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 26 

Abstract 27 

Background: Unveiling fungal genome structure and function reveals the potential 28 

biotechnological use of fungi. Trichoderma harzianum is a powerful CAZyme-producing 29 

fungus. We studied the genomic regions in T. harzianum IOC3844 containing CAZyme 30 

genes, transcription factors and transporters.  31 

Results:  We used bioinformatics tools to mine the T. harzianum genome for potential 32 

genomics, transcriptomics, and exoproteomics data and coexpression networks. The DNA 33 

was sequenced by PacBio SMRT technology for multi-omics data analysis and integration. In 34 

total, 1676 genes were annotated in the genomic regions analyzed; 222 were identified as 35 

CAZymes in T. harzianum IOC3844. When comparing transcriptome data under cellulose or 36 

glucose conditions, 114 genes were differentially expressed in cellulose, with 51 CAZymes. 37 

CLR2, a transcription factor physically and phylogenetically conserved in T. harzianum spp., 38 

was differentially expressed under cellulose conditions. The genes induced/repressed under 39 

cellulose conditions included those important for plant biomass degradation, including CIP2 40 

of the CE15 family and a copper-dependent LPMO of the AA9 family.  41 

Conclusions:  Our results provide new insights into the relationship between genomic 42 

organization and hydrolytic enzyme expression and regulation in T. harzianum IOC3844. Our 43 

results can improve plant biomass degradation, which is fundamental for developing more 44 

efficient strains and/or enzymatic cocktails for the production of hydrolytic enzymes. 45 
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Background 51 

Trichoderma harzianum is a common fungal species in soil and is used as a biological control 52 

in a variety of phytopathogenic fungi [1]. However, the use of lignocellulosic biomass 53 

degradation is still poorly explored when compared to that of other cellulolytic fungi. Due to 54 

the high cellulolytic activity of some strains, T. harzianum has shown considerable potential 55 

for application in plant biomass hydrolysis [2-4]. T. harzianum strains have potential for the 56 

production of an enzymatic/protein arsenal necessary for the complete hydrolysis of 57 

cellulosic compounds in fermentable sugars [5-10]. 58 

Currently, the most-studied and widely used industrial-scale enzymes are produced by 59 

the fungus T. reesei and species from the Aspergillus genus. These organisms are the source 60 

of the majority of enzymes that make up enzymatic cocktails that are available on the market 61 

[11]. T. reesei is a widely studied fungus and is found in several works in genomics, 62 

transcriptomics, proteomics and metabolic engineering [12-16]. Thus, increasing the number 63 

of biotechnological studies related to this bioprocess for T. harzianum is necessary. 64 

The three main groups involved in the hydrolysis of cellulose (CEL) are 65 

cellobiohydrolases, endo-β-1,4-glucanases and β-glucosidases. In addition, accessory 66 

enzymes such as copper-dependent lytic polysaccharide mono-oxygenases (LPMOs), 67 

cellulose-induced protein 1 and 2 (CIP1 and CIP2) and swollenin also participate in this 68 

process [17-20]. 69 

One of the great challenges in understanding the molecular mechanism of biomass 70 

degradation is how the transcription factors (TFs) related to this system act. Several fungal 71 

TFs have been identified as related to the degradation of plant biomass, many of which 72 

belong to the binuclear zinc family [21]. Many TFs have been described as being directly 73 

involved in the regulation of plant biomass [22]. This number has been expanding rapidly in 74 

recent years, mainly due to the increase in the sequencing scale of whole genomes and the 75 
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exponential increase in bioinformatics tools for analysis, which produce massive amounts of 76 

information, and in the number of genes identified [22, 23]. 77 

The purpose of the present study was to analyze genomic regions with CAZyme 78 

genes using a bacterial artificial chromosome (BAC) library that we built [24] and to 79 

integrate these data with RNA-seq, secretome data and coregulation networks. We sequenced 80 

a massive amount of DNA and used it to integrate genomic data (genomic regions containing 81 

CAZymes), expression patterns (the transcriptome under degradation conditions), proteins 82 

(the secretome by mass spectrometry) and systems biology (with gene regulatory networks) 83 

to obtain a broad and precise overview of the CEL degradation pathways. Based on our 84 

study, we characterized the main genes, accessory enzymes and regions involved in the 85 

degradation and regulation process of hydrolytic enzymes. In addition, we analyzed the 86 

regulator cellulose degradation regulator 2 (CLR2) found in a cluster with other important 87 

enzymes. These results will be important for further studies of regulation and gene silencing. 88 

 89 

Results 90 

 91 

Genomic regions of T. harzianum IOC3844 92 

In this study, a library of large genomic regions was used as a resource to search for genes of 93 

interest and to thoroughly study the genomic structure of T. harzianum IOC3844 94 

(ThIOC3844) (accession numbers MK861589-MK861650 - Supplementary Table S1 and 95 

Fig. S1). Screening for genes of interest resulted in a total of 62 regions that contained 96 

CAZymes genes related to the degradation of plant biomass in the ThIOC3844 genome. 97 

Sequencing of these regions generated a total of 5 Mb of the estimated 40 Mb genome 98 

(Supplementary Table S2 and S3). These regions ranged in size from 43 to 152 kb, enabling 99 
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the prediction and annotation of 1676 gene models for this strain (Supplementary Table S4). 100 

The average number of genes per region was 26 (Supplementary Table S1). 101 

The genome of T. reesei QM6a (PRJNA325840) was used to analyze the distribution 102 

of genes in ThIOC3844. This genome, which is composed of seven chromosomes with a total 103 

size of 34 Mb, was divided into 38 intervals (1 Mb) (Fig. 1). It was possible to observe 104 

CAZyme genes annotated in ThIOC3844 distributed throughout the whole genome. Only 105 

four intervals had no CAZyme genes, and when all the genes in the genomic regions of 106 

ThIOC3844 were mapped, genes were found in all intervals. 107 

The genes were functionally annotated for the main gene ontologies: biological 108 

processes, cellular components and molecular functions (Fig. 2a and Supplementary Fig. S2). 109 

We found 209 sequences of hydrolytic activity, 139 related to transport proteins and 85 110 

sequences involved in regulation of gene expression (possible TFs). In addition, a specific 111 

annotation was made for genes identified as enzymes, where hydrolases (40%), 112 

oxidoreductases (25%), transferases (22%), lyases (6%), ligases (4%) and isomerases (3%) 113 

(Figure 2b) were found. We also identified genes directly related to the degradation of CEL 114 

and hemicellulose, with action of α-L-arabinofuranosidase (EC 3.2.1.55), endo-1,4-β-115 

xylanases (EC 3.2.1.8), cellobiohydrolases (3.2.1.91), endo-β-1,4-glucanase (EC 3.2.1.4) and 116 

β-glucosidase (EC 3.2.1.21) (Fig. 2c and Supplementary Table S5). 117 

A total of 1676 genes were predicted. Of these, 222 were annotated as CAZymes in 118 

ThIOC3844, including 45% of GHs, 23% of GTs, 10% of CEs, 8% of AAs and 14% of 119 

CBMs (Fig. 3 and Supplementary Table S6). The GH class presented with the highest 120 

number of families, including GH2 (3 genes), GH7 (1 gene), GH3 (9 genes), GH5 (6 genes), 121 

GH12 (1 gene), GH18 (4 genes) and GH62 (1 gene). 122 

 123 

Genomic comparison 124 
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For this analysis, we compared the genomic regions of ThIOC3844 against the entire genome 125 

of different strains and species of the genus Trichoderma. Genomic comparison of the 126 

sequenced regions of ThIOC3844 with two other strains of the same species (T. harzianum 127 

B97 – ThB97 and T. harzianum – T6766) showed a higher similarity to ThB97 (99.25%) than 128 

ThT6766 (91.61%). For the T. atroviride IMI206040 genome (TaIMI206040), the similarity 129 

to ThIOC3844 was 85.09%. For T. virens Gv29-8 (TvGv29-8), the similarity was 86.55%, 130 

and for T. reesei QM6a (TrQM6a), the similarity was 85.11%. 131 

When we compared syntenic genes between groups of genes, a greater difference 132 

between T. harzianum and T. atroviride and T. reesei was observed. The T. harzianum 133 

TR274 (ThTR274) strain presented the same gene profile of genomic organization as that 134 

found in ThIOC3844. In TaIMI206040, four genes (GH4, transporter and two GH26) from 135 

the cluster were not found; for TvGv29-8, two genes were not found (GH1 and GH4). For T. 136 

reesei QM6a, three genes (GH4 and two GH26) were not found; in addition, the translocation 137 

of genes (MFS x GH2 and TF2 x CLR2) was found. The genes for the transcription factor 138 

CLR2, putative transcription factor TF2 and MFS (major facilitator superfamily permease) 139 

were maintained in all species analyzed. This result suggests a potential association between 140 

the regulation and expression of these genes (Fig. 4). 141 

 142 

Expression by RNA-Seq and secreted proteins 143 

All genes predicted in the genomic regions were analyzed according to expression data by 144 

RNA-Seq (under CEL and GLU degradation conditions) (Supplementary Table S7) and 145 

secreted proteins identified by mass spectrometry (LC-MS/MS). We found 114 genes with 146 

differential expression under CEL degradation conditions when compared to GLU 147 

degradation conditions; among them, 51 were classified as CAZymes, such as beta-148 

glucosidase of the GH1 family (1.8-fold change - FC), LPMOs of the AA9 family (FC 5.0) 149 
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and hypothetical protein with domain CBM1 (FC 3.7). In addition, two differentially 150 

expressed TFs were identified, CLR2 (FC 1.6) and unidentified transcriptional regulator of 151 

zing finger – Zn2Cys6 (FC 2.3). Six transport proteins were also found (iron permease, MFS 152 

hexose transporter, siderophore transporter, ammonium permease, sugar transporter and 153 

siderophore iron transporter). 154 

Among the genes annotated as CAZymes in ThIOC3844, 31 were found in the 155 

secretome of ThIOC3844 under CEL conditions, and the main families were GH3, GH12, 156 

CBM1, AA9, GH6/CBM1, GH45/CBM1, GH62 and GH5. In this analysis, we also used the 157 

level of expression of the secreted genes. The gene with the highest TPM index (1567.4 158 

TPM) is a cellobiohydrolase (EC 3.2.1.91) of the GH6 family. However, our results indicate 159 

that genes with low expression levels are also important secreted enzymes (Table 1). 160 

 161 

CLR2 transcription factor 162 

The phylogenic analysis of the CLR2 factor showed a clear separation of this TF in relation 163 

to Basidiomycetes and Ascomycetes (Fig. 5a and Supplementary Table S8). However, even 164 

within these groups, considerable phylogenetic diversity was observed among the species of 165 

analyzed fungi with a variety of clades within the same group. Different strains of T. 166 

harzianum grouped in a single clade with proximity to T. reesei and T. atroviride species. 167 

Our results show a wide range of functional variety for CLR2, which may indicate different 168 

types of performance between species. 169 

A structural modeling analysis for the CLR2 protein of ThIOC3844 was performed 170 

using T. reesei as a comparator. For both proteins, the best template was 6F07 171 

(Saccharomyces cerevisiae), with e-values of 4.07e-06 and 6.62e-06 for ThIOC3844 (Figure 172 

5b) and T. reesei (Figure 5c), respectively. Prediction of 1 and 3 protein domains was made 173 

for ThIOC3844 and T. reesei, respectively. For ThIOC3844, 59% of the residues were 174 
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already modeled, and for T. reesei, it was possible to model 83%. For ThIOC3844, the 175 

secondary structure prediction was 46% H (helix), 0% E (beta-sheet) and 53% C (loop), and 176 

for solvent access, it was 56% E (exposed), 19% M (medium) and 23% B (buried). 177 

A coregulation network of genes directly related to the CLR2 regulator was 178 

constructed, searching for insights about other important proteins in the process of cellulase 179 

expression. We identified 36 genes directly linked to CLR2, of which 21 genes were 180 

annotated as hypothetical proteins. In addition, we found that genes with known annotations 181 

were related to the process of gene expression, including genes annotated as initiation factors, 182 

kinases and helicases (Fig. 6a and Supplementary Table S9). 183 

 184 

Network of induced/repressed genes in cellulose 185 

Using the gene expression data of the secreted proteins, a Bayesian network of 186 

induced/repressed genes was constructed based on the CEL growth conditions for T. 187 

harzianum IOC3844 (Fig. 6b). The major genes that were induced under this condition 188 

belong to the GH7 (exoglucanase), GH5 (endo-β-1,4-glucanase), GH3 (β-glucosidase), GH12 189 

(murein transglycosylase), CE15 (CIP2), AA9 (LPMO) and AA8 (hypothetical protein) 190 

families. In addition, seven genes that were not classified as CAZymes were also induced 191 

under CEL conditions. The families of repressed genes were GH10 (glycoside hydrolase 10 192 

family endo-1,4-β-xylanase), GH11 (glycoside hydrolase 11 family endo-1,4-β-xylanase), 193 

GH76 (alcohol dehydrogenase 1), GH20 (β-N-acetylhexosaminidase) and GH35 (glycoside 194 

hydrolase 35). 195 

 196 

Discussion 197 

In the present study, an integrative multi-omics approach was used to mine CAZyme-rich 198 

regions of ThIOC3884. BAC clones were selected, sequenced and used in comparative 199 
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analyses focusing on the expression profile via RNA-Seq and the exoproteome under 200 

different fungal growth conditions, enabling the discovery of important gene/proteins related 201 

to plant biomass degradation (Supplementary Fig. S3). 202 

The vast majority of important enzymes for the degradation of plant biomass are 203 

already known [25-27]. The current challenge is how enzymes are regulated and the genetic 204 

mechanism of their activation. Thus, many works with cellulolytic fungi have focused on 205 

TFs, accessory enzymes, transporters and the way the type of biomass affects the process of 206 

regulating the cellulases and hemicellulases [22, 28-30]. Other studies have already shown 207 

the potential of T. harzianum for the degradation of plant biomass. This is the first work that 208 

integrates results from different biotechnology approaches and that focuses on the prediction 209 

of the most important enzymes and TFs used by T. harzianum IOC3844 to degrade CEL. 210 

The molecular process of CEL degradation is extremely complex and involves 211 

hydrolytic enzymes acting on the extracellular medium, carrier proteins and TFs (Figure 7). 212 

For T. harzianum and T. reesei, the major CAZy families related to CEL degradation were 213 

identified in the genome (GH1, GH3, GH6, GH7, GH12, GH45 and AA9) [7], and many of 214 

the cellulases have already had their three-dimensional structure solved; however, many key 215 

proteins in this process are not well known as transporter TFs related to the regulation of 216 

these enzymes. 217 

The study of genomic regions is an important tool for providing a global view of the 218 

important genes and regulatory regions of a genome [24, 31]. The genomes of a few strains of 219 

T. harzianum are available [32, 33]. A complete genome draft sequenced in 1572 scaffolds is 220 

available for T. harzianum T6776 [32]; however, little is known about the ThIOC3844 221 

genome, and as it is a strain with potential for hydrolytic enzymes, more genomic information 222 

regarding CAZyme sequences is needed. In this study, our strategy was to use large genomic 223 

regions and integrate these data with other genetic information. 224 
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A large number of fungal genomes have already been used as a platform to search for 225 

new genes related to the degradation of biomass, as is the case for T. reesei QM6a, which has 226 

a finalized genome divided into seven chromosomes [34]. Our study results with the genomic 227 

regions of ThIOC3844 showed a large number of enzymes classified as CAZymes, as well as 228 

TFs and transporters in clusters in the genome, which may be important for future studies of 229 

genetic modification of this lineage. 230 

Analyzing the level of expression of certain genes under certain conditions is an 231 

important step in understanding how transcription is affected in a specific biological 232 

condition [17, 35]; however, there is not always a direct relationship between what is being 233 

highly expressed and the proteins that are important in the extracellular medium. Thus, in this 234 

work, in addition to studying the most expressed genes that we found in the genomic regions, 235 

we also searched for those with a confirmed presence in the fungus secretome CEL 236 

degradation conditions. Our results showed that CAZy families are key in the degradation of 237 

CEL, with a high level of expression and a positive presence as a secreted protein. 238 

Genomic comparison is a powerful tool for understanding differences and 239 

evolutionary dynamics among related species [36-38]. Our data show a high similarity 240 

between different strains of T. harzianum (IOC3844, B97 and T6776), which indicates that 241 

differences in enzyme production and efficiency may be related more to gene regulation 242 

mechanisms than differences in the sequence itself. In addition, by synteny analysis, it was 243 

possible to observe a greater difference in relation to the genome of T. reesei, which can be 244 

explained by the loss of genes and genomic modifications carried out in lineages of this 245 

fungus to increase its productivities of enzymes related to plant biomass degradation [12, 39]. 246 

The CLR2 transcription factor was described as an important regulator in the 247 

expression of cellulases by Neurospora crassa [22]; however, its functional role is not yet 248 

clear for fungi of the genus Trichoderma, including T. reesei [14, 40]. In the genome of 249 
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ThIOC3844, we found a cluster with the CLR2 TF in association with other putative 250 

transcription factors, CAZymes, transporters and MFS permease. The same behavior was 251 

found for the T. reesei CLR2 TF, which has physical proximity and coexpression with a 252 

sugar transporter [29, 41]. These results indicate that there may be a mechanism for the joint 253 

regulation and expression of this TF with transporters related to biomass degradation. Based 254 

on RNA-Seq data, we observed differential expression of CLR2 in the cellulose condition. In 255 

this way, we analyzed the coregulation network of the CLR2 regulator. The present study 256 

illuminates unclear areas of the genomic organization, expression and putative regulation of 257 

CLR2 in T. harzianum. 258 

Coregulation networks provide insights into how genes correlate and interact with 259 

each other [35, 42, 43]. We identified 36 genes directly associated with the CLR2 regulatory 260 

factor; these genes may be important in the regulation process of this factor, which is linked 261 

to the expression of cellulases in other filamentous fungi. Techniques such as gene knockout 262 

can further validate the functional or synergistic importance of these genes with key TFs for 263 

the expression of genes related to degradation of plant biomass. 264 

 265 

Conclusions 266 

Our results present an innovative approach in using different types of omics data to search for 267 

new important genes and genetic regulation mechanisms during the process of CEL 268 

degradation. We found several TFs, accessory enzymes and transporters in the genomic 269 

regions of ThIOC3844 that may be important for the expression/secretion of CAZyme genes. 270 

Among these, CLR2, CIP2 and LPMOs are promising candidates for further study. Our 271 

results indicate that the CRL2 regulator matches all the requirements for involvement in 272 

cellulose degradation by T. harzianum. In addition, through the approach of coregulation 273 

networks, it is possible to understand the relationship between genes and to find new targets 274 
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for biochemical characterization. The results allowed the identification of important genetic 275 

regions, key genes and functional proteins, and this information can be used for the 276 

development and improvement of enzymatic hydrolysis technology for the bioethanol 277 

industry. 278 

 279 

Methods 280 

 281 

T. harzianum strain and genomic resources 282 

T. harzianum IOC3844 (ThIOC3844) was obtained from the Brazilian Collection of 283 

Environment and Industrial Microorganisms (CBMAI). A library of BACs consisting of 284 

5,760 clones previously constructed for this fungus strain [24] was used to search for 285 

genomic regions. The genomic sequences of T. harzianum T6776 (PRJNA252551), T. reesei 286 

QM6a (PRJNA325840), T. atroviride IMI206040 (PRJNA19867) and T. virens Gv29-8 287 

(PRJNA19983) were used for comparison with ThIOC3844. 288 

 289 

BAC library screening for gene selection in T. harzianum IOC3844 290 

We designed primers for 62 target CAZyme genes (Supplementary Table S1) using 291 

transcriptome data [3] to search for positive BAC clones that contain genes previously 292 

selected from the plate (with the complete BAC library comprising fifteen 384 plaques) and 293 

column pools (24 columns of each plate). The plate and column pools were amplified using 294 

the Illustra GenomiPhi HY DNA Amplification Kit (GE Healthcare Life Sciences, UK) 295 

following the manufacturer’s instructions. The screening reactions for the search for positive 296 

clones were performed via PCR using the CFX384 Touch Real-Time PCR Detection System 297 

(Bio-Rad). 298 

 299 
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Single-molecule real-time (SMRT) sequencing and assembly 300 

Libraries for sequencing were prepared according to the Pacific Biosciences (PacBio) 301 

protocol, and sequencing was performed at the Arizona Genomics Institute (AGI; Tucson, 302 

USA) using a Single-Molecule Real-Time (SMRT) DNA sequencing system available from 303 

PacBio. De novo assembly was performed with the PacBio Corrected Reads (PBcR) pipeline 304 

implemented as part of Wgs-assembler v8.3rc2 [44] and Celera Assembler [45]. The contigs 305 

obtained with the assemblers were subjected to error correction with pbalign (v0.2). The 306 

PacBio reads were aligned using the BLASR algorithm [46], and assembly polishing was 307 

performed with the Quiver tool (Supplementary Table S2 and S3) [47]. 308 

 309 

Gene prediction and functional annotation 310 

The FGENESH tool was used for initial gene prediction analysis [48], followed by manual 311 

correction with the T. harzianum T6776 and T. reesei QM6a gene models. Annotations of the 312 

ontologies were performed with Blast2GO [49]. InterPro protein domains were predicted 313 

using InterProScan (http://www.ebi.ac.uk/interpro/) [50]. Information derived from the CAZy 314 

database was downloaded for each CAZyme family (www.cazy.org). The protein sequences 315 

of T. harzianum IOC3844 were used as queries in basic local alignment search tool 316 

(BLASTp) searches against the locally built CAZyme BLAST database. Only BLAST 317 

matches showing an e-value less than 10−11, identity greater than 30% and queries covering 318 

greater than 70% of the sequence length were retained and classified according to the 319 

CAZyme catalytic group as glycoside hydrolases (GHs), glycosyl transferases (GTs), 320 

polysaccharide lyases (PLs), carbohydrate esterases (CEs), carbohydrate-binding modules 321 

(CBMs) or auxiliary activities (AAs). 322 

 323 

Genomic comparison in Trichoderma spp. 324 
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The software used for alignment was Nucmer (-maxmatch), which is part of the software 325 

package MUMmmer 3.23 [51]. The delta-filter (-q), show-coords (-rcl), and DNADIFF 326 

(standard parameters) were used for filtering, obtaining the mapping coordinates and 327 

generating the statistical report in the alignment, respectively. SimpleSynteny software 328 

(https://www.dveltri.com/simplesynteny/) [52] was used to compare a cluster of 12 genes 329 

among different species of Trichoderma spp. 330 

 331 

Phylogenetic analysis and structure modeling of CLR2 332 

The CLR2 sequences of ThIOC3844, T. reesei QM6a, T. atroviride, T. virens and other 333 

species of fungi were used as the basis for constructing the phylogenetic trees. These fungi 334 

were divided into Ascomycetes and Basidiomycetes. The sequences were aligned using 335 

ClustalW [53] and analyzed with Molecular Evolutionary Genetics Analysis (MEGA) 336 

software v7.0 (https://www.megasoftware.net/) [54]. The phylogenetic analyses were 337 

performed in MEGA7 using the maximum likelihood (ML) [55] method of inference based 338 

on the Jones-Taylor-Thornton (JTT) matrix-based model and 1000 bootstrap replicates [56] 339 

for each analysis. Pairwise deletion was employed to address alignment gaps and missing 340 

data. The trees were visualized and edited using the FigTree program 341 

(http://tree.bio.ed.ac.uk/software/figtree/). In silico modeling of the domain of CLR2 was 342 

performed using RaptorX protein structure prediction software (http://raptorx.uchicago.edu/) 343 

[57]. 344 

 345 

RNA-Seq and exoproteome analysis 346 

The expression levels of ThIOC3844 were analyzed using RNA-Seq data (PRJNA336221) 347 

obtained from a previous study in which the transcripts were obtained following growth of 348 

the fungus on two different carbon sources, CEL and GLU [35]. The reads from the RNA-349 
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Seq library were mapped against the ThIOC3844 genes using the CLC Genomics Workbench 350 

(https://www.qiagenbioinformatics.com/products/clc-genomics-workbench/) [58]. The 351 

expression values were expressed in reads per kilobase of exon model per million mapped 352 

reads (RPKM), and the normalized value for each sample was calculated in transcripts per 353 

million (TPM). For the analysis of differential expression, the following parameters were 354 

used: fold change greater than or equal to 1.5 and p-value lower than 0.05. The analysis of the 355 

exoproteome was performed by means of a BLASTn search of the predicted gene of 356 

ThIOC3844 against the local database of protein sequences from T. harzianum found in the 357 

extract of fungal growth under CEL and GLU conditions. 358 

 359 

Gene regulatory network 360 

The gene regulatory networks were assembled from the reference mapped RNA-Seq data 361 

using each set of biological triplicates for the CEL and GLU conditions [35]. The interaction 362 

between the genes was obtained by calculating Pearson’s correlation for each pair of genes. 363 

The induction and repression networks were constructed based on the expression data of a set 364 

of genes that were identified in the secretome of the CEL growth condition by the Bayesian 365 

inference method [59]. If the secreted protein was present in the condition, it was assigned a 366 

value of one. If the secreted protein was absent, it was assigned a value of zero. The treatment 367 

conditions were considered as regulators of the network to detect the direct relationships 368 

between the conditions and the genes. Thus, the Bayesian network represents the 369 

relationships among the conditions, gene expression, and secreted proteins. Cytoscape 370 

software v 3.4.042 [60] (https://cytoscape.org/) was used for data analysis and construction of 371 

the CLR2 subnetwork. 372 

 373 

 374 
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Additional files 375 

Additional file 1: Fig S1. Screening genes of interest in the genomic library of T. harzianum 376 

IOC3844 by qPCR (a); reads size sequenced using PACBio technology (b); genes cluster in a 377 

genomic region of T. harzianum (c). Fig. S2. Distribution of the main GO terms of the 378 

annotated genes in T. harzianum IOC3844. Fig. S3. Pipeline approach for the analyzes used 379 

in this work of genes and genomic study in T. harzianum. Supplementary Table S2. 380 

Assembly parameters of a set of sequenced genomic region using PACBio technology. 381 

Supplementary Table S3. Comparison of genomic data among different species of 382 

Trichoderma spp. Supplementary Table S8. Description of the species used for the 383 

phylogenetic analysis of the transcription factor CLR2. Supplementary Table S9. 384 

Description of the genes found in the coregulation networks. 385 

Additional file 2: Supplementary Table S1. Description of the genomic regions sequenced 386 

in T. harzianum IOC3844.  387 

Additional file 3: Supplementary Table S4. Annotation of all genes predicted in T. 388 

harzianum IOC3844. 389 

Additional file 4: Supplementary Table S5. Description of the EC codes for T. harzianum 390 

IOC3844 genes. 391 

Additional file 5: Supplementary Table S6. Description of the CAZymes genes for T. 392 
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Additional file 6: Supplementary Table S7. Level of expression of the genes annotated in 394 

T. harzianum IOC3844 by means of RNA-seq. 395 
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loop; CAZymes: Carbohydrate-active enzymes; CBMAI: Brazilian Collection of 400 

Environment and Industrial Microorganisms; CBM: Carbohydrate-binding module; CE: 401 

Carbohydrate esterases; CEL: Cellulose; CIP1: cellulose-induced protein 1; CIP2: 402 

cellulose-induced protein 2; CLR2: cellulose degradation regulator 2; DNA: 403 

Deoxyribonucleic acid;  E: beta-sheet; EC: Enzyme commission number; Ex: exposed; FC: 404 

fold change; GH: Glycoside hydrolases; GLU: Glucose;  GO: gene ontologies; GT: 405 

Glycosyltransferases; H: helix; JTT: Jones-Taylor-Thornton; kb: Kilobases; LPMO: Lytic 406 

polysaccharides monooxygenase; M: medium; Mb: Megabase; MEGA: Molecular 407 

evolutionary genetics analysis; MFS: major facilitator superfamily permease; ML: maximum 408 

likelihood; PacBio: Pacific Biosciences; PBcR: PacBio Corrected Reads; PCR: Polymerase 409 

chain reaction; PL: Polysaccharide lyases; RNA: Ribonucleic acid; RNA-Seq: RNA 410 

sequencing; RPKM: Reads per kilobase of exon model per million mapped reads; SMRT: 411 

Single-Molecule Real-Time; TaIMI206040: T. atroviride IMI206040; TFs: transcription 412 

factors; ThB97: T. harzianum B97; ThIOC3844: Trichoderma harzianum IOC-3844; 413 

ThTR274: T. harzianum TR274;  Th6766: T. harzianum; TPM: Transcripts per million; 414 

TrQM6a: T. reesei QM6a;  TvGv29-8: T. virens Gv29-8 415 
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Figure legends 667 

Figure 1. Distribution of the T. harzianum IOC3844 genes on the 1 Mb intervals of the seven 668 

chromosomes of T. reesei QM6a. CAZyme genes of T. harzianum IOC3844 are in red, 669 

CAZymes genes of T. reesei are in blue, and all genes of T. harzianum IOC3844 are in green. 670 

Th: T. harzianum IOC3844; Tr: T. reesei QM6a. 671 

Figure 2. Functional annotation of the genes predicted in the genomic regions of T. 672 

harzianum IOC3844. Annotation of genes for gene ontologies for biological processes, 673 

cellular components and molecular functions. (a) Distribution of enzymes annotated 674 

according to enzyme commission (b) and major enzyme commission (EC) related to cellulose 675 

and hemicellulose degradation (c). 676 

Figure 3. CAZy classification of genes annotated in the genomic regions of T. harzianum 677 

IOC3844. GH: glycoside hydrolases; GT: glycosyl transferases; PLs: polysaccharide lyases; 678 

CEs: carbohydrate esterases; AA: auxiliary activities; CBM: carbohydrate-binding modules. 679 

Figure 4. Comparison between the gene clusters of T. harzianum IOC3844 and those of other 680 

species of the genus Trichoderma spp. GH1: glycoside hydrolase 1; GH4: glycoside 681 

hydrolase 4; MFS: major facilitator superfamily permease; Trans: putative transporter; TF-1: 682 

putative transcription factor 1; GT38: glycosyl transferases 4; CBM18: carbohydrate-binding 683 

modules 18; TF-2: putative transcription factor 2; CLR2: cellulose regulator 2; GH2: 684 

glycoside hydrolase 2; GH26: glycoside hydrolase 26; Th: T. harzianum; Tv: T. virens; Ta: T. 685 

atroviride; Tr: T. virens. 686 

Figure 5. Molecular phylogeny of the CLR2 transcription factor in Ascomycota and 687 

Basidiomycota (a); in silico protein modeling for CLR2 in T. harzianum IOC3844 (b) and T. 688 

reesei QM6a (c). 689 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 21, 2019. ; https://doi.org/10.1101/731323doi: bioRxiv preprint 

https://doi.org/10.1101/731323
http://creativecommons.org/licenses/by-nc-nd/4.0/


29 

Figure 6. Subnetwork of CLR2 transcription factors and related genes (a) and network of 690 

induced (blue) and repressed (red) genes under cellulose conditions (b). CLR2: cellulose 691 

regulator 2; GH: glycoside hydrolases; GT: glycosyl transferases; AA: auxiliary activities. 692 

Figure 7. Molecular scheme of the enzymatic model in the degradation of cellulose in 693 

Trichoderma spp. Enzymes and PDB code: beta-glucosidase (5BWF), cellobiohydrolase I 694 

(2YOK), cellobiohydrolase II (1CB2), endoglucanase 3 (4H7M), copper-dependent lytic 695 

polysaccharide mono-oxygenases (LPMOs) (5O2W). 696 
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Table 1. Proteins identified in genomic and in the T. harzianum IOC3844 secretome under 719 

cellulose growth conditions. 720 

IDs* Protein name 
Secretome/UniPro

t ID 

CAZy 

family 

CEL 

(TPM) 

GLI 

(TPM) 

1010 Hypothetical protein A0A0G0ALT6 GH28 14.2 6.2 

1043 Cellulosome enzyme A0A0G0A296 GH30 35.6 11.5 

1054 
Glycosyl hydrolase 

10 
A0A0F9X8A4 GH10 14.8 4.1 

1075 
Glycosyl hydrolase 

64 
A0A0F9ZIR5 GH64 824.3 262.4 

1095 
Glycosyl hydrolase 

18 
A0A0F9ZHI0 GH18 83.2 47.9 

11 Mutanase A0A0F9XN06 CBM24 2741.6 1452.9 

1133 
Glycosyl hydrolase 

12 
A0A0F9Y2E9 GH12 1579.8 308.2 

1150 
Glycosyl hydrolase 

47 
A0A0F9WYR7 GH47 83.9 74.6 

1217 Beta-mannosidase A0A0F9ZDV4 GH2 117.9 124.2 

126 
Glycosyl hydrolase 

76 
A0A0F9X1Q3 GH76 616.7 375.4 

1318 Beta-xylosidase A0A0G0A408 GH3 172.3 125.2 

1439 

Alpha-L-

arabinofuranosidase 

B 

A0A0G0A4Q2 CBM42 450.4 343.5 

1440 Glycosyl hydrolase 3 A0A0F9XRC5 GH3 245.8 107.4 

1498 
WSC domain-

containing 
A0A0F9ZXC9 AA5_1 342.5 339.0 

44 Beta-1,3- A0A0F9ZKA8 GH72 2431.7 3210.5 
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glucanosyltransferase 

441 Alpha-glucosidase A0A0G0AG54 GH31 2121.6 1655.2 

559 
Alpha-1,2-

mannosidase 
A0A0G0ABI9 GH92 226.9 153.4 

666 Glycosyl hydrolase 3 A0A0F9XQT4 GH3 77.2 43.0 

667 Hypothetical protein A0A0G0AME2 CBM1 874.9 142.8 

668 
Glycosyl hydrolase 

61 
A0A0F9XMI8 AA9 3109.7 625.1 

669 
Glycosyl hydrolase 

16 
A0A0F9XP75 CBM13 16.4 3.7 

671 
Cytochrome P450 

monooxygenase 
A0A0G0A4Z5 GT4 1569.5 1595.3 

681 
Glycosyl hydrolase 

11 
A0A0F9Y0Y9 GH11/CBM1 4206.8 1316.1 

741 
Endo-N-acetyl-beta-

D-glucosaminidase 
A0A0F9ZHA7 GH18 3971.9 2328.0 

759 Hypothetical protein A0A0F9ZJ74 GH20 1184.8 1507.7 

813 Catalase peroxidase A0A0F9X3Z8 AA2 2677.7 2473.4 

82 Glycosyl hydrolase 6 A0A0G0AEM7 GH6/CBM1 5843.5 1567.4 

842 Hypothetical protein A0A0F9XY55 GH45/CBM1 41.3 15.3 

9 
Glycosyl hydrolase 

62 
A0A0F9X8Z0 GH62 353.9 103.4 

913 
Isoamyl alcohol 

oxidase 
A0A0F9XC99 AA7 39.3 13.2 

918 Hypothetical protein A0A0F9XG06 GH5_5 870.8 750.9 

*The annotated genes IDs can be found in Supplementary Table S4 721 

 722 
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