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Abstract: Biological sex is one of the major anthropometric factors which influences 21 

physiology, metabolism and health status. We have investigated the effect of sexual 22 

dimorphism on the blood lipidome profile in three large population level studies - the 23 

Alzheimer’s disease neuroimaging initiative - ADNI (n =806), the GeneBank 24 

Functional Cardio-Metabolomics cohort (n= 1015) and the Genetics of Lipid lowering 25 

Drugs and Diet Network - GOLDN (n=422). In total, 355 unique lipids from 15 lipid 26 

classes were detected across all three studies using LC-MS. Sixty percent of these 27 

lipids differed between men and women in all three cohorts, and up to 87% of all 28 

lipids demonstrated sex differences in at least one cohort. ChemRICH enrichment 29 

statistics on lipid classes showed that phosphatidylcholines, 30 
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phosphatidylethanolamines, phosphatidylinositols, ceramides, sphingomyelins and 31 

cholesterol esters were found at higher levels in female subjects while 32 

triacylglycerols and lysophosphatidylcholines were found at higher levels in male 33 

participants across the three cohorts. This strong sex effect on the blood lipidome 34 

suggests that specific regulatory mechanisms may exist that regulate lipid 35 

metabolism in a different manner between men and women. Cohort studies involving 36 

blood lipidomics should consider separate analyses for male and female participants 37 

instead of combined analyses treating sex as a confounding factor. 38 

Keywords: sexual dimorphism, chemical similarity, lipidomics, gender, men, women, sphingomyelin, 39 
phospholipids, triacylglycerol 40 
 41 

1. Introduction 42 

Differences between the sexes are one of the fundamental variations in biology[1]. 43 

Sex disparities in research can ignore discoveries of the biological mechanisms that 44 

are specific to particular sex, leading to missing opportunities in developing new sex-45 

specific therapeutic strategies[2]. Sex differences have been observed for gut 46 

microbiota[3] and transcriptome[4], suggesting that sex-specific strategies for health 47 

improvement are needed.  48 

Metabolomics has been validated for molecular epidemiology to discover risk factors 49 

and biological mechanisms for diseases. Several epidemiological studies have 50 

investigated biological sex as a main factor to define a person’s metabolome. 51 

Differential network analysis of metabolomics data for 844 healthy subjects 52 

suggested a sex-related variability in branched chain amino acids, ketone bodies, 53 
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and propanoate metabolism [5]. Mittelstrass et al. argued that metabolomics analysis 54 

in epidemiology should be stratified by sex and showed a strong sex effect in 3,300 55 

participants in the Cooperative Health Research in the Region of Augsburg (KORA) cohort. 56 

The study shows that up to 78% metabolites were under sex effect, including amino 57 

acids, sphingomyelins, phosphatidylcholines and acyl-carnitines [6]. Metabolomics 58 

analysis of 1,756 participants from the KORA F4 study showed that almost 33% of 59 

the 507 metabolites were significant different between men and women. The study 60 

suggested changes in steroid metabolism, fatty acid, amino acids, purine and 61 

dipeptide metabolism differed between the sexes and suggested that a sex-62 

regulated metabolic modules can be identified in the partial correlation network 63 

among metabolites [7]. The cross-sectional KarMeN (Karlsruhe Metabolomics and 64 

Nutrition) study included 301 participants, yielding a metabolomics dataset that 65 

predicted sex descriptors from blood specimen [8]. In a study on 60 subjects it was 66 

found that levels of sphingomyelins were higher in women in comparison to men in 67 

serum and plasma samples [9]. The study also reported that levels of triacylglycerols 68 

were higher in elderly than in younger women. Higher levels of LDL-C, HDL-C, total 69 

cholesterol, sphingomyelins and C22:6 fatty acyl-containing phospholipids were 70 

observed in women [10]. Similarly, women had higher levels of sphingomyelins and 71 

phosphatidylcholines in a French study of 800 participants. In this study, branched 72 

chain amino acids and lysophosphatidylcholines were also found to be higher in 73 

males [11]. These previous studies highlight the importance of sexual dimorphism in 74 

metabolic regulation for lipids and other metabolite levels. 75 
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We here report on the effect of sex descriptors on a comprehensive panel of 355 76 

blood lipids from 15 lipid classes in three large cohorts with the largest comparison 77 

to date with 2,243 subjects in total. These cohorts included the Genetics of Lipid 78 

Lowering Drugs and Diet Network (GOLDN) (n = 422), GeneBank, Cleveland Clinic 79 

(n= 1,015), and the Alzheimer’s Disease Neuroimaging Initiative (ADNI) (n = 806). 80 

We have used univariate statistics and chemical similarity enrichment analysis to 81 

highlight the strong sex effect on the detected lipids.  82 

2. Results 83 

2.1 Cohort summaries and lipidomics datasets 84 

Table 1 summarizes the cohorts. Participants in the GOLDN cohort were younger 85 

compared to the ADNI and GeneBank cohorts. On average, the cohorts consisted 86 

of 60% men and 40% women.  87 

Table 1 Cohort summaries 88 

Cohort Participants Male Female Age 

Alzheimer’s Disease 

Neuroimaging Initiative (ADNI) 

806 481 (60%) 358 75.2 (6.3) 

GeneBank cohort 1015 634 (62%) 381 64 (10) 

Genetics of Lipid Lowering 

Drugs and Diet Network 

 

422 207 (49%) 215 49 (16) 

 89 
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Figure 1 shows the lipidomics data acquisition and processing workflow. All 90 

lipidomics data were acquired using identical LC-MS instruments at the West Coast 91 

Metabolomics Center, UC Davis. A set of 15 internal standards were added to each 92 

sample which were used for retention time correction.  93 

A total 355 unique lipid species covering 15 lipid classes were included in the final 94 

dataset, after removing poorly detected and duplicate signals. Random forest-based 95 

normalization method using the SERRF tool[12] removed technical variance to as 96 

low as 2-6% relative standard deviation across all studies, using BioreclamationIVT 97 

 

Figure 1. Data processing pipeline overview 
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plasma QC samples that were analyzed after every 10th sample in all cohorts (see 98 

Supplementary Table S1).  99 

2.2 Significantly associated individual lipids 100 

Up to 87% of all lipids were found to be significantly different (p<0.05) between men 101 

and women in at least one cohort study using the raw p-values of the Mann-Whitney 102 

U test. More lipids were found to be specifically altered in ADNI cohort comparison 103 

to the GOLDN and GeneBank cohort studies. 33% of all significantly altered lipids 104 

were found to be common across all three studies (Figure 2).  105 

 106 

Figure 2. Overlap of significant lipids among three cohorts. 332 (94%) lipids were 107 

different in at least on cohort.  108 

 109 

Table 2. Top 25 significant lipids between male and female in the GOLDN cohort. 110 

Fatty acyl groups are annotated by the total number of carbons and the number of 111 

double bonds. 112 
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Rank Lipid p-value Fold change (F/M) 

1 SM (d32:2) 2E-23 1.4 

2 FA (13:0) 2E-16 1.6 

3 FA (16:0) 4E-14 1.5 

4 SM (d30:1) 4E-13 1.3 

5 SM (d40:3) 3E-12 1.2 

6 SM (d39:2) 6E-12 1.2 

7 PC (34:3) 4E-11 1.2 

8 LPC (20:4) 7E-11 0.8 

9 FA (12:0) 1E-10 1.3 

10 FA (10:0) 2E-10 1.4 

11 AC 18:0 2E-10 0.8 

12 SM (d41:2) 3E-10 1.1 

13 TG (54:3) 5E-10 0.7 

14 FA (18:1) 1E-09 1.5 

15 LPC (o-16:0) 2E-09 0.8 

16 LPC (18:1) 2E-09 0.8 

17 TG (56:2) 3E-09 0.6 

18 LPC (17:1) 4E-09 0.8 

19 TG (62:3) 4E-09 0.7 

20 LPC (18:2) 4E-09 0.8 

21 TG (60:2) 6E-09 0.6 

22 TG (58:3) 9E-09 0.7 

23 PC (32:2) 1E-08 1.3 

24 TG (56:1) 1E-08 0.6 

25 LPC (p-16:0)  2E-08 0.8 

 113 

Table 3. Top 25 significant lipids between male and female in the ADNI cohort. 114 

Rank Lipid p-value Fold change (F/M) 

1 SM (d32:2) 5E-52 1.40 

2 SM (d41:2) 3E-38 1.27 

3 SM (d38:2) 4E-37 1.21 

4 FA (14:1) 7E-37 1.69 

5 SM (d39:2) 7E-33 1.38 

6 FA (16:1) 8E-33 1.81 

7 PE (38:6) 2E-31 1.51 

8 SM (d36:2) 7E-26 1.18 

9 PC (34:3) 7E-26 1.22 

10 SM (d34:2) 2E-25 1.13 
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11 SM (d30:1) 8E-25 1.30 

12 HexCer(d34:1(2OH)) 2E-24 1.38 

13 PC (38:2) 5E-24 1.17 

14 LPC (18:2) 8E-24 0.80 

15 SM (d42:3) 1E-23 1.21 

16 PC (36:6) 4E-23 1.38 

17 PC (38:7) 5E-22 1.29 

18 CE (16:1) 1E-21 1.41 

19 PC (36:5) A 2E-21 1.26 

20 PC (34:4) 3E-21 1.33 

21 PC (32:2) 5E-21 1.28 

22 PE (38:4) 1E-20 1.35 

23 PC (32:1) 8E-20 1.35 

24 FA (17:1) 8E-19 1.38 

25 SM (d40:2) A 1E-18 1.17 

 115 

Table 4. Top 25 significant lipids between male and female in the GeneBank cohort. 116 

Rank Lipid p-value Fold change (F/M) 

1 SM (d32:2) 6E-54 1.3 

2 SM (d39:2) 1E-46 1.3 

3 SM (d36:3) 3E-32 1.4 

4 PC (36:5) A 5E-30 1.4 

5 SM (d34:2) 6E-28 1.2 

6 SM (d36:2) 1E-25 1.2 

7 SM (d30:1) 1E-24 1.3 

8 PE (38:4) 4E-23 1.3 

9 PC (34:3) 5E-22 1.2 

10 SM (d41:2) 2E-21 1.2 

11 SM (d38:2) 4E-19 1.1 

12 PC (38:6) B 1E-18 1.2 

13 PE (36:4) 2E-18 1.3 

14 SM (d37:1) 7E-18 1.2 

15 PE (38:6) 2E-17 1.3 

16 LPC (p-16:0) 4E-17 0.8 

17 SM (d40:3) 5E-17 1.2 

18 PC (35:3) 9E-17 1.2 

19 PC (35:4) 1E-16 1.2 

20 PC (32:2) 3E-16 1.3 

21 PC (34:4) 6E-15 1.2 
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22 PC (36:3) A 2E-14 1.1 

23 PC (36:3) B 3E-14 1.1 

24 PC (32:1) 4E-14 1.3 

25 SM (d42:3) 1E-13 1.2 

 117 

Among the top-25 of the most significantly different lipids, several sphingomyelin 118 

lipids (SM) were, starting with the most significant lipid SM d32:2 were found at 119 

consistently higher levels in women than in men across all cohorts (Table 2-4). Other 120 

lipids included monounsaturated free fatty acids (FA), ceramides (Cer), 121 

triacylglycerols (TG), lysophosphatidylethanolamines (LPE) and 122 

lysophosphatidylcholines (LPC). Statistical results for all lipids are provided in the 123 

Table S1. 124 

2.3 Significantly associated lipid classes 125 

Next, we performed a lipid class level analysis to find which chemical classes were 126 

significantly higher in the female versus male comparison. We have utilized the 127 

ChemRICH enrichment analysis method, which does not rely on a background 128 

database for computing the set level statistics. Figure 3 shows the lipids classes 129 

associated with differences between both sexes as ChemRICH impact plots.  130 

All lipid classes were found to be significantly different between men and women in 131 

at least one cohort. The most drastic effects were observed for sphingomyelins, 132 

triacylglycerol and phosphatidylcholines in the GOLDN and the GeneBank cohorts. 133 

Triacylglycerols and lysophosphatidylcholines were consistently higher in men 134 

across the three cohorts. Ceramides were higher in men in the GOLDN study but 135 

not in the ADNI cohort. 136 
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 137 

Figure 3. ChemRICH impact plots for the lipid classes associated with sex 138 

differences in three cohorts. Red dot means higher in women and blue means higher 139 

in men. Purple dot means a mixed response. Size of the dot indicates how many 140 

lipids we have in a class. Abbreviations: AC - Acylcarnitine ; CE - cholesterol ester ; CER 141 

- ceramide ; DG - diacylglycerol ; FA- fatty acid; HexCer - hexosyl ceramide ; LPC - 142 

Lysophosphatidylcholine ; LPE - Lysophosphatidylethanolamine ; PC - phosphatidylcholine 143 

; PI – phosphatidylcholine; SM - sphinhomyelin ; TG - triacylglycerol ; p-PC - plasmalogen 144 

phosphatidylcholine ; p-PE - plasmalogen phosphatidylethanolamine.  145 

Acylcarnitines were higher in men in the ADNI cohort, but a mixed response was 146 

observed for this lipid class in the GeneBank cohort study. Free fatty acids, 147 

phosphatidylcholines, sphingomyelins, phosphatidylethanolamine, 148 
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phosphatidylinositols and cholesterol esters were consistently higher in women in 149 

three cohorts. It seems that age was factor for some classes – for example 150 

triacylglycerols were lower in women in the younger cohorts (GOLDN and the 151 

GeneBank cohort) but not in the ADNI cohort study that included predominately 152 

elderly subjects. Interestingly, free fatty acids showed a mixed direction as indicated 153 

by purple color in the ChemRICH plot, so we investigated the degree of saturation 154 

within this lipid class. We found that saturated fatty acids were higher in men while 155 

unsaturated fatty acids were higher in women in all three cohorts.  156 

3. Discussion 157 

In comparison to earlier metabolomics studies, we have expanded the sexual 158 

dimorphism analysis of blood lipidome with using a comprehensive panel and larger 159 

studies. Several new lipids classes were found to be under strong impact of sexual 160 

dimorphism. We have replicated the previous finding that levels of sphingomyelins 161 

and phosphatidylcholines were elevated in women [9,10] while 162 

lysophosphatidylcholines and acylcarnitines were found at higher concentrations in 163 

men[6,11]. We also observed differences in triacylglycerol levels in the ADNI study 164 

between women and men that could possibly be due to biological age[9], while these 165 

differences was absent in comparatively younger participants of the GOLDN and the 166 

GeneBank cohort . The most significant lipid clusters included SM, PC, TG, p-PC, 167 

LPC and FA lipids in all three cohorts. We found new sex-regulated classes including 168 

phosphatidylinositols, plasmalogens, and ceramides. Plasmalogen biosynthesis has 169 

been linked with male fertility [13]. It has been previously shown that the hepatic 170 
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ceramide biosynthesis is regulated by sex hormones, including testosterone [14]. 171 

Differences in lipids between both sexes may suggest that sex specific remodeling 172 

of lipid metabolism is a fundamental biological process and calls for further studies 173 

to discover the underlying mechanisms that can create a basis for developing sex 174 

specific disease prevention strategies.  175 

 176 
Figure 4. Major metabolic pathways for lipids. Blue indicates higher in male and red indicate 177 

higher in female individuals. Abbreviations: AC - Acylcarnitine ; ACAT - Acyl-coA:cholesterol 178 

o-acyltransferase ; ACoA - acyl coenzyme A ; AGPS - Alkylglycerone Phosphate Synthase 179 

; ATGL - Adipose Triglyceride Lipase ; CPT1 - Carnitine Palmitoyltransferase 1A ; CDP - 180 

cytidine diphosphate ; CE - cholesterol ester ; CER - ceramide ; CMP - cytidine 181 

monophosphate ; CPT - CDP-choline:1,2-diacylglycerol cholinephosphotransferase ; CerS 182 

- ceramide synthase ; DG - diacylglycerol ; DGAT - Diacylglycerol O-Acyltransferase ; DGK1 183 

- Diacylglycerol kinase ; DHAP - Dihydroxyacetone phosphate ; FA- fatty acid ; FAR1 - Fatty 184 

Acyl-CoA Reductase 1 ; G3P - Glyceraldehyde 3-phosphate ; GDH - Glycerol 3-phosphate 185 

dehydrogenase ; GK - glycerol kinase ; GNPAT - glyceronephosphate O-acyltransferase ; 186 

GPAT - Glycerol-3-Phosphate Acyltransferase ; HSL - Hormone-sensitive Lipase ; HexCer 187 

- hexosyl ceramide ; LPA - lysophosphatidic acid ; LPC - Lysophosphatidylcholine ; LPCAT 188 

- Lysophosphatidylcholine acyltransferase ; LPE - Lysophosphatidylethanolamine ; MGAT - 189 

Acyl-CoA:monoacylglycerol acyltransferase ; PA - phosphatidic acid ; PC - 190 

phosphatidylcholine ; PC-PLC - phospholipase C ; PEMT - Phosphatidylethanolamine N-191 

Methyltransferase ; PI - phosphatidylcholine ; PIS - phosphatidylcholine synthase ; PLA2 - 192 

phospholipase A ; PLD - phospholipase D ; PS - phosphatidylserine ; PSD - 193 

Phosphatidylserine decarboxylase ; PSS - Phosphatidylserine synthase ; SE - sterol 194 
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esterase ; SM - sphinhomyelin ; SMS - sphingomyelin synthase ; SPT - serine palmitoyl 195 

transferase ; TG - triacylglycerol ; p-PC - plasmalogen phosphatidylcholine ; p-PE - 196 

plasmalogen phosphatidylethanolamine 197 

 198 

A schema of different metabolic pathways for complex lipids is shown in Figure 4. 199 

Our results show a consistently higher ratio of PC to LPC lipids in women compared 200 

to men. This ratio likely indicates a higher activity of phospholipases in men to cleave 201 

fatty acyl groups from PC membrane lipids to LPC lipid species. We also found 202 

higher levels of PC and SM lipids in women, along with lower amounts of ceramides. 203 

These three lipid classes intersect in their biochemical pathway and may directly 204 

support the idea of higher sphingomyelin synthase activity in women (Figure 4).  205 

Both phospholipases and sphingomyelin synthase are discussed as master 206 

regulators of lipid metabolism [15-17]. These enzyme activities could be validated in 207 

animal models to identify the specific organs that are contributing to the sexual 208 

dimorphism of lipid differences, using functional genomics analysis to construct a 209 

sex-specific metabolic network and to map regulatory mechanisms. Combining 210 

metabolomics, lipidomics and genomics assays in follow-up studies should be used 211 

to further discern the relative contributions from endogenous lipid remodeling versus 212 

contributions from diet and exercise.  213 

The strong sex effects observed in our study suggests that in epidemiological 214 

studies, statistical analyses for lipidomics data should considered separately for men 215 

and women. We argue against using sex as a confounding or co-variate for 216 

regression models to mask the sex-regulated biology. Instead results should be 217 

interpreted separately for male and female participants. These drastic sex-regulated 218 
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differences in the blood lipidome have implications on large epidemiological studies 219 

to identify the lipids that can be risk factors for chronic and aging associated 220 

disorders. We have observed different patterns for men and women of utilization of 221 

saturated and unsaturated free fatty acids, but further studies are needed on 222 

remodeling of acyl chains within specific classes of complex lipid[18].  223 

We have looked into three cohorts that have differences in terms of participant’s age, 224 

comorbidities, diet and medication usage. Variations in these factors may affect the 225 

lipid differences that are associated with sex. One has to consider the impact of 226 

monitored, and non-monitored differences in the cohorts examined on the observed 227 

results, and additional studies and verification are required. Even though, we have 228 

observed remarkable p-values for few sphingomyelins, the sex-effect for these lipids 229 

should be checked in other epidemiological cohorts. Nonetheless, our study argue 230 

that sex specific differences should be considered in future lipidomic examinations 231 

during both study design, and analyses. 232 

4. Materials and Methods 233 

Cohort 1. The GOLDN study (NCT00083369) focuses on how genetic factors 234 

interact with environmental (diet and drug) factors to influence triglycerides and other 235 

atherogenic lipid species and inflammation markers in blood. The study participants 236 

were primarily from three-generational pedigrees from two NHLBI Family Heart 237 

Study (FHS) field centers (Minneapolis, MN and Salt Lake City, UT). GOLDN study 238 

protocol was approved by the Institutional Review Boards at the University of 239 

Minnesota, University of Utah, Tufts University/New England Medical Center, and 240 
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the University of Alabama at Birmingham[19]. This study included 422 GOLDN 241 

participants who were in the extreme tertiles of the lipid response to the high fat diet 242 

intervention and had lipidomics data available. The diet intervention has been 243 

described [20]. 244 

Cohort 2 . The P20 functional metabolomics of cardiovascular disease study 245 

consisted of 1,015 participants from the GeneBank cohort, a large (n < 10,000) and 246 

well-characterized longitudinal tissue repository with associated clinical database at 247 

the Cleveland Clinic[21]. All participants gave informed consent and the study was 248 

approved by the Cleveland Clinic institutional review board. 249 

Cohort 3. ADNI is landmark prospective study on Alzheimer’s disease by National 250 

Institute of Aging. The study provides imaging, molecular, clinical and neurological 251 

function datasets for enrolled subjects along with biospecimens. In this paper, 252 

lipidomics data for the baseline serum samples from ADNI-1 study were utilized [22]. 253 

The data are available at (http://adni.loni.ucla.edu/). Prior Institutional Review Board 254 

approval was obtained at each participating institution and written informed consent 255 

was obtained for all participants. Information about the ADNI project is provided on 256 

http://www.adni-info.org/. 257 

Lipid extraction: Lipids were extracted from 20 µL of plasma or serum samples. 258 

225 µL cold methanol containing a mixture of 15 deuterated or odd-chain lipid 259 

internal standards was added and samples were vortexed for 10 s. After adding 750 260 

µL of MTBE, samples were vortexed for 10 s and shaken for 5 min at 4°C. Next, 188 261 

µL water was added and samples were vortexed for 20 s and centrifuged for 2 min 262 
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at 14,000x g. One 350 µL aliquots from the non-polar layer was evaporated to 263 

dryness in a SpeedVac concentrator. Dried extracts were resuspended using a 264 

mixture of methanol/toluene (9:1, v/v) (60 µL) containing an internal standard [12-265 

[[(cyclohexylamino)carbonyl]amino]-dodecanoic acid (CUDA)] used as a quality 266 

control. Method blanks and pooled human plasma (BioreclamationIVT) were 267 

prepared along with the study samples for monitoring the data quality. 268 

LC-MS data acquisition: Samples were analyzed using an Agilent 1290 Infinity 269 

UHPLC/6530 QTOF MS or an Agilent 1290 Infinity UHPLC/6550 QTOF MS. A 270 

charged surface hybrid (CSH) column C18 2.1×100 mm, 1.7 μm column with a 271 

VanGuard CSH pre-column, C18 2.1×5 mm, 1.7 μm (both Waters, Milford, MA) were 272 

used to separate the extracted lipids. A reference solution of purine and HP-0921 273 

(m/z 121.0509, m/z 922.0098 in electrospray ionization (ESI) ( + ) and m/z 119.0360 274 

and m/z 980.0164 (acetate adducts) in ESI(–)) was used to correct small mass drifts 275 

during the acquisition. Mobile phase A (60:40 ACN:water + 10 mM ammonium 276 

formate + 0.1% formic acid) was prepared by mixing 600 mL ACN, 400 mL water, 277 

1 mL formic acid and 630 mg of ammonium formate. Mobile phase B solvent (90:10 278 

IPA:ACN + 10 mM ammonium formate + 0.1% formic acid) was prepared by mixing 279 

900 mL IPA, 100 mL acetonitrile, 1 mL formic acid, 630 mg ammonium formate 280 

previously dissolved in 1 mL of H2O. Both solvents were mixed and sonicated for 281 

10 min (twice) before their use. For ESI (–) the composition of mobile phases was 282 

identical but 10 mM ammonium acetate (771 mg per 1 L) was used instead as 283 

modifier for the ADNI and GOLDN cohort samples. The quadrupole/time-of-flight 284 
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(QTOF) mass spectrometers were operated with electrospray ionization (ESI) 285 

performing full scan in the mass range m/z 100–1700 in positive and negative 286 

modes. Instrument parameters were as follows for the ESI ( + ) mode on the Agilent 287 

6530 QTOF – gas temperature 325 °C, gas flow 8L/min, nebulizer 35 psig, sheath 288 

gas temperature 350 °C, sheath gas flow 11, capillary voltage 3500 V, nozzle voltage 289 

1000 V, and fragmentor voltage 120 V. In negative ion mode (Agilent 6550 QTOF), 290 

gas temperature 200°C, gas flow 14L/min, fragmentor 175 V, with the other 291 

parameters identical to positive ion mode. Data were collected in centroid mode at a 292 

rate of 2 scans/s. Injection volume was 1.7 μL for the positive mode and 5 μL for the 293 

negative mode. The liquid chromatography gradient used a 0.6 mL/min linear 294 

velocity flow rate. The gradient started at 15% B, ramped to 30% at 2 min, 48% at 295 

2.5 min, 82% at 11 min, 99% at 11.5 min and kept at 99% B until 12 min before 296 

ramping down to 15% B at 12.1 min which was kept isocratic until 15 min to 297 

equilibrate the column. The total run time was 15 min. Samples were analyzed in in 298 

multiple batches with batch size ranging from 200-300 samples. After every ten 299 

cohort samples, one BioreclamationIVT pooled plasma QC sample was analyzed. 300 

Targeted signal extraction and data generation: Raw LC-MS data files were 301 

converted to the mzML format using the Proteowizard MS Convert utility. These files 302 

were imported in R using the mzR package. A database of validated lipids that were 303 

routinely detected in blood samples has been compiled at the West Coast 304 

Metabolomics Center over the past seven years. In this database, annotated lipids 305 

are associated with retention time, adducts, m/z value and InChI keys, verified by 306 
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accurate mass, isotope ratio, retention time and MS/MS spectra matching to either 307 

commercial lipid standards or to the LipidBlast library[23]. In the database, ESI 308 

positive mode had 515 RT-m/z values and ESI negative mode had 457 RT-309 

m/z values [22]. Using the retention time–mass-to-charge ratio, RT-m/z database as 310 

a targeted list, we extracted the ion chromatograms (EICs) for all m/z values using 311 

R software with a targeted signal extraction strategy, stretching a range of ±0.5 min 312 

of the target retention time for each m/z value and to obtain the peak height values 313 

for all lipids. No peak smoothing or integration method was applied to the EICs. To 314 

address retention time drifts between cohorts and among all samples of each cohort 315 

study, retention times of the internal standards were obtained for each sample using 316 

a ± 0.2 min retention time window to find the peak apexes of the internal standards. 317 

A polynomial regression of second order (quadratic) curve was fitted between the 318 

expected and observed retention times of the internal standards. The retention times 319 

of the remaining compounds in the target database were recalibrated using the 320 

regression model. The updated retention times were used with a window of 0.15 min 321 

for each metabolite to extract the m/z intensities values belonging to that ion. 322 

Maximum intensity values within the retention time window were used as the peak 323 

height of the target compounds. Data were normalized using quality control pool 324 

samples that were interjected between every 10 subject samples during data 325 

acquisition. We employed the SERRF random forest machine learning algorithm [12] 326 

to remove batch and drift effects in each cohort data set for each individual lipid.  327 
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Statistical analysis: Data were log transformed before statistical testing. The Mann-328 

Whitney-U test was used to find raw significance values for each lipid between men 329 

and women in each of the three cohorts. p-values from the Mann-Whitney-U test 330 

were used as input for the chemical similarity enrichment analysis using the 331 

ChemRICH software[24] to find statistical significance levels on the basis of lipid 332 

classes. ChemRICH p-values were corrected for the false discovery rate.  333 

5. Conclusions 334 

Our study is the largest lipidomics study to report differences between male and 335 

female participants. We have acquired LC-MS datasets on identical mass 336 

spectrometers and have used machine learning methods-based signal correction 337 

approach to remove technical variance and batch effects. Use of a database 338 

independent lipid set enrichment analysis methods have identified a number of 339 

specific lipid classes that were associated with differences between adult men and 340 

women. Epidemiological studies focusing on these drastically different lipid classes 341 

need to stratify the cohort data and interpret the results separately for male and 342 

female participants. 343 

Supplementary Materials: The following are available online at www.mdpi.com/xxx/s1,  344 

Table S1: Measured lipids and their statistical significance across three cohorts.  345 
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