source leaves is the biosynthesis of sucrose and amino 

acids for the rest of the plant (Cheung et al., 2014). Moreover, organ development in plants 

typically involves phases of cell differentiation, cell division and cell expansion (Gonzalez et al., 

2012) and these are not temporally synchronous, meaning that at different stages of organ 

development different mechanisms of growth are dominant. Metabolism, being closely related 
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to the demands of the cell, is thus likely to vary between these stages of development (Sweetlove 

and Ratcliffe, 2011; Nikoloski et al., 2015). The cell expansion stage is responsible for the main 

increase in organ size and metabolic content in plants, and it is the dominant mechanism when 

growth is measured during plant phenotyping (Fahlgren et al., 2015; Tardieu et al., 2017). This 

makes understanding metabolism in expanding cells of great interest and relevance to breeding 

and crop engineering. In its conventional form FBA does not take account of the changing volume 

of the cell, indicating the need for a new FBA formulation if this objective is to be achieved.  

To provide a biological context, we focused on tomato, Solanum lycopersicum, which has an 

extensive phase of cell expansion during fruit development. This process has been described in 

detail at the molecular-biochemical level (Valle et al., 1998; Carrari and Fernie, 2006; Carrari et 

al., 2006; Legland et al., 2012; Biais et al., 2014) and the available biochemical data can be used 

to guide the new FBA formulation. Tomato is also an important model for fleshy fruit 

development and ripening, owing to its agronomic value, ease of cultivation and diploid genetics. 

FBA has been previously used to model steady-state snapshots of tomato fruit metabolism at 

different stages of development (Colombié et al., 2015). This was achieved by using time-series 

metabolomic datasets to constrain metabolite accumulation and degradation rates in a model of 

primary metabolism. This snapshot approach is informative, but it has three disadvantages. First, 

accurate predictions of metabolic state, including the accumulation of solutes during cell 

expansion, can only be made by imposing a large number of experimentally measured 

constraints. Secondly, the majority of the flux predictions are a direct consequence of the 

constraints imposed. For example, the rate of starch degradation observed in the model was the 

result of a constraint that dictates that starch is consumed at a set rate. Thirdly, because each 

developmental point is modelled separately in this approach, flux predictions are based on the 

constraints of that particular developmental point alone and the effect of future development 

on metabolism in earlier stages of development is lost. In our previous work on fully expanded 

source leaves we highlighted a similar issue with modelling day and night metabolism separately, 

and demonstrated that modelling day and night phases simultaneously as a single diel FBA 

problem led to better predictions of leaf metabolism (Cheung et al., 2014). Applying a similar 

multiphase FBA approach to metabolism during tomato fruit development should therefore 

improve the usefulness of the computational approach.  

In this study, we developed an innovative framework for modelling metabolism in expanding cells 

using FBA. This approach, GrOE-FBA (Growth by Osmotic Expansion – Flux Balance Analysis), 

accounts for the metabolic and ionic contributions to the osmotica that drive cell expansion, as 

well as the synthesis of protein, cell wall and cell membrane components required for cell 

enlargement. We show how GrOE-FBA can be used to identify the metabolic network fluxes in 

expanding cells, highlighting the major metabolic differences between dividing and expanding 

cells. We also show how GrOE-FBA can be combined with a multiphase single optimization FBA 

approach to study plant metabolism during organ development. This approach provided 

evidence that transitory starch stores are necessary for optimal fruit development, and that 

prevention of starch accumulation during the early stages of fruit development may result in 
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smaller fruits owing to the reduced phloem uptake rate in larger tomato fruits, particularly during 

developmental stages where fruit expansion has been observed to be maximal. 

RESULTS 

Modelling cell expansion using GrOE-FBA 

Cell expansion is driven by the accumulation of osmolytes and the resulting influx of water (Boyer 

et al., 1985). There are two key equations (See Appendix S1 for the derivation of equations 1-5 

below) that allow the osmotic content of a cell to be related to its volume, and which ultimately 

allow FBA to be used to model metabolism in expanding cells. First, assuming that the 

intracellular solutions behave as ideal solutions, the total osmotic content of a cell at steady state 

is equal to the product of its osmolarity (𝐶𝑐𝑒𝑙𝑙) and volume (𝑉𝑐𝑒𝑙𝑙) 

∑ 𝑛𝑖𝑚𝑖 = 𝐶𝑐𝑒𝑙𝑙𝑉𝑐𝑒𝑙𝑙  (1) 

where 𝑛𝑖and 𝑚𝑖 are the van’t Hoff factor and number of moles of metabolite 𝑖 respectively in 

the cell. This equation relates changes in cell volume to changes in osmotic content, and for 

predicting fluxes it needs to be used in tandem with a second equation that considers the 

distribution of solutes between the cytoplasm and the vacuole 

∑ 𝑛𝑗𝑚𝑗

∑ 𝑛𝑘𝑚𝑘
=

𝑉𝑣

𝑉𝑐
 (2) 

where metabolites 𝑗 and 𝑘 are vacuolar and cytoplasmic, respectively. This equation states that 

at steady state, the ratio of the osmotic content of the vacuole and cytoplasm is equal to the 

ratio of their volumes, 𝑉𝑣 and 𝑉𝑐 respectively.  

Equations 1 and 2 provide the link between volume and metabolic content at cellular and 

subcellular levels, and they imply that including a representation of osmotic content in an FBA 

model should be sufficient to account for volume changes. This was achieved by introducing two 

pseudo-metabolites in the metabolic network to represent the osmoles associated with the 

accumulation of osmotically active metabolites/ions in the vacuole and cytosol (𝑂𝑣𝑎𝑐 and 𝑂𝑐𝑦𝑡, 

respectively; Figure 1a). The pseudo-metabolites took account of the expected differences in 

van’t Hoff factor by constraining the model so that there could be no net change in the total 

charge of the vacuole or cytosol. To implement these constraints, two new pseudo-reactions, 

‘aggregator reactions’, were included in the model. The first aggregator reaction, 𝑂𝑣𝑎𝑐 +

 
𝑉𝑣

𝑉𝑐
𝑂𝑐𝑦𝑡 ↔ (1 +  

𝑉𝑣

𝑉𝑐
)𝑂𝑐𝑒𝑙𝑙 , defined a pseudo-metabolite, 𝑂𝑐𝑒𝑙𝑙, to represent the overall 

accumulation of cellular osmolytes and constrained the model so that the ratio of accumulation 

of 𝑂𝑣𝑎𝑐 and 𝑂𝑐𝑦𝑡 matched Vv/Vc (Equation 2). The second aggregator reaction drained 𝑂𝑐𝑒𝑙𝑙 from 

the system with a flux equal to 𝐶𝑐𝑒𝑙𝑙𝑉𝑐𝑒𝑙𝑙. This reaction satisfied the steady-state requirement and 

constrained the model according to equation 1.   
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As well as accumulating osmolytes, expanding cells synthesise extra cell wall, cell membrane and 

protein to maintain cell functions. Estimates of the additional biomass were obtained by creating 

a simple geometric representation of a cell assuming: (a) cells are cube-shaped; (b) the cell wall 

is uniformly thick and composed of cellulose only; (c) the cell membrane is uniformly thick; (d) 

the fraction of the total protein content of the cell in the vacuole is negligible; and (e) the 

cytoplasmic protein concentration is maintained during cell expansion. Based on these 

assumptions, if 𝑉 is the volume of the cube-shaped cell, 𝑏 is the thickness of the cell wall and 𝑐 

is the thickness of the cell membrane (Figure 1b), then the amount of cellulose, phospholipid and 

protein in the cell can be estimated from the following equations (Appendix S1)  

𝑚𝑜𝑙𝑒𝑠𝑐𝑒𝑙𝑙𝑢𝑙𝑜𝑠𝑒 =  
8𝑏3 + 6𝑏(𝑉𝑡𝑜𝑡𝑎𝑙𝑐𝑒𝑙𝑙)

2
3⁄ − 12𝑏2(𝑉𝑡𝑜𝑡𝑎𝑙𝑐𝑒𝑙𝑙)

1
3⁄

𝑀𝑊𝑔𝑙𝑢𝑐𝑜𝑠𝑒
𝜌𝑐𝑒𝑙𝑙𝑢𝑙𝑜𝑠𝑒 (3) 

𝑚𝑜𝑙𝑒𝑠𝑝ℎ𝑜𝑠𝑝ℎ𝑜𝑙𝑖𝑝𝑖𝑑 =                                                                                                                                    

8𝑐3 + 6𝑐(𝑉𝑡𝑜𝑡𝑎𝑙𝑐𝑒𝑙𝑙)
2

3⁄ − 24𝑏2𝑐 − 12 {(𝑉𝑡𝑜𝑡𝑎𝑙𝑐𝑒𝑙𝑙)
1

3⁄ − 2𝑏} + 24𝑏𝑐(𝑉𝑡𝑜𝑡𝑎𝑙𝑐𝑒𝑙𝑙)
1

3⁄

𝑓𝑃𝑀𝑀𝑊𝑝ℎ𝑜𝑠𝑝ℎ𝑜𝑙𝑖𝑝𝑖𝑑
𝜌𝑝ℎ𝑜𝑠𝑝ℎ𝑜𝑙𝑖𝑝𝑖𝑑 (4)

 

𝑚𝑜𝑙𝑒𝑠𝑝𝑟𝑜𝑡𝑒𝑖𝑛 = 𝐶𝑝𝑟𝑜𝑡𝑒𝑖𝑛𝑉𝑐𝑦𝑡𝑜𝑝𝑙𝑎𝑠𝑚 (5) 

where 𝑚𝑜𝑙𝑒𝑠𝑐𝑒𝑙𝑙𝑢𝑙𝑜𝑠𝑒 is the amount of cellulose in moles, 𝜌𝑐𝑒𝑙𝑙𝑢𝑙𝑜𝑠𝑒 is the density of cellulose, 

𝑀𝑊𝑔𝑙𝑢𝑐𝑜𝑠𝑒 is the molecular weight of glucose, 𝑚𝑜𝑙𝑒𝑠𝑝ℎ𝑜𝑠𝑝ℎ𝑜𝑙𝑖𝑝𝑖𝑑 is the amount of cell membrane 

phospholipids in moles, 𝑓𝑃𝑀 is the fraction of the total lipid content found in the plasma 

membrane, 𝜌𝑝ℎ𝑜𝑠𝑝ℎ𝑜𝑙𝑖𝑝𝑖𝑑 is the density of cell membrane phospholipids, 𝑀𝑊𝑝ℎ𝑜𝑠𝑝ℎ𝑜𝑙𝑖𝑝𝑖𝑑 is the 

molecular weight of membrane phospholipid, 𝑚𝑜𝑙𝑒𝑠𝑝𝑟𝑜𝑡𝑒𝑖𝑛 is the amount of protein in moles 

(based on how a unit protein is represented in metabolic models), 𝐶𝑝𝑟𝑜𝑡𝑒𝑖𝑛 is the molar 

concentration of protein in the cytoplasm (based on the molar mass of a unit protein as 

represented in the metabolic model) and 𝑉𝑐𝑦𝑡𝑜𝑝𝑙𝑎𝑠𝑚 is the volume of the cytoplasm. 

The demand for osmolytes and biomass elements required to support a change in cell volume 

can be estimated from the difference in the amount of these metabolites for the initial and final 

cell volumes. For example, the cellulose demand for when a cell changes its volume from 𝑉1 to 

𝑉2 can be calculated as follows, 

𝑓𝑙𝑢𝑥𝑐𝑒𝑙𝑙𝑢𝑙𝑜𝑠𝑒,𝑉1→𝑉2 =  
𝑚𝑜𝑙𝑒𝑠𝑐𝑒𝑙𝑙𝑢𝑙𝑜𝑠𝑒,𝑉2 −  𝑚𝑜𝑙𝑒𝑠𝑐𝑒𝑙𝑙𝑢𝑙𝑜𝑠𝑒,𝑉1

𝑡𝑖𝑚𝑒,𝑉1→𝑉2
 

where 𝑚𝑜𝑙𝑒𝑠𝑐𝑒𝑙𝑙𝑢𝑙𝑜𝑠𝑒,𝑉1 and 𝑚𝑜𝑙𝑒𝑠𝑐𝑒𝑙𝑙𝑢𝑙𝑜𝑠𝑒,𝑉2 are moles of cellulose when the cell has a volume 

of 𝑉1 and 𝑉2, respectively; and 𝑡𝑖𝑚𝑒,𝑉1→𝑉2 is the time the cell takes to change its volume from 

𝑉1 to 𝑉2. 

In this manner, by combining previously described osmotic constraints (based on equations 1 and 

2) with biomass constraints (based on equations 3, 4 and 5), it is possible to perform FBA while 

accounting for cell volume.   
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Figure 1: Modelling cell expansion in cube-shaped pericarp cells. (a) Cell expansion is driven by the 

accumulation of soluble metabolites and ions in the vacuole and cytosol. Accumulation of 

osmotically active species in the GrOE-FBA model is accompanied by the accumulation of pseudo-

metabolites Ovac or Ocyt, representing the contribution of the accumulating metabolite/ion to the 

osmoticum of the vacuole or cytosol respectively. According to equation 1, the sum of the vacuolar 

and cytosolic osmoles is equal to the product of the volume (Vcell) and osmolarity (Ccell) of the cell. 

According to equation 2, the ratio of vacuolar and cytosolic osmoles is equal to the ratio of the 

vacuolar (Vvac) and cytosolic (Vcyt) cell fractions. (b) The volumes of the cell wall and cell membrane 

were calculated by subtracting the remaining parts of the cell from the total cell volume. a, edge 

length of the cell; b, cell wall thickness; c, cell membrane thickness. Changes in edge length lead to 

changes in cell volume, but the cell wall and cell membrane thickness are assumed to be constant. 
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Validation of the equations used to estimate the change in biomass during cell expansion  

The cell wall, lipid and protein contents of tomato pericarp cells during fruit development were 

determined (Data S1) and the results compared with predictions based on equations 3-5 (Figure 

2). Pericarp cell membrane phospholipid composition was assumed to be composed of 

phosphatidyl ethanolamine (PE), phosphatidyl choline (PC) and phosphatidic acid (PA) based on 

published data in cherry tomato (Guclu et al., 1989) and the relative amounts of PE, PC and PA 

Figure 2: Cellulose, lipid and protein 

contents of tomato pericarp cells. The 

predicted curves are based on equations 3-5 

for cellulose, membrane phospholipid and 

protein content respectively. 

 

 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 12, 2019. ; https://doi.org/10.1101/731232doi: bioRxiv preprint 

https://doi.org/10.1101/731232
http://creativecommons.org/licenses/by/4.0/


 7 

were used to estimate values for 𝜌𝑝ℎ𝑜𝑠𝑝ℎ𝑜𝑙𝑖𝑝𝑖𝑑 and 𝑀𝑊𝑝ℎ𝑜𝑠𝑝ℎ𝑜𝑙𝑖𝑝𝑖𝑑. The value of 𝑓𝑃𝑀 was 

estimated from data published in tobacco leaves (Cacas et al., 2016) and assumed to be constant 

throughout fruit development. Values of other parameters required in the equations were 

collected from published data or measured experimentally (Table S1).  

Figure 2 shows that equations 3-5 generated a good match to experimentally measured values 

for tomato fruit. The slight underestimation of fruit cellulose content is likely due to the 

assumption of the cells being geometric cubes with a constant cell wall thickness, which does not 

account for increased cell wall thickness around corners of the cell (Legland et al., 2012). Thus, a 

simple geometric model can be used to predict increases in cellulose, phospholipid and protein 

content during cell expansion, and this allows these major biomass outflows from the metabolic 

network to be estimated, avoiding the need for direct measurements. 

Application of GrOE-FBA to expanding tomato cells 

Because of the energy cost of synthesising cellular macromolecules such as protein, lipid and 

carbohydrates (Schwender and Hay, 2012), it is generally assumed that synthesis of new cells is 

more expensive than expanding existing cells (Lynch, 2019; Taiz, 1992). However, even during 

cell expansion, new macromolecules need to be produced and the synthesis and accumulation 

of osmolytes to drive cell expansion also represents a significant cost. The GrOE-FBA framework 

allows the costs of cell expansion to be accurately computed and can be compared to a 

computation of the costs of cell division computed using conventional FBA with a biomass 

objective. To do this, we modelled rapidly dividing tomato pericarp cells in culture using data 

from (Rontein et al., 2002) and compared the resulting model to one of rapidly expanding 

pericarp cells in fruit. Both models were constructed using a minor updated version 

(PlantCoreMetabolism_v1_2) of our previously published core stoichiometric model of primary 

plant metabolism (Shameer et al., 2018). To make the models comparable, they were provided 

with the same precursors: glucose as the sole carbon source, as well as NH4
+, O2, PO4

- and SO4
-. 

The same objective function of minimization of the sum of fluxes was applied to both models. 

Experimental data was used to constrain the rate of biomass production in the dividing cell model 

to 2 mg DW/mL/day, the fastest rate reported in the Rontein et al. (2002) study. The rate of cell 

expansion in the expanding cell model was set to that of fruit at 26 days post anthesis (DPA) 

where the fastest rate of fruit growth was observed (Beauvoit et al., 2014). The initial exploration 

of the expanding cell model included an additional component to the objective function: to 

maximise the organic solute content while satisfying the osmotic constraint (see subsequent 

explanations and discussions).  

Figure 3 summarizes the results of this comparison for equivalent numbers of cells and the 

complete list of predicted fluxes is provided in Data S2. Comparison of the metabolic fluxes in the 

two models revealed that dividing cells have higher fluxes of cellulose, protein, starch and lipid 

biosynthesis as expected; while the expanding cells accumulated significantly more organic 

solutes, both in the vacuole and cytosol (Figure 3a and 3b). This accumulation of organic solutes 
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in the expanding cell model increased the carbon demand of the model, and somewhat 

surprisingly, the overall rate of glucose consumption was substantially higher in the expanding 

cell model (5.82 mg/mL in a day) than in the dividing cell model (3.57 mg/mL/day). The flux maps 

(Figure 3 a,b) reveal that a substantial proportion of this additional glucose (66% of carbon taken 

up by the cell) was transported into the vacuole to satisfy the osmotic requirement for cell 

expansion. But it is also apparent that there were comparably high fluxes of glycolysis, and even 

higher TCA cycle flux, relative to the dividing cell model, suggesting that the energy demand of 

cell expansion is comparable to that of cell division. To provide a more precise quantitative 

comparison of energy costs, we constructed an energy budget in the two systems by collating all 

the fluxes in the models that required ATP consumption or led to ATP production (Figure 3d). The 

total ATP demand of the expanding cells was 0.16 mmol ATP/mL/day (0.10 mmol ATP/mL/day 

when excluding non-growth associated maintenance or NGAM) and that of the dividing cells was 

0.14 mmol/ATP/day (0.08 mmol ATP/mL/day when excluding NGAM). This showed that indeed 

both models have very similar energy demands. Looking at the breakdown of energy expenditure 

(Figure 3 d) it is apparent that although the expanding cell model devoted considerably less ATP 

to synthesis of protein, lipid and cell wall (12 % compared to 44% in dividing cells), this was offset 

by a large increase in the cost of solute biosynthesis and accumulation which represented 50% 

of the ATP budget in the expanding cell model compared to only 11% in dividing cells (Figure 3d).  

Given that maximization of organic solute was a component of the objective function of the 

expanding cell model, the very high rate of accumulation of glucose to satisfy the osmotic 

constraint may be a feature of how we set up the model. Although it is known that fruit cells do 

contain high amounts of hexose sugars (Biais et al., 2014), it is likely that inorganic solutes 

contribute to the osmotic balance and this would affect the total energy cost of osmolyte 

production and accumulation. To explore this, we removed the maximization of organic solute 

objective and just used minimization of the sum of fluxes as the sole objective, as in the dividing 

cell model. This led to a significantly lower glucose consumption rate in expanding cells (1.61 

mg/mL/day) but the overall ATP demand remained comparable to the previous model (0.12 

mmol ATP/mL/day). The predicted flux distribution (Figure 3c) revealed that the model was 

exclusively using inorganic ions to satisfy the osmotic constraints. In reality expanding cells are 

expected to accumulate both organic and inorganic solutes to facilitate cell expansion, so the 

predicted energy demand of the expanding and dividing cells are comparable. These results 

demonstrate that cell expansion is not necessarily a cheap option for plant growth as previously 

argued (Taiz, 1992).  

Many similarities between the three systems (dividing cells, expanding cells accumulating organic 

solute and expanding cells accumulating solely inorganic solute) were apparent. For example, in 

each system, more than 75% of the ATP demand was met by mitochondrial ATP synthesis (75%, 

76% and 79% respectively) and NGAM was found to be a significant energetic drain (45%, 39% 

and 51% of the total ATP demands respectively). The second and third largest energetic demands 

were the ATP cost of maintaining the plasma membrane proton gradient (PM-ATPase) during 

nutrient uptake (18%, 21% and 30% of the total ATP demands respectively) and the hexokinase 
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flux (14%, 14% and 7%). While the basis for NGAM was identical in the three models, the PM-

ATPase and hexokinase flux are dependent on the carbon demands of the model. As a result, the 

energy demand of the system is significantly influenced by the carbon demand for biosynthesis.  

 

Figure 3: Flux prediction in expanding and dividing tomato cells using GrOE-FBA. Predicted 

metabolic fluxes in: (a) expanding cells accumulating only organic solutes; (b) dividing cells; and (c) 

expanding cells accumulating only inorganic solutes. Organic and inorganic fluxes are represented as 

mmolC/mL/day and mmol/mL/day respectively with the thickness of the lines scaled to match the 

fluxes. Values of all the predicted fluxes are given in Data S2. (d) ATP budgets for solute 

accumulation and for the biosynthesis of protein, lipid, cell wall, and starch, deduced from the three 

predicted flux maps.  

 

(a) (b)

(c) (d)
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A multi-phase metabolic model of primary metabolism in developing tomato fruit 

To investigate the changing metabolic requirements for growth by cell expansion during organ 

development, pericarp metabolism was modelled using GrOE-FBA in the expansion and ripening 

stages of developing tomato fruit by dividing the time-course from 8 days post anthesis (DPA) to 

red ripe stage (59 DPA) into ten developmental substages. Ten copies of 

PlantCoreMetabolism_v1_2, each representing one of these substages, were combined to 

generate a 10-phase constraint-based model of primary metabolism in tomato pericarp cells. To 

allow for the accumulation and utilisation of sugars (glucose, fructose and sucrose), amino acids 

(including GABA) and organic acids (malate and citrate) in each phase, reactions transferring 

metabolites and ions from one phase to the next, called “linker reactions”, were added to the 

cytosol and vacuole of the model. Similarly, transfer of starch from one phase to the next 

(allowing for accumulation and utilisation of starch) was enabled via linker reactions in the 

plastid. The linker reactions and the multiphase nature of the model ensure that metabolism in 

each stage of fruit development depends not only on metabolism in the previous developmental 

stages but is also influenced by that of future developmental stages. Each phase in the multiphase 

also had access to the xylem and phloem, and was subjected to biomass requirements. A full 

schematic representation of the model is presented in Figure 4. 

 
Figure 4: Schematic representation of the multiphase model of tomato fruit development. Fruit 

development from 8 days post anthesis (DPA) to 59 DPA was divided into 10 phases. Each phase has 

access to the indicated nutrients from the mother plant via xylem and phloem and is subject to 

biomass demands. Accumulation of certain metabolites and ions were permitted in each phase, 

facilitated in the model by ‘linker reactions’ that allow the accumulated metabolites / ions to be 

passed to the next phase.    
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The initial metabolite content of the fruit pericarp at 8DPA was established by adding source 

reactions (reactions that represent the import of metabolites from outside the modelled system) 

for sucrose, fructose, glucose, amino acids, GABA, organic acids and starch to the first phase of 

the model. The flux through these source reactions was constrained using the experimentally 

determined soluble metabolite content of 8 DPA fruits (Data S1). The soluble metabolite content 

of red ripe tomato fruits (59 DPA) (Data S1) was used to constrain the relative proportions of the 

soluble metabolites in the final model phase of the model by introducing appropriately 

constrained sink reactions. Previously published data on vacuolar pH during fruit development in 

cherry tomatoes (Rolin et al., 2000) was used to set the vacuolar pH for the ten phases and thus 

the abundance of the different metabolite charge states for each phase. A data-based constraint 

was also applied for the maximal rate of uptake of nutrients into the fruit from the phloem (see 

Materials and Methods). The multiphase developing fruit model was solved as a single 

parsimonious FBA (pFBA) problem, an approach similar to previously published multiphase 

(Cheung et al., 2014; de Oliveira Dal’Molin et al., 2015; Shameer et al., 2018) and multi-tissue 

(Grafahrend-Belau et al., 2013; de Oliveira Dal’Molin et al., 2015; Scheunemann et al., 2018; 

Shaw and Cheung, 2018) constraint-based models, with the maximization of fruit soluble 

metabolite content as the objective. Fruit content and composition is key in increasing yield in 

tomato cultivation, hence, the maximization of flux through the reaction representing the 

accumulation of soluble metabolites in ripe tomatoes was deemed an apt objective function for 

the model. NGAM, nutrient uptake from the phloem and the osmotic constraints based on 

equations 1 and 2 were implemented as described in Materials and Methods. 

A multiphase developing tomato fruit model predicts realistic final fruit metabolite content 

Figure 5 depicts the influence of the various constraints on the predictions of the multiphase 

developing fruit model. Optimal flux distributions of the model without the osmotic and biomass 

constraints to describe cell expansion and with no upper limit on phloem uptake rates predicted 

unrealistically high fruit organic solute content (~5000 mOmol/fruit; Fig. 5a). The introduction of 

osmotic constraints on the system greatly reduced the final fruit organic solute content to 24.5 

mOsmol/fruit (Fig. 5b). This value was just 7.5% lower than the measured value (26.5 

mOsmol/fruit). The imposition of biomass demand fluxes did not affect the predicted ripe fruit 

organic content, although it did cause small variations in predicted fruit content during the early 

stages of fruit expansion (Fig. 5c). Limiting the phloem uptake rate had no effect on the predicted 

organic content of ripe fruits, but it did reveal a requirement for a transitory carbohydrate store 

in expanding fruits (Fig. 5d). 

In order to understand the factors driving metabolism during fruit development, predicted fruit 

metabolic content during development was analysed (Table 1). From Table 1, it can be seen that 

the soluble organic content contributes a significant fraction of fruit content particularly during 

the later stages of fruit development. On the other hand, cellulose, lipid and protein content form 

a fixed fraction of predicted fruit content throughout development. The optimal flux distribution 
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and a fully constrained version of the multiphase model are available in Data S2 and Data S3, 

respectively. 

 

Figure 5: Impact of model constraints on the predicted metabolite contents of developing tomato 

fruit. The charts show the sequential effect on the predicted metabolite contents of adding osmotic, 

biomass and phloem uptake constraints to the model. In the absence of these constraints the 

predicted total metabolite content greatly exceeded the expected value, whereas after applying the 

constraints there was close agreement between the measured and predicted values. AA, amino 

acids; OA, organic acids; SUG, sugars (glucose, fructose and sucrose). 
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Comparing model predictions to experimental measurements 

Figure 6 compares the fruit content of selected metabolites predicted by GrOE-FBA with the 

experimentally determined values. The complete dataset for 22 solutes is provided in 

Supplementary Figure S1. The model was capable of making accurate predictions for glucose, 

fructose, glutamine and glutamate, despite being free to choose which metabolites it 

accumulated to satisfy the osmotic constraint. These four metabolites formed 88.6 % of organic 

osmolytes in the pericarp cells and their accurate prediction by the osmotically-constrained 

model suggests that their pattern of accumulation in developing tomato fruit represents an 

efficient way to drive osmotic expansion. Some other metabolite levels, including those of malate 

and citrate, were predicted with reasonable accuracy during the later stages of fruit 

development; while for others, including sucrose and GABA, it was not possible to predict the 

observed pattern of accumulation. This suggests that the accumulation of these metabolites is 

not primarily osmotically driven and that other aspects of fruit physiology may drive their 

accumulation during fruit development. For example, factors such as insect resistance, texture 

and flavour, all have an impact on determining fruit composition during development (Tohge et 

al., 2014; Cohen et al., 2014; Takayama and Ezura, 2015). Translating these factors into 

constraints for a metabolic model would be challenging, since the measured content of some of 

the poorly-predicted amino acids (aspartate and serine) fell within the FVA ranges of the model 

(Figure S1) but applying extra constraints to the system may improve model prediction. 

A transitory carbohydrate store is required when phloem nutrient uptake is limited  

If nutrient influx from the phloem was unlimited, then the nutrient requirement for fruit 

development was predicted to peak in phases 4 and phase 5 (23.3 – 33.5 DPA; Fig. 7a). In contrast 

when an upper bound on phloem uptake (Fig. 7b) was imposed, based on experimental data, the 

model predicted the need for transitory carbohydrate storage (Fig. 7c), a well-documented 

behaviour of tomato fruits (Ho and Hewitt, 1986; Gillaspy et al., 1993). When phloem uptake rate 

limits were removed from the model there was no accumulation of starch (Figure 7d), suggesting 

Phase 
(DPA) 

 fruit content (% fruit DW) fruit DW 
(mg) Cellulose Phospholipids Protein Starch Organic solutes 

8-13.1 9.49 % 2.81 % 1.1 % 27.6 % 59.0 % 927.6 
13.1 – 18.2 8.04 % 2.39 % 0.91 % 34.8 % 53.9 % 1989 
18.2 – 23.3 6.35 % 1.88 % 0.72 % 31.0 % 60.1 % 4104 
23.3 – 28.4 7.45 % 2.21 % 0.87 % 13.4 % 76.1 % 4811 
28.4 – 33.5 8.21 % 2.44 % 0.97 % 6.20 % 82.2 % 5207 
33.5 – 38.6 8.33 % 2.47 % 0.99 % 2.92 % 85.3 % 5587 
38.6 – 43.7 8.15 % 2.42 % 0.97 % 2.74 % 85.7 % 5930 
43.7 – 48.9 8.33 % 2.47 % 0.99 % 2.35 % 85.9 % 5869 
48.9 – 54.0 8.78 % 2.61 % 1.04 % 0.27 % 87.3 % 5562 

 

Table 1: Predicted increase/decrease in fruit content by the multiphase developing fruit model. 
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that the accumulation of starch was associated with the phloem influx limits and metabolic 

demand. Moreover, preventing the accumulation of starch caused a 40% drop in the organic 

content of the fruit, demonstrating the significance of transitory starch storage in developing 

tomato fruits.  

 

Figure 6: Comparison of predicted and measured metabolite contents in developing tomato fruit. 

The predicted metabolite contents are in good agreement (glucose, fructose, glutamine, glutamate), 

partial agreement (malate, citrate) or no agreement (GABSA, aspartate) with the measured values. 

The error bars correspond to the FVA ranges of the predicted values. 
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DISCUSSION 

GrOE-FBA: proof of concept in the comparison of expanding and dividing cells  

GrOE-FBA was developed to predict metabolic network fluxes in cells undergoing osmotically-

driven cell expansion. As a proof of concept, GrOE-FBA was used to highlight the differences 

between metabolism in dividing and expanding cells, and the analysis led to the conclusion that 

cell expansion does not necessarily put a smaller requirement on cellular resources than cell 

division. While it is not surprising that differences existed between metabolism in dividing and 

expanding cells, quantitative network-level comparisons have not been made before. The two 

systems chosen here for comparison were dividing cells in heterotrophic cell suspension cultures 

 

 Figure 7: Impact of phloem uptake rate on the need for a transitory carbohydrate store during 

tomato fruit development. The multiphase GrOE-FBA model was run with the phloem uptake rate 

either (a) effectively unconstrained (allowing the model to choose a rate between 0 and 1000 

mmol/fruit/5.1 days) or (b) constrained with the upper bound based on the measurements of 

Walker and Ho (1977a,b).  The upper and lower bounds of the phloem uptake rate are shown as 

dotted lines, and the optimal value chosen by the model as a solid line, together with the FVA range 

(shaded) for the solution. Applying the upper bound to the phloem uptake rate creates a carbon 

and/or energy limitation in phases 4 and 5 (28.4 – 33.5 DPA) of the multiphase fruit model. The 

predicted starch and soluble sugar contents obtained with the phloem uptake rate either (c)  

unconstrained, or (d) constrained, show that phloem uptake rate constraints are responsible for the 

temporary carbohydrate buildup observed in the early stages of fruit development. 

(a) (b)

(c) (d)
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and expanding cells in developing tomato fruits. A more appropriate comparison would be to 

model metabolism during the very early phase of tomato fruit development, when cell division 

dominates, and the later phases when expansion dominates. However, there is very little 

biochemical data to constrain such a cell division model, due to the very small size of young plant 

organs in the cell division phase. Even so, the marked difference in the predicted metabolic fluxes 

of dividing and expanding cells (Fig. 3) implies that FBA studies on plant tissues such as growing 

leaves (Yuan et al., 2016; Shaw and Cheung, 2018) and roots (Grafahrend-Belau et al., 2013; Shaw 

and Cheung, 2018), which generally use a biomass objective even though measurable growth in 

such organs is largely by expansion, could be predicting erroneous flux distributions.  

GrOE-FBA: application to tomato fruit development 

GrOE-FBA was combined with multiphase modelling to analyse metabolism in developing tomato 

fruit. The approach required minimal constraints: a knowledge of the cell volume changes during 

expansion, an estimate of the volume ratio of vacuole to cytosol, and an estimate of protein 

concentration (𝐶𝑝𝑟𝑜𝑡𝑒𝑖𝑛, Eq. 5). Using these constraints, it was possible to make surprisingly 

accurate predictions about the accumulation of biomass components and the principal osmotic 

metabolites that drive cell expansion in tomato fruit (Figs 5 and 6). The same approach could be 

applied to the growth of other organs such as leaves and roots.  

Previous modelling studies taking into account cell expansion and metabolism were based on 

analysis of enzyme kinetics and were capable of exploring only limited aspects of metabolism 

because of the difficulty of gathering or estimating large numbers of kinetic parameters (Beauvoit 

et al., 2014). Previous work using FBA modelling to analyse metabolism in developing tomato 

fruits used separate models for each stage of development (Colombié et al., 2015). Such highly 

constrained models can provide answers to the question “What is happening?” but cannot 

answer the question “Why is it happening?”. For example, with this approach it has been shown 

that breakdown of transitory starch is the underlying cause of the respiratory climacteric in 

tomato fruit (Colombié et al., 2017) but it was not possible to explain the purpose of the 

transitory starch accumulation. This is because starch accumulation and degradation were 

constraints of the model and not predictions. In contrast, starch accumulation and degradation 

in the multiphase GrOE-FBA model are system-level predictions that depend on the metabolic 

demand on the system and the availability of nutrients from the phloem, throughout 

development. 

GrOE-FBA: insights into tomato fruit development 

Two major biological insights emerged from the analysis of the GrOE-FBA model of tomato fruit 

development. First, we demonstrate that transitory carbohydrate stores are only predicted by 

the model if a constraint is added that gradually decreases the rate of influx of nutrients from the 

phloem. Our model demonstrates that due to the decline in phloem influx during development, 

accumulation of starch (or other carbohydrates such as sucrose) in the earlier stages of fruit 

development is required to meet the carbon demand in later stages. The question then arises as 
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to why the phloem influx into a fruit declines below that which is required to maintain its 

metabolic requirements. One possibility is that due to the staggered initiation of fruits along a 

truss, it is necessary to progressively reduce the share of phloem nutrients taken by maturing 

fruit to allow younger fruits, that have lower sink strength, to develop successfully. Temporal 

extension of starch synthesis has been reported to result in increased fruit size (Petreikov et al., 

2006; Petreikov et al., 2009). This is in agreement with our hypothesis. Increased sucrose demand 

owing to starch synthesis will increase the sink strength of smaller fruits. Once the fruits are 

bigger, the greater transitory starch stores will reduce their sink strength, resulting in more 

phloem constituents being available to the smaller fruits.  

The second biological insight is the relatively minor impact biomass demand had on developing 

fruit metabolism (Fig. 4). It is known that cell expansion results in an increase in cell wall and cell 

membrane content. Protein content of cells is also thought to increase in order to maintain the 

optimal concentration required for unhampered metabolism. In most FBA models of growing 

plant tissues to date, synthesis of these biomass components is the main drain on the metabolic 

system. The GrOE-FBA model demonstrates that for tissues growing by expansion of existing 

cells, demand for these biomass elements imposes only a small fraction of the metabolic cost. 

Instead, the dominant demand on metabolism was solute accumulation for osmotically-driven 

cell expansion. Accumulation of solutes was responsible for most of the gain in fruit DW during 

18-43.7 DPA (Table 1). From this we can conclude that the drivers for metabolism in expanding 

cells are significantly different from dividing cells and that osmolarity-based constraints such as 

GrOE-FBA applied in this study, are necessary to model metabolism in tissues growing by cell 

expansion. 

GrOE-FBA: limitations of the approach 

GrOE-FBA is a modified form of FBA and hence inherits its limitations (Sweetlove and Ratcliffe, 

2011), including not being able to predict futile cycles. A substantial fraction of the energy 

consumption in a tomato cell suspension has been attributed to the operation of such cycles 

(Rontein et al., 2002) and the FBA model is unable to capture this energy expenditure. While this 

might explain the discrepancy between the glucose consumption rate of the model (3.57 

mg/mL/day) and the value reported in the literature (glucose influx rate for day 4 is 5.34 

mg/mL/day), it should also be noted that the method used to estimate the futile cycles has been 

shown to be confounded by the subcellular structure of the metabolic network (Kruger et al., 

2007).  

Another limitation of GrOE-FBA, is that it focuses on the osmotic significance of the accumulating 

solutes and makes no attempt to tackle the challenges involved in imposing constraints on 

metabolism related to insect resistance, texture and flavour, Nevertheless, introducing such 

constraints into the model might improve its ability to predict sucrose and organic acid levels.  

Finally, the GrOE-FBA model predicts metabolic fluxes by flux optimization and does not account 

for signalling and regulation of metabolism, although these could be included in the form of 
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experimental constraints on maximal enzyme activity. As a result, the model we present does not 

activate flux through energy dissipation mechanisms (such as alternative NADH dehydrogenases 

and alternative oxidase) and hence the GrOE-FBA model is unable to predict the respiratory 

climacteric (Colombié et al., 2017). A computationally expensive FBA approach called cost-

weighted flux minimization has been shown to be capable of predicting alternative pathways in 

source leaves (Cheung et al., 2015). Such an approach might allow the multiphase GrOE-FBA 

tomato model to predict metabolically inefficient processes such as AOX flux and futile cycles. 

CONCLUSION 

GrOE-FBA, a novel FBA approach that uses volume-based osmotic constraints allows metabolism 

to be modelled during cell expansion, and thus extends the scope of constraints-based metabolic 

modelling to growing tissues in which expansion of existing cells is the dominant driver of growth. 

Understanding metabolism in expanding cells could help develop engineering strategies to 

optimize metabolism during the cell expansion phase of leaf and root development. The 

approach could also be used to study metabolism in guard cells where turgor-pressure-driven 

changes in cell size regulate stomatal aperture, in turn regulating CO2 assimilation and 

transpiration rates. GrOE-FBA could therefore help complement current kinetic models of guard 

cells (Hills et al., 2012) with a more holistic modelling approach. Recently, there has been 

increased interest in combining metabolic models with whole plant developmental models 

(Marshall-Colon et al., 2017). Growth of sink tissues in the metabolic component of many whole 

plant models is currently represented solely by the accumulation of biomass components. The 

introduction of GrOE-FBA-driven expanding cells could help improve the representation of 

metabolism in these models, potentially improving their predictive power.  

MATERIALS AND METHODS 

Plant material and growth conditions 

Tomato (Solanum lycopersicum cv. “Moneymaker”) seeds were sterilized and germinated on 

Murashige-Skoog (MS) medium. The plants were grown in a glasshouse in a 16 h photoperiod at 

22 to 23°C day temperature and 20 to 22°C night temperature with supplementary lighting to 

maintain an irradiance of 250 to 400 µmol m-2 s-1. Lateral stems were systematically removed. 

Each flower anthesis was recorded, and trusses were pruned at five developed fruits to limit fruit 

size heterogeneity. Tomato fruits were harvested at nine different developmental stages 

corresponding to 8, 15, 22, 28, 34, 42, 50, 52 and 59 DPA with the last four corresponding to 

mature green, turning, orange and red fruit developmental stages respectively. Fruit samples 

were collected from the first two levels of trusses in the plant. All materials were frozen in liquid 

nitrogen and storage at -80°C until use. 

Fruit biomass measurements and morphology analysis 
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Cell wall was extracted according to an established protocol (Ruprecht et al., 2011). The 

remaining insoluble material was washed with water and ethanol, air-dried and weighed. Lipids 

were extracted from a known mass of ground tissue using the chloroform/methanol protocol 

(Bligh and Dyer, 1959). Protein extracted with 6 M urea, 2 M thiourea buffer (Salem et al., 2016) 

was quantified using the Bradford assay (Bradford, 1976). The amino acid content of protein 

hydrolysates (50% w/v trichloroacetic acid, 6 M HCl, 100°C/24 h) (Antoniewicz et al., 2007) was 

determined by an established GC/EI-TOF-MS protocol (Luedemann et al., 2008; Fernie et al., 

2011; Osorio et al., 2011). Starch content was determined by enzymatic digestion and 

spectrophotometric assay of the resultant glucose (Hendriks et al., 2003). Fruit height and 

diameter were measured using a calibrated digital Vernier. The fresh weight to dry weight ratio 

(Fw/Dw) was determined by weighing fresh tissues and reweighing them after drying to constant 

weight in a forced-air oven at 65°C. 

Harvesting phloem exudates 

Exudates were harvested from tissues corresponding to mature green and red fruit pedicels using 

the EDTA-facilitated method (Tetyuk et al., 2013). 

Gas-chromatography mass spectrometry of fruit content 

Metabolite analysis of fruit samples was performed using gas chromatography coupled to 

electron impact ionization-time of flight-mass spectrometry (GC/EI-TOF-MS) (Lisec et al., 2006). 

Plant material was extracted using the method described elsewhere (Osorio et al., 2011). Data 

analysis was performed using ChromaTOF 1.0 (Leco, www.leco.com) and TagFinder v.4.0 

(Luedemann et al., 2008). Cross-referencing of mass spectra was performed with the Golm 

Metabolome database (Kopka et al., 2005). Documentation of metabolite profiling data 

acquisition is reported following recommended guidelines (Fernie et al., 2011). Curve fitting 

(Colombié et al., 2015) was used to generate curves for metabolite content and fluxes based on 

experimental measurements. 

Flux balance analysis and flux variability analysis 

Metabolic reactions associated with phospholipid biosynthesis (PC, PE and PA), amino acid 

catabolism, nucleotide biosynthesis, β oxidation, lycopene biosynthesis and phytol metabolism 

were added to a previously published mass and charge-balanced model of primary metabolism 

in plant cells (Shameer et al., 2018) to generate the model PlantCoreMetabolism_v1_2. A 

complete log of all model curations and associated literature is presented in Table S2. 

Parsimonious FBA (pFBA) and FVA functions available in cobrapy (Ebrahim et al., 2013) version 

0.13.4 were updated to perform weighted-pFBA and weighted-FVA, respectively. Aggregator 

reactions used to measure fruit metabolite content were given a zero weight while all other 

reactions were given a weight of 1. Cobrapy in Jupyter notebook (python 2.7) was used to run 

and document all scripts (https://github.com/ljs1002/Shameer-et-al-Predicting-metabolism-during-

growth-by-osmotic-cell-expansion). 
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Estimating maintenance costs 

Non-growth associated maintenance (NGAM) costs in all models were represented by flux 

through an ATPase and three NADPH oxidase (cytosolic, mitochondrial and plastidic) pseudo-

reactions, constrained to a 3:1 (ATP hydrolysis : NADPH oxidase) ratio based on the results of a 

previously published study (Cheung et al., 2013). 

 

Dividing cells were assumed to have a carbon conversion efficiency (CCE) of 70% based on 

previously published data (Chen and Shachar-Hill, 2012). Fluxes through the NGAM reactions in 

the dividing cell model were gradually increased until a CCE~70% was achieved. When the NGAM 

ATPase flux was constrained to 0.062 mmol/mL/day, the CCE of the system was observed to be 

69.92%. This NGAM ATPase flux was then used to constrain maintenance in the dividing cell 

model. The same NGAM constraints were imposed on the expanding cell model.  

 

Each phase of the multiphase GrOE-FBA model was 5.1 days long. The mean respiratory cost of 

NGAM based on data reported by Walker and Thornley (1977) was assumed to be 1.7 mmol 

CO2/fruit/day throughout fruit development. This is equivalent to 8.5 mmol CO2/fruit/5.1 days. 

Using a model of primary metabolism in pericarp cell constrained so as to prevent the net 

synthesis of any metabolite, an NGAM ATPase flux of 26.2 mmol/fruit/5.1 days was found to 

result in a respiration rate of 8.5 mmol CO2/fruit/5.1 days. This NGAM ATPase flux was used to 

constrain NGAM in all phases of fruit development. 

 

Modelling primary metabolism in a dividing heterotrophic cell suspension 

The PlantCoreMetabolism_v1_2 model, was used to generate representations of metabolism in 

dividing tomato cells. Previously published data from tomato heterotrophic cell suspension 

cultures report a maximum growth rate of 2 mg DW/mL/day (Rontein et al., 2002). Data on 

biomass content (cell wall, sugars, organic acids and protein) of cells demonstrating the 

maximum growth rate, from the same study, was used to generate a biomass equation for the 

dividing cell system as in conventional FBA modelling. The lipid: cellulose content ratio reported 

in Arabidopsis cell cultures (Williams et al., 2010) were used to estimate the lipid content of the 

cells and the biomass equation was updated accordingly. The biomass accumulation rate of the 

model was constrained to 2 mg DW/mL/day. For the sake of simplification, the cell wall and cell 

membrane were assumed to be composed of only cellulose and phosphatidic acid (PA) 

respectively. Constraints based on equation 2 were introduced to promote solute partitioning 

between cytosol and vacuole. Because of the lack of data available in heterotrophic tomato cells, 

the value for Vv/Vc required for equation 2 was calculated from data published on tomato 

pericarp subcellular volume fractions (Beauvoit et al., 2014). NGAM was represented in the 

model as described earlier. Glucose was set as the sole carbon source and FBA with minimization 

of sum of fluxes as the objective was used to predict the optimal flux distribution. 
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Modelling primary metabolism in a system of expanding 26 DPA pericarp cells   

The PlantCoreMetabolism_v1_2 model, was used to generate representations of metabolism in 

expanding 26 DPA tomato pericarp cells. The rate of cell expansion was estimated to be at its 

highest in 26 DPA tomato pericarp cells (0.174 nL/cell/day; estimated from data in Beavuoit et 

al., 2014). For the sake of consistency, the number of cells in the expanding cell system was kept 

equal to that in the dividing cell suspension when growth rate attained the maximum rate of 2 

mg DW/mL/day (1.45×106 cells/mL). The composition of soluble metabolites in 26 DPA pericarp 

cells were estimated from third-degree polynomial curves fitted to published experimental data 

(Colombié et al., 2015). Equations 1 and 2 were used to introduce osmotic constraints in the 

model and the values for 𝑉𝑐𝑒𝑙𝑙 and 𝐶𝑐𝑒𝑙𝑙 were estimated from published data (Almeida and Huber, 

1999; Beauvoit et al., 2014). The difference in osmotic content between DPA 26 and 27 was used 

to set the demand for osmolytes. Data on subcellular volume fractions published by Beauvoit et 

al. were used to calculate Vv/Vc at 26 DPA. The difference between cellulose, lipid and protein 

content between DPA 26 and DPA 27, as calculated from equation 3 - 5, was used to set the 

demand for these biomass elements. NGAM was was represented in the model as described 

earlier. Glucose was set as the sole carbon source (as in the dividing-cells model) and FBA was 

used to predict metabolic fluxes that minimized the sum of fluxes while maximizing the organic 

content.  

Implementation of GrOE-FBA constraints in the multiphase developing fruit 

model 

Tomato fruit development from 13.1 to 43.7 DPA (mature green fruits observed at 42 DPA) is 

mainly due to expansion of existing cells (Gillaspy et al., 1993) and GrOE-FBA was used to model 

metabolism during these stages. Assuming the tomato fruit is composed of uniformly packed 

pericarp cells, equation 1 cam be transformed to the following form for a whole fruit, 

∑ 𝑛𝑖𝑚𝑖 = 𝐶𝑐𝑒𝑙𝑙𝑉𝑓𝑟𝑢𝑖𝑡  (6)  

where 𝑖 is a metabolite/ion in the fruit and 𝑉𝑓𝑟𝑢𝑖𝑡 is the volume of the fruit. 

Constraints based on equation 2 and 6 were imposed on each phase of the multiphase developing 

fruit model. Previously published data on subcellular volume fractions (Beauvoit et al., 2014) 

were used to calculate Vv/Vc during the different stages of fruit development and 𝐶𝑐𝑒𝑙𝑙 was 

estimated based on osmolalities reported in the literature (Almeida and Huber, 1999). Values for 

𝑉𝑓𝑟𝑢𝑖𝑡 for all 10 phases of fruit development modelled were determined experimentally (Table 

S1).  

Pericarp cell volume for each phase of the multiphase fruit model was calculated from published 

data (Beauvoit et al., 2014), and cellulose, phospholipid and protein demand fluxes were imposed 

on the system using equations 3, 4 and 5 and scaling them from µmol/cell to mmol/fruit. 
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Carbon influx rate into developing tomato fruits has been reported to be inversely proportional 

to fruit carbon content and size (Walker and Ho, 1977a,b). A hyperbolic curve was fitted to 

capture the relationship between carbon influx rates and fruit carbon content more accurately. 

Fruit carbon content has been reported to be linearly related to fruit volume (Walker and Ho, 

1997b). Hence, initial carbon content for each developmental phase was calculated based on 

fruit volume at the respective phases. These values were then used to predict the upper bounds 

for the flux of nutrients from the phloem in the respective phases of the developing tomato 

model.  
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