1	Myristate can b	e used as	s a carbon a	nd energy	source fo	or the asym	biotic growt	h of arbu	ıscular
2	mycorrhizal fun	ıgi							

3

4	Yuta Sugiura ^{a,1} , Rei Akiyama ^{a,1} , Sachiko Tanaka ^b , Koji Yano ^b , Hiromu Kameoka ^c , Shiori
5	Marui ^c , Masanori Saito ^d , Masayoshi Kawaguchi ^{b,e} , Kohki Akiyama ^c , and Katsuharu Saito ^{f,2}
6	
7	^a Graduate School of Science and Technology, Shinshu University, Minamiminowa, Nagano

8	399-4598, Japan; ^b Division of Symbiotic Systems, National Institute for Basic Biology,
9	Okazaki, Aichi 444-0867, Japan; ^c Graduate School of Life and Environmental Sciences,
10	Osaka Prefecture University, Sakai, Osaka 599-8531, Japan; ^d Field Science Center, Graduate

11 School of Agricultural Science, Tohoku University, Osaki, Miyagi 989-6711, Japan;

¹² ^eDepartment of Basic Biology, School of Life Science, Graduate University for Advanced

13 Studies (SOKENDAI), Okazaki, Aichi 444-0867, Japan; and ^fFaculty of Agriculture, Shinshu

14 University, Minamiminowa, Nagano 399-4598, Japan

15

16 Author contributions: M.K., K.A., and K.S. designed research; Y.S., R.A., S.T., K.Y., S.M.,

17 M.S., K.A., and K.S. performed research; Y.S., R.A., H.K., K.A., and K.S. analyzed data; and

18 K.A. and K.S. wrote the paper.

20 The authors declare no competing interest.

21

- ¹Y.S. and R.A. contributed equally to this work.
- ²To whom correspondence may be addressed. Email: saitok@shinshu-u.ac.jp.

24

25 Keywords: fatty acid auxotrophy | immobilized cell culture | mycorrhizal symbiosis | pure

26 culture

28 Abstract

29	Arbuscular mycorrhizal (AM) fungi, forming symbiotic associations with land plants, are
30	obligate symbionts that cannot complete their natural life cycle without a host. Recently, fatty
31	acid auxotrophy of AM fungi is supported by studies showing that lipids synthesized by the
32	host plants are transferred to the fungi and that the latter lack genes encoding cytosolic fatty
33	acid synthases (1-7). Therefore, to establish an asymbiotic cultivation system for AM fungi,
34	we tried to identify the fatty acids that could promote biomass production. To determine
35	whether AM fungi can grow on medium supplied with fatty acids or lipids under asymbiotic
36	conditions, we tested eight saturated or unsaturated fatty acids (C12-C18) and two
37	β-monoacylglycerols. Only myristate (C14:0) led to an increase in biomass of <i>Rhizophagus</i>
38	irregularis, inducing extensive hyphal growth and formation of infection-competent
39	secondary spores. However, such spores were smaller than those generated symbiotically.
40	Furthermore, we demonstrated that R. irregularis can take up fatty acids in its branched
41	hyphae and use myristate as a carbon and energy source. Myristate also promoted the growth
42	of Rhizophagus clarus and Gigaspora margarita. Finally, mixtures of myristate and palmitate
43	accelerated fungal growth and induced a substantial change in fatty acid composition of
44	triacylglycerol compared with single myristate application, although palmitate was not used
45	as a carbon source for cell wall biosynthesis in this culture system. In conclusion, here we

- 46 demonstrate that myristate boosts asymbiotic growth of AM fungi and can also serve as a
- 47 carbon and energy source.

48 Significance statement

- 49 The origins of arbuscular mycorrhizal (AM) fungi, which form symbiotic associations with
- ⁵⁰ land plants, date back over 460 million years ago. During evolution, these fungi acquired an
- 51 obligate symbiotic lifestyle, and thus depend on their host for essential nutrients. In particular,
- 52 fatty acids are regarded as crucial nutrients for the survival of AM fungi owing to the absence
- 53 of genes involved in *de novo* fatty acid biosynthesis in the AM fungal genomes that have
- 54 been sequenced so far. Here, we show that myristate initiates AM fungal growth under
- asymbiotic conditions. These findings will advance pure culture of AM fungi.

56 **Text**

58	Arbuscular mycorrhizal (AM) fungi belonging to the subphylum Glomeromycotina (8) form
59	symbiotic associations with over 70% of land plant species (9). AM fungi provide hosts with
60	minerals taken up via hyphal networks in soil and in return receive carbon sources, such as
61	sugars and lipids derived from plant photosynthates. This is regarded as an obligate symbiotic
62	relationship, as AM fungi can complete their life cycle only through colonization of their host.
63	Nevertheless, a few reports of AM fungal culture without hosts have been published. One
64	report showed that the co-cultivation of the AM fungus Rhizophagus irregularis (formerly
65	Glomus intraradices) with bacterial strains of Paenibacillus validus, separated from each
66	other by dialysis membranes, induced secondary spore formation in the AM fungus (10).
67	Another study reported that some fatty acids, including palmitoleic acid and
68	(S)-12-methyltetradecanoic acid (anteiso-C15:0), induced the formation of
69	infection-competent secondary spores in asymbiotic cultures of AM fungi (11). These results
70	suggest that AM fungi may be cultured independently from host plants under artificial
71	conditions. In nature, the life cycle of AM fungi proceeds as follows. Resting spores of AM
72	fungi germinate, and then germ tubes emerge from the spores and elongate into the soil. After
73	colonization into plant roots, AM fungi form highly branched hyphal structures, called
74	arbuscules, in plant cortical cells, which are the sites of nutrient exchange between AM fungi

75	and their hosts. After receiving carbon sources from their hosts, AM fungi activate the
76	formation of extraradical hyphal networks in soil and form spores on their hyphae. Altogether,
77	obtaining carbon sources from their hosts for the production of energy and the carbon
78	skeleton of fungal cell components is a key step for AM fungal growth and reproduction. In
79	particular, tracing experiments and nuclear magnetic resonance (NMR) analyses showed that
80	hexoses are transferred to AM fungi as a carbon source (12-14). Moreover, several AM fungal
81	monosaccharide transporters have been identified (15-17). Recently, lipids have been proven
82	to be another plant-derived carbon source (1-3, 18, 19). Since no fatty acid biosynthesis in
83	extraradical hyphae has ever been detected, lipids were assumed to be synthesized in
84	intraradical hyphae and transferred to extraradical hyphae and spores (14, 20). However, AM
85	fungal genomes do not possess genes encoding cytosolic fatty acid synthases involved in de
86	novo fatty acid biosynthesis, indicating that AM fungi cannot produce long-chain fatty acids
87	by themselves (4-7). On the other hand, during AM symbiosis, plants activate fatty acid
88	biosynthesis and transfer lipids, presumably 16:0 β -monoacylglycerol (β -MAG), to AM fungi
89	via arbuscules (1-3, 18, 19). In fact, in plant mutants defective in fatty acid biosynthetic genes
90	that are specific to the pathway supplying lipids to their symbionts, AM fungi cannot develop
91	arbuscules and their root colonization is reduced. These results indicated that AM fungi
92	require exogenous fatty acids for their growth. Once AM fungi take up fatty acids, they can

utilize them through fatty acid desaturases and elongases encoded by genes present in their
genomes and expressed in intraradical hyphae (4, 5, 7, 20-23). Thus, we examined whether
AM fungi can grow and produce fertile spores under asymbiotic conditions through the
application of fatty acids. **Results Myristate activates AM fungal growth**Initially, we screened several fatty acids and β-MAGs to identify chemicals that can promote

101 the growth of *R. irregularis* under asymbiotic conditions. These compounds were added to

- 102 modified *Saccharomyces cerevisiae* synthetic complete (SC) medium (*SI Appendix*, Table S1)
- 103 with different dissolution methods: fatty acid salts in aqueous solution, fatty acids and

104 β -MAGs dissolved in ethanol, or fatty acids conjugated with bovine serum albumin (BSA).

- 105 Fatty acid-BSA conjugates (C12:0, C14:0, C16:0, C18:0, and C18:1) were dissolved to a
- 106 final concentration of 0.5 mM, whereas potassium salts of fatty acids (C12:0, C14:0, and
- 107 C16:0) were converted into an insoluble form due to the formation of metal soap with Ca^{2+}

and Mg²⁺ in SC medium. Moreover, fatty acids (C12:0, C14:0, C16:0, anteiso-C15:0,

- 109 C16:1 Δ 9Z, and C16:1 Δ 11Z) and β -MAGs (C14:0 and C16:0) were aggregated in solid
- 110 culture (SI Appendix, Fig. S1). Symbiotically generated spores of R. irregularis were used as

111 starting material (parent spores) for asymbiotic culture. In the absence of fatty acids, no 112increase in biomass was detected for R. irregularis (Fig. 1A and B). After spore germination, 113each R. irregularis spore generated a thick and short subtending hypha that soon branched to 114 produce straight-growing thick hyphae (hereafter referred to as runner hyphae), with several thin lateral hyphae displaying a low level of ramification (Fig. 1D and E). Hyphal elongation 115116ceased within one or two weeks after germination. By contrast, myristates (C14:0), unlike 117 other tested chemicals, substantially increased fungal biomass regardless of the method used 118 for their incorporation in the medium (Fig. 1A). Moreover, the increase in fungal biomass in 119the culture system along time depended on the amount of myristate (Fig. 1B). As a 120consequence, the total dry weight of a two-month-old colony treated with 1 mM potassium 121myristate was double that of parent spores (SI Appendix, Fig. S1A). Surprisingly, 16:0 122 β -MAG and palmitate (16:0), candidate compounds released from arbusculated host cells 123during symbiosis (18, 19), did not increase biomass production. However, during cultivation 124with myristate, vigorous hyphal development and subsequent differentiation of secondary 125spores were observed (Fig. 1F-P and SI Appendix, Fig. S1). After germination, R. irregularis 126differentiated a few densely packed coil (DPC)-like structures from the runner hyphae in the 127vicinity of the parent spore (Fig. 1G). The DPC is an extensively branched hyphal structure, 128 which was first observed in R. irregularis co-cultivated with P. validus (24) and whose

129	existence was confirmed in fungal materials supplemented with palmitoleic acid and
130	anteiso-C15:0 (11). Furthermore, R. irregularis elongated its runner hyphae by generating
131	short-branched hyphae similar to branched absorbing structures (BAS) (25) and expanded its
132	habitat by generating new runner hyphae (Fig. 1H-J). The branched hyphal structures
133	(hereafter referred to as BAS), small bunches of short and thin branches, were generated from
134	the runner hyphae at short intervals (Fig. $1K$). Interestingly, at the beginning of the cultivation
135	with a potassium myristate supplement, numerous precipitates of putative myristate salt were
136	observed throughout the growth medium; however, the precipitates around actively growing
137	hyphae were progressively solubilized (Fig. 1H, I, and L). Moreover, myristate-induced
138	secondary spores were frequently observed along the runner hyphae in the vicinity of parent
139	spores (Fig. 1M). Myristate-induced spores also occurred apically or intercalary along the
140	lateral branches of the extensively growing runner hyphae (Fig. $1N$ and O). These spores
141	were approximately 50 μ m in diameter, which is almost half the size of parent spores (Fig. 1 <i>F</i> ,
142	<i>M</i> , and <i>P</i>). In the presence of palmitoleic acid (C16:1 Δ 9Z) in the medium, extensive hyphal
143	branching and secondary spore formation were observed, which is consistent with the results
144	by Kameoka and co-workers (11). However, in our system hyphal growth was not associated
145	with an increase in biomass by the application of palmitoleic acid (Fig. 1A and SI Appendix,
146	Fig. S1 <i>E</i>). When lauric acid (C12:0) was applied as a lauric acid–BSA conjugate, R .

irregularis showed active elongation of runner hyphae with few DPC, BAS, or secondary

147

148spores (SI Appendix, Fig. S1F). However, this conjugate did not significantly increase fungal 149biomass (Fig. 1A). Thus, as the lauric acid–BSA conjugate was effective on hyphal elongation 150even at low concentrations (1 and 10 μ M), lauric acid is not likely to be utilized as a 151macronutrient for R. irregularis (SI Appendix, Fig. S1H). 152We further developed our culture system to promote fungal growth under asymbiotic conditions. First, we examined fungal growth in liquid culture with a modified SC medium 153154containing potassium myristate. Myristate was effective in enhancing fungal biomass also in liquid culture (SI Appendix, Fig. S2A). After germination, precipitates of metal soaps attached 155156to the hyphal surface (SI Appendix, Fig. S2B). Afterwards, as the fungal hyphae continued to elongate and became tangled, the metal soaps on the surface gradually disappeared. However, 157typical BAS were not recognized due to the aggregation of fungal hyphae, although highly 158branched fine hyphae were observed in the presence of myristate (SI Appendix, Fig. S2C). In 159160contrast to solid culture, very few secondary spores formed in liquid culture. Next, an 161immobilized cell culture system was tested, in which an inoculum of R. irregularis spores 162embedded in the center of a Phytagel tablet was incubated in modified SC liquid medium (SI 163Appendix, Fig. S3A). This culture system can prevent the aggregation of fungal hyphae and 164facilitate the diffusion of medium components in the Phytagel tablets. Notably, AM fungal

165	growth in the immobilized cell culture system with potassium myristate was increased by
166	3-4-fold with respect to that in solid and liquid cultures (Fig. 1A and C; SI Appendix, Fig.
167	S2A). Hyphal elongation was very active, and some hyphae even spread out of the Phytagel
168	tablets and continued to grow (Fig. 1Q and R and SI Appendix, Fig. S3B–D). The elongation
169	pattern of hyphae was similar to that in solid culture. For instance, DPC-like structures,
170	runner hyphae, BAS, and myristate-induced spores were observed (SI Appendix, Fig. S3E–I).
171	Also, myristate-induced spores were still smaller than parent spores (SI Appendix, Fig. S3J).
172	As monosaccharides are utilized by AM fungi as carbon sources during symbiosis
173	(12-14), we examined whether monosaccharides influenced on the growth of R . <i>irregularis</i> in
174	an immobilized cell culture system. However, in the absence of potassium myristate, neither
175	glucose nor xylose promoted biomass production (Fig. 1C). Similarly, no additional biomass
176	increase was detected upon treatment with a combination of monosaccharides and potassium
177	myristate. Modified SC medium contained 1 mM glycerol, which is a potential carbon source
178	because R. irregularis can absorb and metabolize it under asymbiotic conditions (26).
179	However, glycerol did not increase biomass production of R. irregularis with or without
180	myristate (SI Appendix, Fig. S1B–D).
181	To ascertain whether myristate exerts similar effects in other AM fungal species,

182 Rhizophagus clarus (Order: Glomerales, Family: Glomeraceae) and Gigaspora margarita

183 (Order: Diversisporales, Family: Gigasporaceae), belonging to the same genus as and a 184different order than *R. irregularis*, respectively, were cultured in the same conditions. When 185incubated in a medium without fatty acids, R. clarus produced short runner hyphae from the 186 parent spores and formed a few small secondary spores, although hyphal elongation soon 187 ceased (SI Appendix, Fig. S4). Conversely, in the presence of myristate, R. clarus showed 188 active hyphal growth and sporulation accompanied by an increase in biomass. After germination, runner hyphae were vigorously elongated and sometimes branched 189 dichotomously. In addition, BAS-like structures were generated at regular intervals from 190191several long runner hyphae. Myristate-induced secondary spores were also formed on short 192lateral branches deriving from runner hyphae. Similar to those seen in R. irregularis, the 193 myristate-induced spores of R. clarus were half the size of the parent spores and possessed 194 thinner spore walls. Since we could not obtain an adequate number of sterile spores of G. margarita, we only analyzed its growth pattern. G. margarita produced longer hyphae than R. 195196irregularis and R. clarus even in the absence of myristate, possibly owing to its large spores 197 with more abundant energy reserves (SI Appendix, Fig. S5). After transfer to a myristate-containing medium, G. margarita produced much longer runner hyphae, from 198199 which BAS-like structures were generated. No newly formed spores were observed in G. margarita, although auxiliary cells (subglobose, hyaline cells clustered in groups of 200

approximately 10 with spiny ornamentations borne on coiled hyphae) differentiated in both
 media.

203

204 Myristate-induced spores have infection capability

205Myristate-induced spores of R. irregularis began to differentiate from two weeks after 206cultivation in solid medium. The number of myristate-induced spores increased with time and 207amount of myristate and finally reached 1.4 spores per parent spore eight weeks after 208treatment (Fig. 2A). However, these spores were still half the size of the parent spores (Fig. 2092B). In the immobilized cell culture system, the number of R. irregularis myristate-induced 210spores was equal to that in solid culture, and addition of xylose further promoted their 211production, reaching up to 2.5 spores per parent spore (Fig. 2C and SI Appendix, Fig. S6). 212Myristate-induced spores were initially white to pale yellow and gradually turned to a 213yellow-brown color, similar to symbiotically generated spores (SI Appendix, Fig. S6A and Fig. 214S7A). Moreover, both spores induced by myristate and those produced symbiotically showed 215three spore wall layers originating from cylindrical subtending hyphae, although wall layers 216of myristate-induced spores were less thick than those of symbiotically generated spores (SI 217Appendix, Fig. S7B). Many nuclei, vacuoles, and lipid droplets were observed in both spore types (SI Appendix, Fig. S7A and B). To test whether myristate-induced spores could colonize 218

219	plant roots, single spores generated in the immobilized cell culture system with potassium
220	myristate and xylose were inoculated to carrot hairy roots. In total, 245 spores were examined
221	in six independent experiments (SI Appendix, Table S3). Myristate-induced spores displayed
222	infectivity towards hairy roots, triggering the production of next-generation mature spores on
223	the extraradical hyphae that emerged from the roots (Fig. $2D-G$). Approximately half of the
224	germinated spores could colonize hairy roots and produce daughter spores, albeit large
225	variations in the germination rate and infectivity of spores were observed among the trials
226	due to the effect of experimental manipulations (SI Appendix, Table S3).

227

228 AM fungi utilize myristate as a carbon and energy source

229	To address the use of fatty acids by AM fungi under asymbiotic conditions, we analyzed fatty
230	acid uptake using two fluorescent fatty acid derivatives of different chain lengths,
231	C ₁ -BODIPY 500/510 C ₁₂ and BODIPY FL C ₁₆ . <i>R. irregularis</i> absorbed C ₁ -BODIPY 500/510
232	C_{12} through its BAS (not runner hyphae) within 10 min from first exposure (Fig. 3A). The
233	probe was first taken up from the hyphal tips of BAS (Fig. 3A), then fluorescent signals were
234	observed over time in lipid body-like structures (27, 28) within runner hyphae, which were
235	translocated by cytoplasmic streaming (SI Appendix, Fig. S8B and Movie S1). BODIPY FL
236	C_{16} was also absorbed by the BAS within 4 h, while faint probe signals were observed during

237a short period of 10 min after the exposure (SI Appendix, Fig. S9A-C). Long exposure to 238these probes resulted in signals localized in myristate-induced spores as well as BAS, runner 239hyphae, and DPC, but parent spores were rarely labeled (SI Appendix, Fig. S8A-E and Fig. 240S9D-H). Moreover, germ tubes deriving from germinating spores incubated in sterilized 241water also took up the fluorescently labeled fatty acids, indicating that the activation of AM 242fungal hyphae by myristate is not necessarily required for fatty acid uptake (SI Appendix, Fig. 243S8F-G and S9I-J. Gene expression analysis confirmed that potassium myristate 244transcriptionally activated β -oxidation, the glyoxylate cycle, gluconeogenesis, and the TCA cycle 3 h after its application (Fig. 3B). Interestingly, a gene encoding a N-myristoyl 245246transferase (NMT), which catalyzes the myristoylation of proteins, was upregulated by 247 myristate. To further assess whether myristate provides the carbon skeleton for fungal cell components, we applied $[1-^{13}C]$ myristate to the culture medium and analyzed the cell wall 248 249components of *R. irregularis*. After the extraction of fungal cell walls, chitin and chitosan 250were converted into glucosamine through acid hydrolysis. Liquid chromatography-mass spectrometry (LC-MS) analysis of the extracted glucosamine demonstrated that the relative 251252ion intensity of M+1 was significantly higher in AM fungi supplemented with $[1-^{13}C]$ myristate (mean 16.4%) than in those supplemented with non-labeled myristate (6.1%) 253(Fig. 3C). This finding indicated that external myristate was taken up by R. irregularis and 254

255	utilized for the biosynthesis of chitin and chitosan in fungal cell walls. In addition, to evaluate
256	the use of myristate as an energy source, ATP production was measured after the application
257	of myristate. In particular, we applied myristate to germinating hyphae and measured their
258	ATP content 12 h after application. Notably, ATP content increased by 2.4-fold in the
259	presence of myristate (Fig. 3D). In addition, when carbonyl cyanide
260	<i>m</i> -chlorophenylhydrazone (CCCP), an inhibitor of mitochondrial membrane depolarization,
261	was simultaneously applied to the hyphae, ATP content did not increase even after fatty acid
262	application. The translocation of the fluorescent fatty acid probes to myristate-induced spores
263	(SI Appendix, Fig. S8 and S9) prompted us to examine whether myristate is utilized to
264	synthesize the major storage lipid, triacylglycerol (TAG). To this purpose, we cultured R .
265	<i>irregularis</i> in medium supplemented with [1- ¹³ C]myristic acid. After extraction of lipids from
266	the fungal materials, TAG was purified through preparative thin-layer chromatography (TLC)
267	and analyzed by ¹³ C-NMR. In the spectrum, two peaks at 173.1 and 173.4 ppm, which
268	corresponded to the carboxyl carbons of acyl chains at the α and β positions, respectively,
269	were observed at a much higher intensity than in the spectrum of TAG prepared from
270	non-labeled fungal materials or monoxenically cultured R. irregularis (Fig. 3E). This finding
271	showed that exogenous myristate was incorporated into TAG, especially in its acyl carboxyl
272	components.

273	Since no signals denoting the presence of unsaturated TAG fatty acids in
274	myristate-fed AM fungi were detected by ¹³ C-NMR (Fig. 3E), the fatty acid composition is
275	likely different from that in symbiotically generated spores. Further, AM fungi are predicted
276	to obtain C16:0 β -MAG or palmitic acid from the host under symbiotic conditions (18, 19).
277	Then, we analyzed the growth and lipid composition of AM fungi in the presence of a
278	combination of myristate and C16:0 β -MAG or palmitate. We found that palmitate enhanced
279	hyphal growth and biomass production of R. irregularis when combined with 0.5 mM
280	myristate, but C16:0 β-MAG exerted no significant effect (Fig. 4A and SI Appendix, Fig. S10).
281	Secondary spore formation was also stimulated by the combination of myristate and palmitate
282	(Fig. 4B). In the presence of palmitate or C16:0 β -MAG together with myristate, spores
283	displayed similar morphology but a slightly larger spore size than those induced by myristate
284	(Fig. 4C; SI Appendix, Fig. S7 and Fig. S10). In addition, lipid droplets extracted from spores
285	incubated in myristate seemed to be in a solid state, whereas those induced by a mixture of
286	myristate and palmitate were liquid, similar to symbiotically generated spores (SI Appendix,
287	Fig. S7A). This observation may reflect a change in the lipid composition of TAG. To prove
288	this hypothesis, we analyzed the fatty acid composition (the major acyl group C14:0, C16:0,
289	and C16:1 Δ 11) of AM fungal TAG by gas chromatography-mass spectrometry (GC-MS). In
290	myristate-fed AM fungi, C14:0 was the dominant acyl group, while C16:0 and C16:1 Δ 11

291	were found in traces (Fig. 4D). Furthermore, $[1^{-13}C_1]$ myristate labeling experiments showed
292	that exogenous myristate was directly incorporated into TAG as C14:0 acyl groups (Fig. 4E).
293	A significant fraction of C16:0 and C16:1 Δ 11 also derived from [1- ¹³ C ₁]myristate, indicating
294	that myristate taken up into the fungus is elongated to C16:0 and desaturated into C16:1 Δ 11.
295	In contrast, TAG in fungal materials supplemented with both myristate and palmitate
296	contained high amounts of C16:0 and C16:1 Δ 11 (Fig. 4D). The majority of these acyl groups
297	derived from the exogenous $[1^{-13}C_1]$ palmitate (Fig. 4 <i>E</i>). C16:1 Δ 11, a signature fatty acid for
298	most AM fungi except those of the genera Gigaspora, Archaeospora, and Paraglomus (29), is
299	likely to be generated from palmitate by the desaturase DES2, also known as OLE1-like, that
300	is constitutively expressed in AM fungal hyphae (23, 30, 31). We next analyzed fungal cell
301	wall components after incubation in a mixture of myristate and palmitate. The relative ion
302	intensity of $[{}^{13}C_1]$ glucosamine from AM fungi supplemented with $[1-{}^{13}C_1]$ palmitate and
303	non-labeled myristate was similar to the ion intensity of a non-labeled fatty acid mixture,
304	indicating that carbon from exogenous palmitate was not incorporated into chitin and
305	chitosan of fungal cell walls (Fig. 4F). Conversely, myristate-derived carbon was used for
306	cell wall biosynthesis when $[1^{-13}C_1]$ myristate and non-labeled palmitate were supplied.
307	

308 Discussion

309	AM fungi have an obligate biotrophic lifestyle, i.e., these fungi depend on host-derived
310	nutrients for their growth. Recently, AM fungi have been shown to receive lipids from the
311	host via arbuscules (1-3, 18, 19); however, how these fungi utilize these lipids as nutrients is
312	largely unknown. Here we show that myristate (C14:0) can be used as a carbon and energy
313	source for the hyphal growth of <i>R. irregularis</i> under asymbiotic conditions, thereby providing
314	the first evidence of increasing AM fungal biomass in a pure culture system. Myristate also
315	promoted the growth of R. clarus and G. margarita, suggesting that myristate is effective in
316	promoting asymbiotic growth in a wider range of AM fungal species. R. irregularis and R.
317	clarus elongated their hyphae and formed secondary spores in a similar manner. In contrast,
318	no secondary spores were observed in G. margarita, although long runner hyphae with BAS
319	were generated in the presence of myristate. Considerable variation in the fatty acid
320	composition of spores was observed between the genera Rhizophagus and Gigaspora (20,
321	29); therefore, their utilization of and response to exogenous fatty acids might also differ.
322	Notably, we confirmed that myristate-induced spores of R. irregularis are infective
323	propagules capable of generating symbiotic daughter spores, as previously demonstrated for
324	palmitoleic acid-induced secondary spores (11). Moreover, the observation that fluorescently
325	labeled fatty acid derivatives of different chain length accumulated in R. irregularis hyphae

326 suggested that AM fungi are likely to absorb fatty acids non-specifically. However, myristate 327 was the only fatty acid effective in promoting biomass production under our culture 328 conditions. This is a surprising finding because 16:0 β -MAG or its related chemicals are 329thought to be transferred from the host to AM fungi under symbiotic conditions (18, 19). 330 Meanwhile, as the plant enzymes FatM and RAM2, responsible for AM-specific lipid 331 biosynthesis, have been found to use C14:0-containing molecular species as well as C16:0 as a substrate in vitro (3, 19), and myristate and C14:0 α -MAG have been detected in 332 333 mycorrhizal roots and fungal spores, albeit in very small amounts (18, 20, 29), it is plausible 334that myristate is provided to AM fungi by the host. Myristate may be essential for the 335biological processes of AM fungi via myristate-specific metabolic pathways. Indeed, 336 myristate is used for the lipid modification of proteins, called protein N-myristoylation, in a variety of eukaryotes (32-34). Protein N-myristoylation is catalyzed by NMT, which transfers 337 myristate from myristoyl-CoA to the N-terminal glycine residue of target proteins (35). 338 339 N-myristoylated proteins are involved in diverse cellular processes such as protein 340 phosphorylation and signal transduction. Interestingly, disruption of the NMT gene causes recessive lethality in several fungal species (36-38). As indicated by the upregulation of the *R*. 341342*irregularis* NMT1 gene upon application of myristate, myristate may participate in boosting AM fungal growth by inducing protein N-myristoylation as well as by acting as a carbon 343

345used for fungal growth if enough myristate was provided to AM fungi to induce346N-myristoylation. Consistently, a mixture of myristate and palmitate further promoted fungal347growth and led to a marked increase in the proportion of C16:0 and C16:1 Δ 11 acyl groups in348fungal TAG, which are the predominant ones in symbiotically grown <i>R. irregularis</i> (4, 39).349However, carbon derived from exogenous palmitate was not used for cell wall biosynthesis.350On the other hand, in the presence of myristate, palmitate might stimulate the metabolism of351stored lipids in parent spores for asymbiotic growth or serve as an energy source. The former352hypothesis is consistent with the results of our $[1-1^3C_1]$ palmitate labeling experiment, in353which exogenous $[1-1^3C_1]$ palmitate and non-labeled palmitate, likely derived from stored354lipids, were incorporated into lipids of newly produced hyphae and secondary spores.
growth and led to a marked increase in the proportion of C16:0 and C16:1 Δ 11 acyl groups in fungal TAG, which are the predominant ones in symbiotically grown <i>R. irregularis</i> (4, 39). However, carbon derived from exogenous palmitate was not used for cell wall biosynthesis. On the other hand, in the presence of myristate, palmitate might stimulate the metabolism of stored lipids in parent spores for asymbiotic growth or serve as an energy source. The former hypothesis is consistent with the results of our [1- ¹³ C ₁]palmitate labeling experiment, in which exogenous [1- ¹³ C ₁]palmitate and non-labeled palmitate, likely derived from stored
fungal TAG, which are the predominant ones in symbiotically grown <i>R. irregularis</i> (4, 39). However, carbon derived from exogenous palmitate was not used for cell wall biosynthesis. On the other hand, in the presence of myristate, palmitate might stimulate the metabolism of stored lipids in parent spores for asymbiotic growth or serve as an energy source. The former hypothesis is consistent with the results of our $[1-^{13}C_1]$ palmitate labeling experiment, in which exogenous $[1-^{13}C_1]$ palmitate and non-labeled palmitate, likely derived from stored
However, carbon derived from exogenous palmitate was not used for cell wall biosynthesis. On the other hand, in the presence of myristate, palmitate might stimulate the metabolism of stored lipids in parent spores for asymbiotic growth or serve as an energy source. The former hypothesis is consistent with the results of our $[1-{}^{13}C_1]$ palmitate labeling experiment, in which exogenous $[1-{}^{13}C_1]$ palmitate and non-labeled palmitate, likely derived from stored
On the other hand, in the presence of myristate, palmitate might stimulate the metabolism of stored lipids in parent spores for asymbiotic growth or serve as an energy source. The former hypothesis is consistent with the results of our $[1-{}^{13}C_1]$ palmitate labeling experiment, in which exogenous $[1-{}^{13}C_1]$ palmitate and non-labeled palmitate, likely derived from stored
stored lipids in parent spores for asymbiotic growth or serve as an energy source. The former hypothesis is consistent with the results of our $[1-{}^{13}C_1]$ palmitate labeling experiment, in which exogenous $[1-{}^{13}C_1]$ palmitate and non-labeled palmitate, likely derived from stored
hypothesis is consistent with the results of our $[1-{}^{13}C_1]$ palmitate labeling experiment, in which exogenous $[1-{}^{13}C_1]$ palmitate and non-labeled palmitate, likely derived from stored
which exogenous $[1-^{13}C_1]$ palmitate and non-labeled palmitate, likely derived from stored
lipids, were incorporated into lipids of newly produced hyphae and secondary spores.
However, palmitate might become available as a carbon source for AM fungal growth under
both symbiotic and asymbiotic conditions in the presence of factors that were not considered
in our culture system. Future studies may better elucidate how AM fungi use different types

Fungal cell proliferation requires a sufficient supply of nutrients. Particularly, carbon sources are critical for producing the building blocks of cells and generating ATP. The observed incorporation of 13 C in TAG and cell wall components of *R. irregularis* when 362 [1-¹³C]myristate was supplied indicated that myristate is utilized as a carbon source to 363 synthesize cellular components. During symbiosis, β -oxidation, the glyoxylate cycle, and 364 gluconeogenesis are active in AM fungi, and these metabolic pathways have been proposed to 365 play a crucial role in the generation of carbohydrates from lipids (14, 26, 40, 41). Since the expression of major genes involved in β -oxidation, the glyoxylate cycle, gluconeogenesis, 366 367 and the TCA cycle was induced by the application of myristate, absorbed myristate is likely metabolized through these metabolic pathways and the resulting carbohydrates are used to 368 369 build the backbone of fungal cells. Furthermore, increased ATP levels upon myristate addition 370indicated that myristate can also be used as an electron donor for the respiration of AM fungi. 371In our culture systems, hexoses did not induce an increase in fungal biomass, although xylose 372 in combination with myristate triggered the production of a great number of secondary spores. 373 This finding implies that AM fungi can hardly use sugars as carbon sources under these conditions. This observation is consistent with the results of previous ¹³C labeling 374375experiments, which demonstrated a reduced hexose uptake by germinating spores than by intraradical hyphae (40). However, hexoses derived from the host are taken up via fungal 376 monosaccharide transporters in intraradical hyphae and/or arbuscules during symbiosis (13). 377 378 In addition, the monosaccharide transporter MST2 gene is expressed even in BAS formed on the medium in a carrot hairy root system (23) and induced in extraradical hyphae treated with 379

xylose (16). Thus, we cannot rule out the possibility that AM fungi can utilize exogenous
sugars for their growth under asymbiotic conditions.

382	A characteristic response of AM fungi to myristate is the branching of runner hyphae
383	and the formation of BAS. To date, a number of chemical compounds, such as strigolactones,
384	2-hydroxy fatty acids, palmitoleic acid, and branched fatty acids, have been found to induce
385	hyphal branching during the presymbiotic phase (11, 42, 43). For example, strigolactones
386	stimulate $5-6^{\text{th}}$ -order hyphal branching in <i>G. margarita</i> at extremely low concentrations (42),
387	but they only moderately induce hyphal branching in Rhizophagus sp. LPA8 (44). Moreover,
388	two 2-hydroxy fatty acids, 2OH-C14:0 and 2OH-C12:0, also affected presymbiotic hyphal
389	growth in Gigaspora spp., and these AM fungi were found to produce multiple lateral
390	branches along the primary germ tubes; however, 2OH-C14:0 and 2OH-C12:0 did not elicit
391	any morphological change in R. irregularis (43). In contrast, palmitoleic acid and branched
392	fatty acids stimulate hyphal branching of R. irregularis and R. clarus at low concentrations,
393	but they do not display this effect in G. margarita (11). In particular, palmitoleic acid was
394	found to induce high-degree short branching and sporulation. However, the effect of
395	myristate on hyphal branching and elongation was completely different from the effects of
396	these known stimulants. Indeed, we observed that myristate induced extensive hyphal
397	branching in R. irregularis, R. clarus, and G. margarita at high concentrations. In contrast, it

398	is known that these AM fungi do not respond to low concentrations of myristate (11, 43). To
399	explain this phenomenon, it is likely that myristate is utilized as a nutrient, with subsequent
400	activation of fungal metabolism and gene expression, which results in the differentiation of
401	BAS, DPC, and branched runner hyphae to further absorb myristate. Indeed, we observed that
402	fatty acids were taken up by the fungal BAS and DPC. Then, absorbed fatty acids or their
403	metabolites are likely to be stored in lipid bodies and translocated to runner hyphae, as
404	previously observed in symbiotic extraradical hyphae (26, 28, 41). Part of the fatty acids or
405	lipids might be also delivered to newly formed spores, where they may be used for spore
406	germination and subsequent hyphal elongation.

407 In conclusion, asymbiotic growth of AM fungi can be supported by externally supplied fatty acids, leadings to the possibility of generating a pure culture of biotrophic AM 408 fungi. Although myristate initiates AM fungal growth and sporulation, the size of 409 myristate-induced spores remains small compared with that of symbiotically generated spores. 410 411 Similar results were obtained for palmitoleic acid-induced spores (11). As smaller spores 412show low germination rates and infectivity (45), spore maturation in the absence of the host 413represents an exciting future challenge for the pure culture of AM fungi. Altogether, our findings have shed new light on the cellular and molecular biology of AM fungi and carry 414 important implications for the development of new strategies for the genetic transformation 415

416 and the production of inocula of these organisms.

417

418 Materials and Methods

419 Materials and methods used in this study are described in detail in SI Appendix, Extended

420 Methods.

421

431

422	Biological materials. Sterile spore suspensions of the AM fungus R. irregularis
423	DAOM197198 (or DAOM181602, another voucher number for the same fungus) were
424	purchased from Premier Tech. Hyphae included in the spore suspension were removed by
425	density-gradient centrifugation using gastrografin as described in SI Appendix, Extended
426	Methods. R. clarus HR1 (MAFF520076) and G. margarita K-1 (MAFF520052) were also
427	used for asymbiotic culture.
428	
429	Asymbiotic culture. Approximately 300-400 parent spores of R. irregularis were placed on
430	0.3% Phytagel (Sigma-Aldrich) plates containing modified SC medium (SI Appendix, Table

432 culture plate. For liquid culture, Phytagel was removed from the medium. Three types of fatty

S1) and then covered with 0.3% Phytagel dissolved in 3 mM magnesium sulfate in a 12-well

433 acids were added to the medium: fatty acid salts, fatty acids in an organic solvent, or fatty

434	acids conjugated with BSA. The plates were incubated at 28 °C in the dark. Hyphal
435	elongation was observed under a dissecting microscope and light microscopes.
436	
437	Immobilized cell culture. An overview of the immobilized cell culture system is represented
438	in the SI Appendix, Fig. S3A. Six-mm high and 17.5-mm wide Phytagel tablets, with 3-mm
439	deep and 11.5-mm wide circular incisions containing R. irregularis spores, were transferred
440	into a 6-well culture plate. Each well was filled with 5 mL of full- or half-strength modified
441	SC liquid medium with an appropriate amount of fatty acids and monosaccharides. AM fungi
442	were grown at 28 °C in the dark. During the culture period, the liquid medium was changed
443	once a month.

444

Asymbiotic culture of *R. clarus* and *G. margarita*. Sterile spores of *R. clarus* were prepared
using a monoxenic system with carrot hairy roots. *G. margarita* spores were extracted from
soil in pot culture and sterilized using chloramine T. These AM fungi were cultured in
Phytagel covered with half-strength modified SC medium containing 0.5 mM potassium
myristate at 28 °C for 12 weeks.

451 **Measurement of fungal biomass.**

452	Fungal materials were recovered from gels in wells of a culture plate by melting the gels in
453	citrate buffer and weighed with a micro analytical balance. The number of parent spores in
454	each well was counted in advance under a dissecting microscope. The standardized growth
455	increment of AM fungi was calculated by dividing the total fungal dry weight in each well by
456	the number of parent spores and subtracting the mean dry weight of a parent spore.
457	
458	Spore morphology. Spores were mounted with polyvinyl alcohol-lactic acid-glycerol
458 459	Spore morphology. Spores were mounted with polyvinyl alcohol–lactic acid–glycerol (PVLG) or Melzer's reagent for microscopic observation. Spores were incubated with 10 μ M
459	(PVLG) or Melzer's reagent for microscopic observation. Spores were incubated with 10 μ M
459 460	(PVLG) or Melzer's reagent for microscopic observation. Spores were incubated with 10 μ M SYTO 13 Green Fluorescent Nucleic Acid Stain (Thermo Fisher Scientific) for 2 h and

464	Single spore inoculation. A single myristate-induced spore produced in the immobilized cell
465	culture system in a half-strength modified SC medium supplemented with 0.5 mM potassium
466	myristate and 5 mM xylose was placed onto plates with carrot hairy roots using a pipette. The
467	production of daughter spores on extraradical hyphae emerging from hairy roots was observed
468	under a dissecting microscope. AM fungal colonization was confirmed by trypan blue staining.
469	
470	Fatty acid uptake. R. irregularis was grown in an immobilized cell culture system with
471	modified SC medium containing 0.5 mM potassium myristate for six to eight weeks. Fungal
472	hyphae were stained with 0.5 mM
473	$4,4-difluoro-5-methyl-4-bora-3a,4a-diaza-s-indacene-3-dodecanoic acid (C_1-BODIPY$
474	500/510 C ₁₂ , Thermo Fisher Scientific) or
475	4,4-difluoro-5,7-dimethyl-4-bora-3a,4a-diaza-s-indacene-3-hexadecanoic acid (BODIPY FL
476	C ₁₆ , Thermo Fisher Scientific) in a modified SC medium. After a 10-minute or 4-h incubation,
477	fungal hyphae protruding outside a Phytagel tablet were observed using a laser scanning
478	confocal microscope or an epifluorescence microscope. For the samples incubated for over
479	one day in the medium containing the fluorescent probes, a Phytagel tablet containing fungal
480	materials was melted by adding citrate buffer. Fluorescent signals were observed under an
481	epifluorescence microscope. We also assayed fatty acid uptake by germ tubes grown in the

482 absence of myristate.

483

484	LC-MS analysis of glucosamine. R. irregularis was incubated for eight weeks in
485	half-strength modified SC medium with one of the following five supplements: 1) 0.5 mM
486	non-labeled myristic acid, 2) 0.5 mM $[1^{-13}C_1]$ myristic acid (Taiyo Nippon Sanso), 3) 0.5 mM
487	myristic acid and 0.5 mM palmitic acid, 4) 0.5 mM myristic acid and 0.5 mM
488	$[1^{-13}C_1]$ palmitic acid (Taiyo Nippon Sanso), and 5) 0.5 mM $[1^{-13}C_1]$ myristic acid and 0.5 mM
489	palmitic acid. All fatty acids used were neutralized in 200 mM potassium hydroxide.
490	Extraction of glucosamine from fungal biomass and LC-MS analysis are described in SI
491	Appendix, Extended Methods. The relative intensities of the molecular ion peaks of
492	glucosamine ($[M+H]^+$, m/z 180.19; and $[M+1+H]^+$, m/z 181.19) were monitored. The relative
493	fraction of M+1 with respect to that of M+0 in the glucosamine standard solution was 6.8%.
494	

¹³C-NMR analysis of TAG. *R. irregularis* was cultured in modified SC solid medium
supplied with 1 mM neutralized [1-¹³C]myristic acid (Cambridge Isotope Laboratories, Inc.)
for 2.5 months. Extraction of lipids from fungal biomass, purification of TAG, and ¹³C-NMR
analysis are described in *SI Appendix, Extended Methods*.

500	GC-MS analysis of TAG. R. irregularis was incubated for eight weeks in half-strength
501	modified SC medium with one of the following four supplements: 1) 0.5 mM neutralized
502	myristic acid, 2) 0.5 mM neutralized $[1^{-13}C_1]$ myristic acid, 3) 0.1 mM potassium myristate
503	and 0.5 mM neutralized palmitic acid, and 4) 0.1 mM potassium myristate and 0.5 mM
504	neutralized $[1-^{13}C_1]$ palmitic acid. The extraction of lipids from fungal biomass, purification
505	of TAG, and GC-MS analysis are described in SI Appendix, Extended Methods.
506	
507	Determination of ATP content. R. irregularis spores were incubated in sterilized water at
508	28 °C for five days. Potassium myristate was added to the germinating spores at a final
509	concentration of 0.5 mM. For the control, the protonophore CCCP was simultaneously added
510	at a final concentration of 50 $\mu M.$ After incubation for 12 h, fungal materials were crushed in
511	phosphate-buffered saline (PBS; pH 7.4) using a bead crusher (μ T-12, TAITEC). ATP
512	concentration was measured using the CellTiter-Glo Luminescent Cell Viability Assay kit
513	(Promega). Protein concentration was assayed using the Qubit Protein Assay Kit (Thermo
514	Fisher Scientific). ATP content in the germinating spores was calculated in nmol mg ⁻¹ of
514 515	Fisher Scientific). ATP content in the germinating spores was calculated in nmol mg ⁻¹ of protein.

516

517 Quantitative RT-PCR. R. irregularis was grown in an immobilized cell culture system with

518	modified SC medium containing 0.5 mM potassium myristate for three weeks. Subsequently,
519	AM fungi were incubated in the absence of fatty acids for 11 days to induce fatty acid
520	starvation. After starvation, potassium myristate to a final concentration of 0.5 mM or
521	sterilized water was added to the samples. After a 3-h incubation, fungal hyphae protruding
522	outside a Phytagel tablet were recovered using forceps. RNA extraction, purification, cDNA
523	synthesis, and semiquantitative PCR were conducted as described in SI Appendix, Extended
524	Methods.
525	
526	Statistical analysis. All statistical analyses were performed using R version 3.5.2. Levene's
527	tests were applied to check for heteroscedasticity between treatment groups. Data were
528	transformed as $\log_{10} (x + 0.5)$ where necessary. To examine the differences among
529	experimental groups, data were analyzed with Student's t-test, Tukey's HSD test,
530	Wilcoxon–Mann–Whitney test, and Steel–Dwass test, as appropriate. Differences at $P < 0.05$
531	were considered significant.
532	

Data Availability. All data used in the study are included in the paper and *SI Appendix*. All protocols are described in Materials and Methods and *SI Appendix*, *Extended Methods* or in cited references. If additional information is needed, it will be available upon request from

536 the corresponding author.

537

539	ACKN	NOWLEDGMENTS. We would like to thank T. Hagiwara, R. Oguchi, and R. Okita	
540	(Shins	hu University) for their technical assistance and Enago and Editage for the English	
541	langua	ge review. LC-MS analysis and laser scanning confocal microscopy were conducted at	
542	the Re	esearch Center for Supports to Advanced Science, Shinshu University. This work was	
543	supported by ACCEL (JPMJAC1403) from the Japan Science and Technology Agency (to		
544	M.S., K.M., K.A, and K.S.) and the Grant-in-Aid for Scientific Research (15H01751 and		
545	19H02	(861) from the Japan Society for the Promotion of Science (to K.S.).	
546			
547	References		
548			
549	1.	A. Keymer et al., Lipid transfer from plants to arbuscular mycorrhiza fungi. eLife 6,	
550		e29107 (2017).	
551	2.	Y. Jiang et al., Plants transfer lipids to sustain colonization by mutualistic mycorrhizal	
552		and parasitic fungi. Science 356, 1172–1175 (2017).	
553	3.	L. H. Luginbuehl et al., Fatty acids in arbuscular mycorrhizal fungi are synthesized by	

- the host plant. *Science* **356**, 1175–1178 (2017).
- 555 4. V. Wewer, M. Brands, P. Dörmann, Fatty acid synthesis and lipid metabolism in the
- 556 obligate biotrophic fungus *Rhizophagus irregularis* during mycorrhization of *Lotus*
- 557 *japonicus*. *Plant J.* **79**, 398–412 (2014).
- 558 5. N. Tang *et al.*, A survey of the gene repertoire of *Gigaspora rosea* unravels conserved 559 features among Glomeromycota for obligate biotrophy. *Front. Microbiol.* **7**, 233
- 560 (2016).
- 561 6. Y. Kobayashi et al., The genome of Rhizophagus clarus HR1 reveals a common
- genetic basis for auxotrophy among arbuscular mycorrhizal fungi. *BMC Genomics* 19,
 465 (2018).
- 564 7. X. Sun *et al.*, Genome and evolution of the arbuscular mycorrhizal fungus
- 565 *Diversispora epigaea* (formerly *Glomus versiforme*) and its bacterial endosymbionts.
- 566 New Phytol. **221**, 1556–1573 (2019).
- 567 8. J. W. Spatafora *et al.*, A phylum-level phylogenetic classification of zygomycete fungi
 568 based on genome-scale data. *Mycologia* 108, 1028–1046 (2016).
- M. C. Brundrett, L. Tedersoo, Evolutionary history of mycorrhizal symbioses and
 global host plant diversity. *New Phytol.* 220, 1108–1115 (2018).
- 571 10. U. Hildebrandt, F. Ouziad, F.-J. Marner, H. Bothe, The bacterium Paenibacillus

572		validus stimulates growth of the arbuscular mycorrhizal fungus Glomus intraradices
573		up to the formation of fertile spores. FEMS Microbiol. Lett. 254, 258–267 (2006).
574	11.	H. Kameoka et al., Stimulation of asymbiotic sporulation in arbuscular mycorrhizal
575		fungi by fatty acids. Nat. Microbiol. 4, 1654–1660 (2019).
576	12.	Y. Shachar-Hill et al., Partitioning of intermediary carbon metabolism in
577		vesicular-arbuscular mycorrhizal leek. Plant Physiol. 108, 7–15 (1995).
578	13.	M. Z. Solaiman, M. Saito, Use of sugars by intraradical hyphae of arbuscular
579		mycorrhizal fungi revealed by radiorespirometry. New Phytol. 136, 533-538 (1997).
580	14.	P. E. Pfeffer, D. D. Douds, Jr., G. Bécard, Y. Shachar-Hill, Carbon uptake and the
581		metabolism and transport of lipids in an arbuscular mycorrhiza. Plant Physiol. 120,
582		587–598 (1999).
583	15.	A. Schüßler, H. Martin, D. Cohen, M. Fitz, D. Wipf, Characterization of a
584		carbohydrate transporter from symbiotic glomeromycotan fungi. Nature 444, 933-936
585		(2006).
586	16.	N. Helber et al., A versatile monosaccharide transporter that operates in the arbuscular
587		mycorrhizal fungus Glomus sp is crucial for the symbiotic relationship with plants.
588		<i>Plant Cell</i> 23 , 3812–3823 (2011).

589 17. N. Ait Lahmidi et al., Sugar exchanges in arbuscular mycorrhiza: RiMST5 and

590		RiMST6, two novel Rhizophagus irregularis monosaccharide transporters, are
591		involved in both sugar uptake from the soil and from the plant partner. Plant Physiol.
592		Biochem. 107, 354–363 (2016).
593	18.	A. Bravo, M. Brands, V. Wewer, P. Dörmann, M. J. Harrison, Arbuscular
594		mycorrhiza-specific enzymes FatM and RAM2 fine-tune lipid biosynthesis to
595		promote development of arbuscular mycorrhiza. New Phytol. 214, 1631–1645 (2017).
596	19.	M. Brands, V. Wewer, A. Keymer, C. Gutjahr, P. Dörmann, The Lotus japonicus
597		acyl-acyl carrier protein thioesterase FatM is required for mycorrhiza formation and
598		lipid accumulation of Rhizophagus irregularis. Plant J. 95, 219–232 (2018).
599	20.	M. Trépanier et al., Dependence of arbuscular-mycorrhizal fungi on their plant host
600		for palmitic acid synthesis. Appl. Environ. Microbiol. 71, 5341–5347 (2005).
601	21.	E. Tisserant et al., The transcriptome of the arbuscular mycorrhizal fungus Glomus
602		intraradices (DAOM 197198) reveals functional tradeoffs in an obligate symbiont.
603		New Phytol. 193, 755–769 (2012).
604	22.	E. Tisserant et al., Genome of an arbuscular mycorrhizal fungus provides insight into
605		the oldest plant symbiosis. Proc. Natl. Acad. Sci. USA 110, 20117-20122 (2013).
606	23.	H. Kameoka, T. Maeda, N. Okuma, M. Kawaguchi, Structure-specific regulation of
607		nutrient transport and metabolism in arbuscular mycorrhizal fungi. Plant Cell Physiol.

608 **60**, 2272–2281 (2019).

609	24.	U. Hildebrandt, K. Janetta, H. Bothe, Towards growth of arbuscular mycorrhizal fungi
610		independent of a plant host. Appl. Environ. Microbiol. 68, 1919–1924 (2002).
611	25.	B. Bago, C. Azcón-Aguilar, A. Goulet, Y. Piché, Branched absorbing structures
612		(BAS): a feature of the extraradical mycelium of symbiotic arbuscular mycorrhizal
613		fungi. New Phytol. 139, 375–388 (1998).
614	26.	B. Bago et al., Carbon export from arbuscular mycorrhizal roots involves the
615		translocation of carbohydrate as well as lipid. Plant Physiol. 131, 1496–1507 (2003).
616	27.	B. Bago et al., Translocation and utilization of fungal storage lipid in the arbuscular
617		mycorrhizal symbiosis. Plant Physiol. 128, 108-124 (2002).
618	28.	K. Saito, Y. Kuga-Uetake, M. Saito, Acidic vesicles in living hyphae of an arbuscular
619		mycorrhizal fungus, Gigaspora margarita. Plant Soil 261, 231–237 (2004).
620	29.	J. H. Graham, N. C. Hodge, J. B. Morton, Fatty Acid methyl ester profiles for
621		characterization of glomalean fungi and their endomycorrhizae. Appl. Environ.
622		<i>Microbiol.</i> 61 , 58–64 (1995).
623	30.	M. Brands, E. B. Cahoon, P. Dörmann, Palmitvaccenic acid (Δ11-cis-hexadecenoic
624		acid) is synthesized by an OLE1-like desaturase in the arbuscular mycorrhiza fungus
625		Rhizophagus irregularis. Biochemistry 59 , 1163–1172 (2020).

- 626 31. H. Cheeld, G. Bhutada, F. Beaudoin, P. J. Eastmond, DES2 is a fatty acid $\Delta 11$
- desaturase capable of synthesizing palmitvaccenic acid in the arbuscular mycorrhizal
- fungus Rhizophagus irregularis. FEBS Lett. **594**, 1770–1777 (2020).
- 629 32. T. A. Farazi, G. Waksman, J. I. Gordon, The biology and enzymology of protein
- 630 *N*-myristoylation. *J. Biol. Chem.* **276**, 39501–39504 (2001).
- 631 33. J. A. Boutin, Myristoylation. Cell. Signal. 9, 15–35 (1997).
- 632 34. J. I. Gordon, R. J. Duronio, D. A. Rudnick, S. P. Adams, G. W. Coke, Protein
- 633 *N*-myristoylation. *J. Biol. Chem.* **266**, 8647–8650 (1991).
- 634 35. D. R. Johnson, R. S. Bhatnagar, L. J. Knoll, J. I. Gordon, Genetic and biochemical
- 635 studies of protein N-myristoylation. *Annu. Rev. Biochem.* **63**, 869–914 (1994).
- 636 36. J. K. Lodge, E. Jackson-Machelski, D. L. Toffaletti, J. R. Perfect, J. I. Gordon,
- 637 Targeted gene replacement demonstrates that myristoyl-CoA: protein
- 638 N-myristoyltransferase is essential for viability of *Cryptococcus neoformans*. *Proc.*
- 639 Natl. Acad. Sci. USA **91**, 12008–12012 (1994).
- R. A. Weinberg *et al.*, Genetic studies reveal that myristoylCoA:protein
 N-myristoyltransferase is an essential enzyme in *Candida albicans. Mol. Microbiol.*
- 642 **16**, 241–250 (1995).
- 643 38. R. Duronio, D. Towler, R. Heuckeroth, J. Gordon, Disruption of the yeast N-myristoyl

644	transferase gene causes	recessive lethality	y. Science 243 ,	796-800 (1989).

- 645 39. P. A. Olsson, I. M. van Aarle, M. E. Gavito, P. Bengtson, G. Bengtsson, ¹³C
- 646 incorporation into signature fatty acids as an assay for carbon allocation in arbuscular
- 647 mycorrhiza. Appl. Environ. Microbiol. **71**, 2592–2599 (2005).
- 648 40. B. Bago et al., Carbon metabolism in spores of the arbuscular mycorrhizal fungus
- 649 *Glomus intraradices* as revealed by nuclear magnetic resonance spectroscopy. *Plant*
- 650 *Physiol.* **121**, 263–272 (1999).
- 41. P. J. Lammers et al., The glyoxylate cycle in an arbuscular mycorrhizal fungus.
- 652 Carbon flux and gene expression. *Plant Physiol.* **127**, 1287–1298 (2001).
- 42. K. Akiyama, K. Matsuzaki, H. Hayashi, Plant sesquiterpenes induce hyphal branching
- 654 in arbuscular mycorrhizal fungi. *Nature* **435**, 824–827 (2005).
- 43. G. Nagahashi, D. D. Douds, Jr., The effects of hydroxy fatty acids on the hyphal
- branching of germinated spores of AM fungi. *Fungal Biol.* **115**, 351–358 (2011).
- 44. H. Koltai *et al.*, A tomato strigolactone-impaired mutant displays aberrant shoot
 morphology and plant interactions. *J. Exp. Bot.* 61, 1739–1749 (2010).
- 45. J. Marleau, Y. Dalpé, M. St-Arnaud, M. Hijri, Spore development and nuclear
- 660 inheritance in arbuscular mycorrhizal fungi. *BMC Evol. Biol.* **11**, 51 (2011).

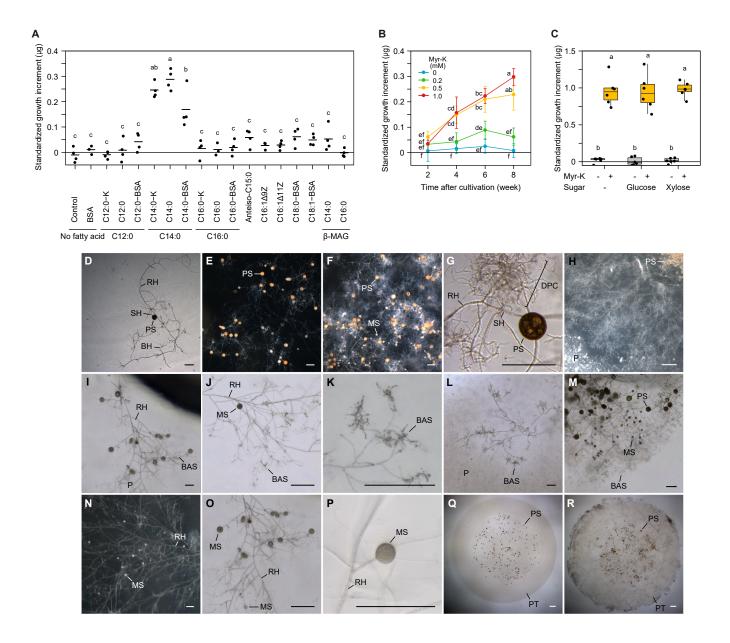
661

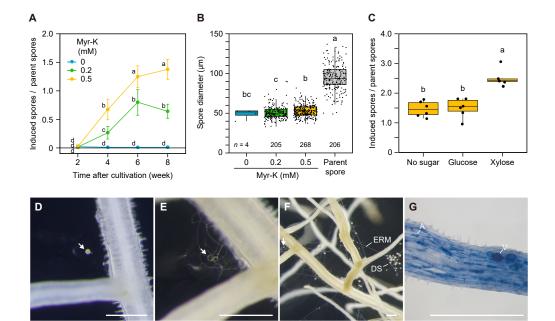
663 Figure legends

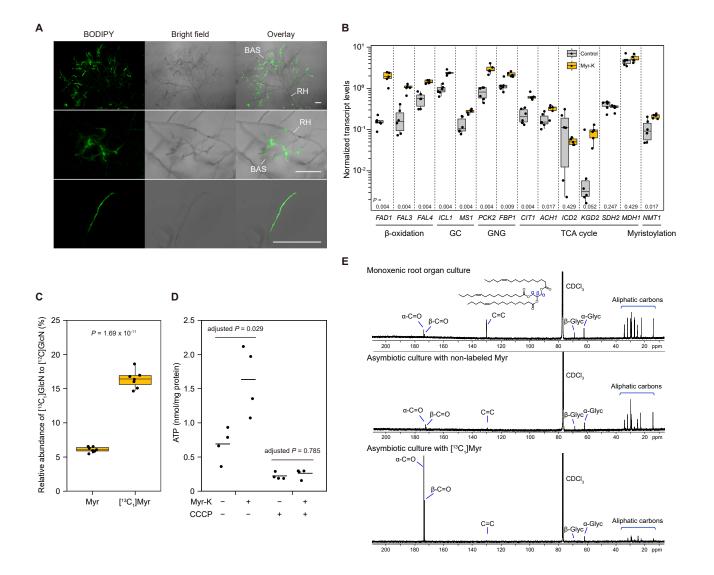
Fig. 1. Asymbiotic culture of R. irregularis in the presence of fatty acids. (A) Standardized 665666 growth increment (see Materials and Methods) during eight weeks in the modified SC solid 667 medium supplemented with potassium salts of fatty acids, fatty acids and β -MAGs, or fatty 668 acid-BSA conjugates. Horizontal lines indicate mean values (n = 3-4). (B) Time course of 669 biomass production at different amounts of potassium myristate (Myr-K). Error bars represent 95% confidence intervals (n = 5-6). (C) Biomass production in an immobilized cell culture 670 671system. Immobilized fungal spores were incubated in half-strength modified SC medium 672 supplemented with combinations of potassium myristate and sugars after eight weeks of 673 cultivation. The boxes show the first quartile, the median, and the third quartile; the whiskers reach to the 1.5× interquartile range, and data points for each treatment are displayed (n = 6). 674 The same lowercase letter indicates no significant difference (Tukey's test, P < 0.05; A-C). 675676 Fungal growth in the solid medium without fatty acids (D and E) or with potassium myristate 677 (F-P). (D) Germinating spore. Hyphal elongation without fatty acids (E) and with potassium myristate (F) after eight weeks of cultivation. (G) DPC-like structures formed around a parent 678 spore. (H) Radial growth of fungal mycelium. (I) Elongation of runner hyphae. (J) Branching 679 680 of runner hyphae and formation of BAS. (K) Magnified image of BAS. (L) Front line of 681 elongated mycelium. The medium around the fungal hyphae became transparent, indicating

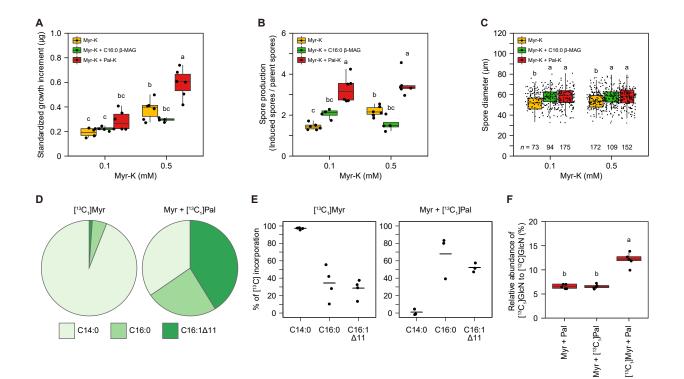
682	that the precipitates of metal soaps were solubilized. (M) Myristate-induced secondary spores
683	generated around the parent spores. (N and O) Myristate-induced spores formed along the
684	runner hyphae. (P) Magnified image of a myristate-induced spore. Fungal growth in the
685	immobilized cell culture system without fatty acids (Q) and with potassium myristate (R)
686	after eight weeks of cultivation. See SI Appendix, Table S2 for sample details. BAS, branched
687	absorbing structure; BH, branching hypha; DPC, densely packed coil; MS, myristate-induced
688	spore; P, precipitate of metal soaps; PS, parent spore; PT, Phytagel tablet; RH, runner hypha;
689	and SH, subtending hypha. Scale bars: 200 μ m (<i>D</i> – <i>G</i> and <i>I</i> – <i>P</i>) and 1,000 μ m (<i>H</i> , <i>Q</i> , and <i>R</i>).
690	
691	Fig. 2. Spore formation of <i>R. irregularis</i> under asymbiotic conditions. Number (A) and
692	diameter (B) of myristate-induced spores generated in solid medium containing different
693	amounts of potassium myristate (Myr-K). Spore diameter was measured after eight weeks of

amounts of potassium myristate (Myr-K). Spore diameter was measured after eight weeks of cultivation. (*C*) Number of myristate-induced spores in an immobilized cell culture containing 0.5 mM potassium myristate and 5 mM monosaccharides after eight weeks of cultivation. Error bars in (*A*) represent 95% confidence intervals. For each boxplot, the boxes show the first quartile, the median, and the third quartile; the whiskers reach to the $1.5 \times$ interquartile range, and data points for each treatment are displayed. The same lowercase letter indicates no significant difference (Tukey's test, *P* < 0.05, data were transformed as


700	$\log_{10} (x+0.5), n = 3-6 (A)$; Steel–Dwass test, $P < 0.05 (B)$; and Tukey's test, $P < 0.05, n = 6$
701	(C)). $(D-G)$ Inoculation of a single myristate-induced spore to carrot hairy roots. (D)
702	Inoculated spore that was produced in the immobilized cell culture containing potassium
703	myristate and xylose. (E) Germination of the inoculated spore. (F) Daughter spores (DS) on
704	extraradical mycelia (ERM) emerged from the carrot hairy roots. (G) Colonization of the
705	carrot hairy roots by <i>R. irregularis</i> . Arrows indicate an inoculated myristate-induced spore. A,
706	arbuscule; and V, vesicle. See SI Appendix, Table S2 for sample details. Scale bars: 500 μ m.
707	
708	Fig. 3. Utilization of fatty acids by <i>R. irregularis</i> under asymbiotic conditions. (A) Uptake of
709	the fluorescently labeled fatty acid derivative C ₁ -BODIPY 500/510 C ₁₂ . A cluster of BAS
710	(upper panels), magnified BAS (middle panels), and a single BAS hypha (lower panels).
711	Optical sections captured using a confocal laser scanning microscope are projected.
712	Fluorescence images and superimposed bright field images are shown. BAS, branched
713	absorbing structure; and RH, runner hypha. Scale bars, 200 μ m. (B) Gene expression analysis
714	in R. irregularis 3 h after the application of potassium myristate (Myr-K) or water (control)
715	shown by real-time RT-PCR. The R. irregularis elongation factor 1 beta and actin genes were
716	used for normalization. For each boxplot, the boxes show the first quartile, the median, and


717 the third quartile; the whiskers reach to the 1.5× interquartile range, and data points for each


718	treatment are displayed (Myr-K: $n = 5$; control: $n = 6$). P values were calculated using the
719	Wilcoxon-Mann-Whitney test. See SI Appendix, Table S4 for gene details. GC, glyoxylate
720	cycle; GNG, gluconeogenesis. (C) Incorporation of carbon derived from exogenous myristate
721	into cell wall components of R. irregularis. AM fungi were grown in the immobilized cell
722	culture system and supplemented with 0.5 mM neutralized myristic acid (Myr) or
723	$[1^{-13}C_1]$ myristic acid ($[^{13}C_1]$ Myr) for eight weeks. Glucosamine (GlcN) was extracted from
724	the cell walls of the fungal materials without parent spores. The relative abundance of
725	$[^{13}C_1]$ GlcN ($[M+1+H]^+$, m/z 181.19) to $[^{12}C]$ GlcN ($[M+H]^+$, m/z 180.19) was calculated by
726	LC-MS analysis. The reported <i>P</i> value is based on Student's <i>t</i> -test (Myr: $n = 8$; [¹³ C ₁]Myr: <i>n</i>
727	= 7). (D) ATP content in R. irregularis 12 h after the application of potassium myristate or
728	distilled water (control) in the presence or absence of CCCP. Horizontal lines indicate the
729	mean values $(n = 4)$. P values are based on Student's t-test with Bonferroni correction. (E)
730	¹³ C-NMR spectra of triacylglycerol (TAG) isolated from mycelial extracts of <i>R. irregularis</i>
731	grown in monoxenic root organ culture (upper panel), asymbiotic culture supplemented with
732	1 mM neutralized myristic acid (middle panel), or $[1^{-13}C_1]$ myristic acid (lower panel). Inset:
733	chemical structure of a TAG. Experiments were repeated twice independently with similar
734	results.


736	Fig. 4. Effects of fatty acid mixtures on the growth and sporulation of R. irregularis. AM
737	fungi were cultured in the immobilized cell culture system and supplemented with potassium
738	myristate (0.1 or 0.5 mM Myr-K), either alone or in combination with 0.5 mM C16:0 sn-2
739	monoacylglycerols (β -MAG C16:0) or potassium palmitate (Pal-K) ($n = 4-6$). See SI
740	Appendix, Table S2 for sample details. Standardized growth increment (A) and number (B)
741	and diameter (C) of myristate-induced secondary spores after eight weeks of cultivation. For
742	each boxplot, the boxes show the first quartile, the median, and the third quartile; the
743	whiskers reach to the 1.5× interquartile range, and data points for each treatment are
744	displayed. The same lowercase letter indicates that there is no significant difference (Tukey's
745	test, $P < 0.05$). (D) Composition of C14:0, C16:0, and C16:1 Δ 11 fatty acids of triacylglycerol
746	(TAG) isolated from fungal materials grown in asymbiotic culture and supplemented with 0.5
747	mM neutralized $[1-^{13}C_1]$ myristic acid ($[^{13}C_1]$ Myr) or 0.1 mM potassium myristate plus 0.5
748	mM neutralized $[1^{-13}C_1]$ palmitic acid (Myr + $[1^{13}C_1]$ Pal). (E) Percentage of $[1^{13}C]$, derived
749	from the labeled myristate or palmitate, incorporated into TAG. Horizontal lines indicate
750	mean values ($n = 3-4$). (F) Incorporation of carbon derived from exogenous myristate and
751	palmitate into cell wall components of R. irregularis. AM fungi were supplemented with
752	labeled or non-labeled, neutralized myristic acid (0.5 mM) and palmitic acid (0.5 mM).
753	Glucosamine (GlcN) was extracted from fungal cell walls without parent spores. Relative

- abundance of $[{}^{13}C_1]$ GlcN ($[M+1+H]^+$, m/z 181.19) to $[{}^{12}C]$ GlcN ($[M+H]^+$, m/z 180.19) was
- 755 calculated using data from LC-MS analysis. The same lowercase letter indicates no
- significant difference (Tukey's test, P < 0.05, n = 5).
- 757

