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Abstract 43 
 44 
The human brain can rapidly form representations of numerical magnitude, whether presented 45 
with symbolic stimuli like digits and words or non-symbolic stimuli like dot displays. Little is 46 
known about the relative time course of these symbolic and non-symbolic number 47 
representations. We investigated the emergence of number representations for three stimulus 48 
formats - digits, words, and dot arrays - by applying multivariate pattern analysis to MEG 49 
recordings from 22 participants. We first conducted within-format classification to identify the 50 
time course by which individual numbers can be decoded from the MEG signal. Peak 51 
classification accuracy for individual numbers in all three formats occurred around 110 ms after 52 
stimulus onset. Next, we used between-format classification to determine the time course of 53 
shared number representations between stimulus formats. Classification accuracy between 54 
formats was much weaker than within format classification, but it was also significant at early 55 
time points, around 100 ms for both digit / dot and digit / word comparisons. We then used 56 
representational similarity analysis to determine if we could explain variance in the MEG 57 
representational geometry using two models: a GIST feature model capturing low-level visual 58 
properties and an approximate number model capturing the numerical magnitude of the 59 
stimuli. Model RSA results differed between stimulus formats: while the GIST model explained 60 
unique variance from 100-300 ms for all number formats, the performance of the approximate 61 
number model differed between formats. Together, these results are consistent with the view 62 
that distinct, format-specific number representations, moreso than a single “abstract” number 63 
representation, form the basis of numerical comparison.  64 
 65 
 66 
Introduction 67 
 68 
The human brain can support a multitude of different representations for number. These 69 
representations enable both the estimation of the number of objects in our environment and 70 
formal mathematics over number symbols like digits. When the brain receives sensory input 71 
from a set of objects, it represents their numerosity through an approximate number system 72 
(ANS) (Feigenson et al., 2004). This representational system is shared among many animals 73 
including prelinguistic human infants (Xu and Spelke, 2000), monkeys (Cantlon and Brannon, 74 
2006), crows (Ditz and Nieder, 2015), and fish (Agrillo et al., 2012, Piffer et al., 2013). In 75 
addition to this phylogenetically ancient system of representation, modern literate humans also 76 
represent number through written symbols of digits and number words. The extent to which 77 
these symbolic and nonsymbolic number representations rely on shared neural substrates has 78 
been queried for decades. These efforts have primarily focused on whether the same brain 79 
areas implement symbolic and nonsymbolic number representations, while fewer studies have 80 
compared the time course of symbolic and nonsymbolic number representations. In order to 81 
address the ways in which symbolic and nonsymbolic number representations rely on shared 82 
versus distinct neural resources, we must address both when and where these representations 83 
are implemented. In the current study, we coupled magnetoencephalography (MEG) with 84 
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multivariate decoding and representational similarity analysis (RSA) to elucidate the temporal 85 
dynamics of number processing across distinct representational formats. 86 
 Extensive neuroscientific evidence supports the view that approximate number 87 
representations are implemented by neural populations within parietal and frontal cortex. A 88 
key hallmark of the ANS is its relationship to Weber’s law such that the discriminability of two 89 
sets of objects depends on their ratio rather than their respective absolute values (Feigenson et 90 
al, 2004). Neuroscientific work in both non-human primates and humans has revealed 91 
analogous neural tuning for number in lateral prefrontal cortex and intraparietal sulcus (Piazza 92 
et al., 2004, Bulthé et al., 2014, Nieder, 2016), supporting the view that these regions form the 93 
basis of the ANS.  94 

In order for visual symbols like digits and number words to activate numerical 95 
representations, they must first be categorized. This process is putatively achieved by the 96 
reading circuits of the ventral visual pathway (Dehaene, 2009), culminating in the formation of 97 
a number form or word form representation tolerant to low-level changes in the font, size, and 98 
position of the visual symbol. Within this system, there is ongoing debate surrounding the 99 
extent to which the formation of number and word forms depends on shared or distinct neural 100 
regions within the ventral visual stream (Yeo et al., 2017). After a visual number symbol is 101 
categorized, representations of its meaning can be activated. A central question in the study of 102 
numerical cognition is what these symbolic number representations entail. One possibility is 103 
that number symbols activate the same representations as nonsymbolic dot displays, more 104 
specifically the ANS. An alternative possibility is that number symbols primarily gain numerical 105 
content by activating representations distinct from the ANS, perhaps concepts involved in 106 
abstract logic and language rather than concepts that ground out in visual perception.  107 

Although it is unclear how these symbolic and nonsymbolic number representations are 108 
implemented neurally, behavioral experiments indicate that nonsymbolic and symbolic number 109 
are partially represented though shared resources. For instance, participant reaction times 110 
when comparing the magnitudes of two digits are a function of numerical distance between the 111 
digits, suggesting the use of an analog scale similar to the ANS (Moyer and Landauer, 1967; 112 
Dehaene et al., 1990). There has been extensive debate about whether number symbols 113 
activate neural populations in parietal cortex that represent “abstract” number, meaning 114 
number representations elicited by symbolic and non-symbolic number stimuli across sensory 115 
modalities (Kadosh and Walsh, 2009). Lussier and Cantlon (2017) recorded fMRI activity as 116 
participants compared the magnitudes of numbers and found that the level of activity in the 117 
intraparietal sulcus is modulated by numerical ratio for both symbolic and nonsymbolic number 118 
stimuli. Moreover, it has been reported that intraparietal sulcus adapts to repeated 119 
presentations of the same magnitude for both digits and dot displays, and that recovery from 120 
this adaptation can occur across these stimulus formats (Piazza et al., 2007). In contrast, 121 
multivoxel pattern analyses suggest that symbolic and nonsymbolic number representations 122 
are implemented by different patterns of activation within intraparietal sulcus (Bulthé et al., 123 
2014; Bulthé et al., 2015). Thus, while behavior indicates a link between nonsymbolic and 124 
symbolic number representations, it is less clear how this link is instantiated by the brain 125 
despite the large number of studies investigating the spatial localization of number 126 
representations. 127 
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While most prior work has focused on the spatial localization of number representation, 128 
there is a relative lack of understanding of the time course of these representations. Recently, 129 
Teichmann et al. (2018) used MEG and multivariate pattern analyses to study how neural 130 
representations of symbolic number (digits and dice) emerge over time. Their findings 131 
suggested that format-specific representations of symbolic number emerge within 150 ms of 132 
stimulus presentation, and more tentatively that shared representations between the two 133 
symbolic formats emerged later around 400 ms after stimulus presentation. Here, we build 134 
upon these findings by investigating the time course of both symbolic and nonsymbolic number 135 
representations rather than just symbolic number representations. Using MEG, we measured 136 
the neural response to visual number stimuli (values 6-13) in the following formats: 1) digits, 2) 137 
number words, 3) and dot displays. We used a decoding approach to determine how quickly 138 
the brain forms representations of individual numbers within each of these formats. Next, we 139 
determined whether we could find evidence of shared number representations by conducting 140 
cross-decoding across formats. Finally, we used RSA to determine when models of low-level 141 
visual shape and number magnitude predicted the neural responses in the brain. By 142 
emphasizing the temporal dynamics of visual number processing, we offer new means of 143 
comparing the neural substrates that underlie symbolic and non-symbolic processing.  144 
 145 
 146 
Methods 147 
 148 
Participants 149 
22 healthy participants (17 female, age range 20-44) with normal or corrected-to-normal vision 150 
participated in the current study. All participants gave written informed consent before 151 
participation as a part of the study protocol 93-M-0170, NCT00001360. This study was 152 
conducted according to the Declaration of Helsinki and was approved by the Institutional 153 
Review Board of the National Institutes of Health. 154 
 155 
Stimuli 156 
We created three sets of number stimuli that ranged from 4-18 in magnitude (Figure 1). One set 157 
contained numbers represented as digits, a second set contained numbers represented as 158 
words, and third set contained numbers represented as dot arrays. These three sets allowed us 159 
to examine visual processing of symbolic (digits, words) and non-symbolic (dots) number 160 
formats. All three stimulus sets were presented in white, subtending a maximum of 6° x 6° of 161 
visual angle and centered on a black background (participant viewing distance: 70 cm). To 162 
maximize within-format variability in visual features, 32 unique exemplars were generated for 163 
each magnitude in the digit and word stimulus sets. 26 of these exemplars were formed from 164 
different fonts, and the other 6 exemplars were formed using hand-written scripts from 3 165 
individuals who were not involved with the study. A similar procedure was used for the dot 166 
array stimuli, whereby 32 unique exemplars for each number were generated with a script by 167 
Gebuis and Reynvoet (2011).  168 
 169 
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Figure 1. Example stimuli and trial progression. a. 32 different stimuli were generated for each number in each 170 
format. Here we show one example for each number in each format. b. Stimuli were presented on a black 171 
background for 400ms, followed by a blank black screen for 400ms, and then followed by the second stimulus for 172 
400ms. Upon presentation of the second stimulus, participants judged whether the second stimulus was larger or 173 
smaller than the first stimulus and responded via button press. The first stimulus was always a number from 6-13. 174 
 175 
Procedure 176 
For the MEG recordings, participants entered an electromagnetically shielded MEG chamber 177 
where they were seated upright within the dewar. Stimuli were presented with the 178 
Psychophysics Toolbox (Brainard, 1997) in MATLAB (version 2016a, Mathworks, Natick, MA). 179 
Visual presentation was controlled by a Panasonic PT-D3500U DLP projector with an ET-DLE400 180 
lens, located outside the chamber and projected through a series of mirrors onto a back-181 
projection screen in front of the seated participant.  182 
 183 
Task 184 
Participants completed a magnitude comparison task during MEG recording. While fixating, 185 
participants were presented with a number for 400 ms, followed by a delay period with blank 186 
screen of 400 ms, a second number for 400 ms, followed by an inter-trial interval of 1800 ± 100 187 
ms that consisted of a blank screen and fixation cross. Participants responded after the 188 
presentation of the second number with a button press to indicate whether the second number 189 
was larger or smaller than the first number. The first number was always between 6 and 13, 190 
and the second number was always 20% or 40% smaller or larger than the magnitude of the 191 
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first number, rounding to the nearest whole number. Because discriminability of number 192 
magnitudes is a function of the number pair ratio, we controlled for task difficulty by 193 
maintaining a set ratio between number pairs in this task.  194 

One complication with number comparison over dot displays is that many visual cues 195 
also tend to increase along with numerosity. The script used to generate our dot-stimuli 196 
(Gebuis and Reynvoet, 2011) accounted for this potential confound by minimizing the extent to 197 
which the visual cues of area extended, density, surface area, item size, and circumference 198 
predict numerical distance between pairs of numbers. Thus, participants had to encode the 199 
actual numerosity of the dot display stimuli in order to complete the task rather than simply 200 
attending to one of these other visual cues. 201 
 Participants completed 12 experimental runs that were divided into 4 blocks of 3 runs 202 
each, with self-paced breaks between each block. Each run contained 128 trials with a fixed 203 
number stimulus format, i.e. only digits, or words, or dot arrays. Within each format, 204 
participants were presented with each number 6-13 a total of 64 times. Each run lasted 384 205 
seconds, resulting in a total experimental time of 76 minutes.  206 
 207 
MEG acquisition and preprocessing 208 
MEG data were recorded continuously with a 275-channel CTF whole-head MEG system at a 209 
sampling rate of 1200 Hz (MEG International Services, Ltd., Coquitlam, BC, Canada). All analyses 210 
were conducted in MATLAB (version 2017a, The Mathworks, Natick, MA). Preprocessing steps 211 
used Brainstorm 3.4 (version 02/2016, Tadel et al., 2011) and custom-written code similar to 212 
recently published MEG decoding work (Bankson et al., 2018). Recordings were obtained from 213 
272 channels (dead channels: MLF25, MRF43, MRO13), consisting of radial first-order 214 
gradiometer channels with synthetic third-gradient balancing to remove background noise 215 
online. Participants’ head position was localized at the beginning of the experiment and after 216 
each experimental block, using fiducial coil readings at the nasion, left and right preauricular 217 
points. We recorded this head position information to provide feedback about the quality of 218 
head placement in the dewar. Data were bandpass filtered between 0.1 and 300 Hz, and 219 
bandstop filtered at 60 Hz and harmonics. Data were segmented into single trial bins consisting 220 
of 100 ms pre-stimulus baseline activity for normalization purposes and 900 ms activity after 221 
the first number presentation of each trial.  222 
 To increase SNR and decrease computational load, we employed three additional pre-223 
processing steps (outlined in Bankson et al, 2018): PCA dimensionality reduction, temporal 224 
smoothing on PCA components, and data downsampling. Principal components analysis (PCA) 225 
was run to reduce the number of channels into the set of most descriptive components. All 226 
data for an MEG channel across trials were concatenated for PCA, and the components 227 
explaining the least variance were removed to speed-up further processing, with a maximum 228 
removal of 30% of the components (i.e. 80 components) or 1 % of the variance, whichever was 229 
reached first (Hebart et al., 2018). For all participants, the smallest 80 components explained 230 
less than 1% of the variance, so the data for all further analyses contained 192 components. 231 
Data across all time points were normalized according to the baseline period of -100 to 0 ms 232 
relative to stimulus presentation. To do so, the mean and standard deviation of the baseline 233 
period for each component were computed, and the mean was subtracted from the data 234 
before dividing by the standard deviation. We then used a Gaussian kernel of ± 15 ms half 235 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 10, 2019. ; https://doi.org/10.1101/731687doi: bioRxiv preprint 

https://doi.org/10.1101/731687
http://creativecommons.org/licenses/by-nc-nd/4.0/


 7 

duration at half maximum (HDHM) to temporally smooth the remaining components, and 236 
downsampled the components to 120 Hz (121 samples / trial). 237 
 238 
Multivariate decoding and cross-classification 239 
We first used time-resolved multivariate classification of MEG data within each participant to 240 
examine the representational dynamics of symbolic and non-symbolic number stimuli. To 241 
determine the extent to which distributed neural representations for different numbers are 242 
discriminable from one another over time, we used a linear support vector machine 243 
implemented with LIBSVM in MATLAB (SVM; Chang & Lin, 2011). Analyses are based on general 244 
guidelines for multivariate MEG analysis (Grootswagers et al., 2017). Functions from The 245 
Decoding Toolbox (Hebart et al., 2015) and custom written code were used for subsequent 246 
analyses, which were applied to all participants.  247 
 Because our stimuli comprised both symbolic (digits and words) and non-symbolic (dots) 248 
number stimuli, we focused our analyses on identifying the emergence of discriminable 249 
representations of individual numbers both within and across stimulus formats. Below, we 250 
outline analyses for within-format pairwise classification and between-format pairwise cross-251 
classification. This set of analyses allowed us to investigate the possibility of format-specific and 252 
format-independent representations of number.  253 
 254 
Within-format SVM classification 255 
The following within-format classification steps were conducted independently for each 256 
stimulus format of digit, word, and dot array trials. For each format, we created supertrials in 257 
training and test sets by averaging 4 trials of the same number drawn randomly without 258 
replacement (Isik et al., 2013). At every downsampled time point, preprocessed MEG data for 259 
each supertrial were arranged as a P dimensional vector (equal to the number of components 260 
from PCA preprocessing). This yielded K pattern vectors for each time point and number. For 261 
each pair of numbers at every time point, we used leave-one-out classification by training a 262 
classifier on K-1 pattern vectors and testing on the pair of left-out pattern vectors.  263 

The random generation of supertrials and subsequent classification procedure of 264 
assigning training and testing sets was repeated 100 times for each pair of numerosities at each 265 
time point. The resulting decoding accuracies were averaged across the 100 iterations and 266 
yielded an 8 x 8 matrix at every time point, with the rows and columns indexed according to 267 
numbers 6-13 and the diagonal left undefined. To evaluate average pairwise decoding accuracy, 268 
we computed the average of the lower triangular matrix (excluding the diagonal).  269 

We assessed significance for the within-format decoding analysis with a sign 270 
permutation test. We ran the decoding procedure 1,000 times for each participant, then 271 
randomly multiplied the resulting accuracy values within each iteration by +1 or -1. These sign-272 
permuted accuracies were averaged across all participants to generate a null distribution of 273 
decoding accuracies. P-values were determined as one minus the percentile rank of the 274 
veridical group mean in this null distribution. These p-values were corrected according to the 275 
false-discovery rate (FDR) and were considered significant if the corrected p-value did not 276 
exceed 0.05 in a one-tailed test and was contiguous with at least 2 other significant time points.  277 
 278 
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Between-format SVM cross-classification 279 
The following between-format classification steps were conducted between digit and word 280 
trials, digit and dot array trials, and word and dot array trials. Cross-classification used the same 281 
preprocessing steps as within-format classification. At each time point for each pair of 282 
numerosities, we trained a classifier on all supertrials in format 1 and tested this model on all 283 
supertrials in format 2. This was repeated by training on format 2 and testing on format 1, and 284 
the whole process repeated 100 times with different supertrial assignment each time. Because 285 
training and testing data were extracted from independent experimental runs, all supertrials 286 
within a given classification permutation were included as opposed to using leave-one-out 287 
classification. Pairwise accuracy values in the form of an 8 x 8 matrix for both directions of 288 
classification were averaged together to yield an average cross-format classification result. 289 
Average cross-format pairwise decoding accuracy was evaluated by computing the average of 290 
the lower triangular matrix, with the diagonal defined in this case. Significance was assessed for 291 
the between-format cross-classification procedure using the same sign permutation test steps 292 
as outlined above for the within-format classification. 293 
 294 
Representational similarity analysis  295 
RSA allows the comparison of neural signals and predictive models by abstracting patterns of 296 
information from modality-specific representations (Kriegeskorte et al., 2008). In this study, we 297 
were interested in comparing the neural representational space with two models: a GIST 298 
feature model capturing low-level visual properties of each stimulus and a second model based 299 
on the number magnitude represented by the stimuli. We converted MEG patterns into 300 
representational dissimilarity matrices (RDMs) that quantify the pairwise relationship between 301 
all patterns of experimental conditions. At each time point, we quantified how much variance in 302 
the MEG RDM was accounted for by each model. 303 
 304 
MEG similarity matrices 305 
To construct RDMs from the MEG data, we first computed the pattern of response elicited by 306 
each number at each time point.  We calculated the mean pattern of response in the 307 
preprocessed 192-component space for all trials of each number. This yielded 8 MEG patterns 308 
(one for each number 6-13) for each of the three formats at each time point. Within each 309 
format, we used a Spearman correlation to compute the similarity between all pairs of the 8 310 
patterns, and subtracted these correlation values from 1 to result in three 8 x 8 MEG RDMs for 311 
each time point. These RDMs were analyzed further by quantifying their relationship with 312 
model matrices, as described below. 313 
 314 
Representational dissimilarity matrices for GIST features and approximate number 315 
To characterize the temporal evolution of number-related information in the MEG signal, we 316 
compared two models to MEG data: a GIST feature model that provides an account of gross 317 
visual differences between stimuli, and an approximate number model based on the properties 318 
of the ANS.  319 

The GIST model describes the distributions of orientations and spatial frequencies 320 
present in the stimuli (Oliva and Torralba, 2001). Each image was passed through a bank of 321 
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Gabor filters with 3 spatial frequencies and 12 orientations for high spatial frequencies, 8 322 
orientations for moderate spatial frequencies, and 6 orientations for low spatial frequencies (26 323 
filters). Filter outputs were computed in an 8 x 8 grid, resulting in 1664 features. We computed 324 
the pattern of response across these features for each stimulus. A Spearman correlation was 325 
computed between all pattern vectors within a format, yielding a 256 x 256 meta-matrix. This 326 
matrix was subtracted from 1 to generate a dissimilarity matrix. We computed the mean 327 
dissimilarity across the 32 exemplars per number to yield an 8 x 8 RDM for each format. 328 
 We generated the approximate number RDM from the pairwise dissimilarities in log-329 
scaled magnitude of all numbers 6-13. By using the log-transform of absolute pairwise 330 
differences, we more closely approximate the tuning curves of the ANS that have been shown 331 
to govern number representations outside of subitizing range (numbers 1-4). This model was 332 
equivalent for all three number formats. 333 
 334 
RDM comparisons 335 
We first computed the correlation of our models to assess their general similarity, before 336 
comparing them to MEG signal. Spearman’s r was calculated for each pair of models, and the 337 
significance of correlations was tested with a row shuffled randomization test: for the pair of 338 
models in question, the rows and columns of the first RDM were randomly permuted before 339 
computing the Spearman’s r between the second model RDM. We repeated this procedure 340 
1,000 times to generate a null distribution of correlation coefficients, and the results were 341 
judged to be significant if they showed a higher correlation coefficient than the distribution cut-342 
off determined at p < 0.05. 343 
 344 
Variance Partitioning: Unique and Shared Contributions 345 
Given that our two models could explain overlapping portions of the variance in the MEG 346 
RDMs, we conducted a variance partitioning analysis to determine the unique and shared 347 
variance accounted for by each model (see Groen et al., 2012, Greene et al., 2016, and Bankson 348 
et al., 2018, for similar approaches). We accounted for the variance in the MEG RSMs using 349 
different combinations of RDMs as regressors: 1) a ‘complete’ regression with each RDM 350 
serving as a predictor, 2) a  ‘single-predictor regression’ with only the GIST RDM as a predictor, 351 
and 3) another ‘single-predictor regression’ with only the approximate number RDM as a 352 
predictor. We subtracted the explained variance (R2) values of these different regression 353 
analyses to measure the partitions of variance uniquely explained by each model, and the 354 
variance explained by both RDMs. We determined statistical significance by running a row 355 
shuffled randomization test as described above: rows and columns of model matrices were 356 
randomized 1000 times and the original analysis repeated. The same randomization index was 357 
used across all models to match the randomization test assumptions, and the significance 358 
cutoffs for R2 values were set to p < 0.01 (FDR-corrected) and required to be contiguous with at 359 
least 2 other significant time points. Because these statistical analyses are permutation based, 360 
they implicitly test against the baseline of variance rather than an alternate null hypothesis of 361 
R2 = 0. We established a variance baseline by repeating the above variance partitioning analysis 362 
with two noise models and simulated MEG data (all generated from random number 363 
assignment) to demonstrate the non-zero variance baseline.  364 
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Results 365 
 366 
Temporal dynamics of within-format number representations 367 
To quantify the time course of representations for individual numbers, we used time-resolved 368 
multivariate decoding and conducted pairwise classification between MEG signal patterns in 369 
response to number stimuli in digit, dot array, or word formats (Figure 2). Pairwise classification 370 
was conducted only for MEG signal in response to the first number presented in each trial. 371 
Individual digits could be differentiated rapidly after stimulus onset, peaking at 110 ms (mean 372 
accuracy: 75.04%) and showed a slow decay in decoding accuracy that remained significantly 373 
above chance for the majority of the first stimulus trial window (800 ms). Individual words 374 
showed a similar time course but lower decoding accuracy, peaking at 110 ms (63.4%) and 375 
remaining significantly above chance until ~600 ms after stimulus onset. Individual dot arrays 376 
again showed a similar peak in decoding accuracy at 110 ms (57.55%) but had less sustained 377 
decoding accuracy than the other two stimulus formats. These results indicate that neural 378 
representations of number arise quickly regardless of presentation format. However, these 379 
representations could be format-specific or could be shared across formats. To test the nature 380 
of the representations, we next conducted cross-decoding between formats. 381 
 382 
 383 
 384 
 385 
 386 
 387 
 388 
 389 
 390 
 391 
 392 
 393 
 394 
 395 
 396 
 397 
 398 
 399 
Figure 2. Time-resolved within-format number classification. After the onset of the object stimulus (depicted in 400 
gray from 0-400 ms), pairwise number classification accuracy increased rapidly for all three number formats. Error 401 
bars reflect SEM across participants for each time point separately. Significance is marked at the top of the figure, 402 
corresponding to p < .05 (FDR corrected). 403 
 404 
 405 
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Temporal dynamics of between-format number individuation 406 
We trained a linear SVM classifier on one format then tested it on another, completing this 407 
process for all pairs of formats: digits and words, digits and dots, and words and dots. This 408 
procedure was conducted in both directions, and the results averaged (i.e. train on dots, test on 409 
digits; train on digits, test on dots). Digits and dots showed a first peak at 100 ms (mean 410 
accuracy: 52.34%), with significant above chance classification accuracy from 60-120 ms and at 411 
several later time points between 290-685 ms after stimulus onset. Digits and words showed a 412 
similar early peak at 100 ms (52.06%) and a second peak at 290 ms (52.15%); digit and word 413 
cross-classification was significantly above chance from 40-110 ms and 270-370 ms after 414 
stimulus onset. Word and dot classification was never significantly above chance. The results 415 
here suggest shared number representations that are more limited than within-format number 416 
information. These shared number representations also exist to a greater degree between 417 
digits / dots and digits / words than dots / words in the context of this magnitude judgment 418 
task.   419 

Figure 3. Time-resolved between-format cross classification. Classifiers were trained and tested on digit and dot 420 
stimuli, digit and word stimuli, and dot and word stimuli to ascertain representational overlap between different 421 
number formats at each time point. Pairwise cross-classification accuracy increased after stimulus onset for digit / 422 
dot and digit / word comparisons, but not for dot / word comparison. Error bars reflect SEM across participants for 423 
each time point separately. Significance is marked at the top of the figure, corresponding to p < .05 (FDR 424 
corrected). 425 
 426 
Model Similarity 427 
We compared MEG signal to two models: a GIST visual feature model and an approximate 428 
number model. To quantify the relationships between the models derived from GIST features 429 
and number magnitude, we computed the correlation between the model RDMs (Figure 4a). 430 
GIST and number magnitude models were most strongly correlated for dot array stimuli (r = 431 
0.72, p < .001), followed by digit (r = 0.39, p = 0.02), and word stimuli (r = 0.26, p = 0.18). The 432 
high correlation between GIST features and number magnitude for dot array and the modest 433 
correlation for digit stimuli suggests that number decoding within and between these formats 434 
may be driven by GIST features as opposed to associated magnitude information. Because of 435 
these significant correlations, we conducted variance partitioning analyses to determine how 436 
much unique variance number magnitude versus GIST features could account for in the MEG 437 
signal. 438 
 439 
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Figure 4: a. RDM comparisons between approximate number model with format-specific GIST models for digit, 440 
dot, and word stimuli. RDMs are plotted by rank to enhance visual contrast. Spearman correlations between the 441 
approximate number model and GIST for digits and dot stimuli were significant (p < .05), assessed with row 442 
permutation tests. b. Time resolved variance partitioning showing the total variance explained by both models for 443 
MEG signal in response to each stimulus format. Baseline variance is plotted in gray. Significant time points are 444 
marked at the top of the figure, corresponding to p < .01 (FDR corrected). 445 
 446 
Variance Partitioning 447 
We conducted a variance partitioning analysis that described the unique variance in the MEG 448 
response accounted for by each model and the shared variance accounted for by both models. 449 
We used a threshold of p < 0.01 (FDR-corrected) to determine significant model contributions 450 
to MEG variance (Figure 4b). 451 

For MEG responses to digit stimuli, the GIST model explained unique variance at early 452 
time points, 70-370 ms after stimulus onset with a peak at 110 ms (R2: 23.5%) (Figure 5). In 453 
contrast, the approximate number model explained significant portions of MEG variance 454 
primarily after 760 ms, with a peak after presentation of the second stimulus at 916 ms (R2: 455 
18.9%). The GIST model and approximate number model accounted for shared variance from 456 
85 – 270 ms after stimulus presentation with a peak at 110 ms (R2: 7.8%). The total variance 457 
explained by unique and shared model contributions was significant from 70 – 520 ms and 630 458 
– 1000 ms after stimulus presentation with a peak at 110 ms (R2: 35.8%).   459 

For MEG responses to the dot array stimuli, the GIST model explained significant 460 
variance from 75 – 260 ms and again sporadically between 390 – 980 ms after stimulus onset, 461 
with a peak at 85 ms (R2: 16.8% ). The approximate number model did not significantly explain 462 
any unique MEG variance throughout the entire time course. The combination of GIST + 463 
approximate number models explained a significant portion of the variance from 75 – 160 ms 464 
(peak 150 ms, R2: 10.1%), and then between 280 – 320 ms. The slightly negative deflection of 465 
shared variance between GIST + approximate number models from 400-600 ms is not atypical 466 
for variance partitioning analyses: this pattern suggests that the GIST model does not capture 467 
information that is relevant to the approximate number model, and vice versa (Pedhazur, 468 
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1997). The total variance explained from unique and shared model contributions was significant 469 
from 60 – 790 ms and again from 820-1000 ms, with a peak at 85 ms (R2: 32.15%).  470 
 Finally, for MEG responses to the word stimuli, the GIST model explained unique 471 
variance 70-350 ms after stimulus presentation and later from 390-510 ms, with a peak at 110 472 
ms (R2: 27.9%). The approximate number model did not significantly account for any unique 473 
MEG variance during the entire time course. The GIST model and approximate number model 474 
explained shared variance starting at 70 ms after stimulus onset until 230 ms (peak 130 ms, R2: 475 
10.1% ), and briefly from 350-390 ms. The total variance explained by unique and shared model 476 
contributions was significant from 60-520 ms after stimulus onset, with a peak at 135 ms (R2: 477 
39.4% ). 478 

Figure 5. Time resolved variance partitioning showing the total unique and shared variance explained by both 479 
models for MEG signal in response to each stimulus format. Significant time points are marked at the top of the 480 
figure, corresponding to p < .01 (FDR corrected). 481 
 482 
Discussion 483 
In this study, we examined the time course of number representation in both symbolic and 484 
non-symbolic formats from patterns of whole-brain MEG signal. Our results support the 485 
existence of both distinct and shared representations for symbolic and non-symbolic number. 486 
Using within-format decoding, we show that individual digits, number words, and dot arrays 487 
can all be classified above chance within 110 ms of stimulus presentation. This suggests that 488 
format-specific representations of digits, words, and dot displays have similar temporal 489 
dynamics, emerging early after image presentation, then persisting throughout the trial. Using 490 
between-format classification, we demonstrated shared representations between digits & 491 
words and digits & dots at early (60-110 ms) and later (300-450 ms) latencies. Finally, model-492 
based RSA showed predominant contribution of the GIST model to early MEG variance in 493 
response to all number formats, whereas an approximate number model explained significant 494 
variance solely for symbolic digit MEG responses at longer latencies.  495 
 Our results on within-format number classification indicate that representations for 496 
individual numbers can be accurately decoded within the first 100 ms of stimulus presentation, 497 
regardless of symbolic or non-symbolic format. Using a similar paradigm, Teichmann et al. 498 
(2018) also reported above chance classification for individual numbers presented as digits or 499 
dice, though in their study significant classification emerged later in time. While significant 500 
classification in our study emerged at ~50ms after stimulus onset and peaked at 110ms, 501 
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significant classification in their study emerged around 120-145 ms and peaked at 250ms. 502 
Importantly, we did not vary the retinotopic position of our stimuli, while Teichmann et al. did. 503 
The early representations reported in our experiment may be retinotopically specified, whereas 504 
the later representations reported in Teichmann et al. may be tolerant to variation in 505 
retinotopic position. Support for this claim comes from the fact that the early representations 506 
in our study were well explained by the GIST model. This pattern of results is consistent with 507 
previous MEG studies indicating that the earliest time points following stimulus presentation 508 
carry retinotopically specific representations, whereas position-invariant representations begin 509 
to emerge by about 150 ms (Wardle et al., 2016; Isik et al., 2013). 510 
 Our cross-classification results between digits and word stimuli provide some evidence 511 
of shared representations between symbolic number formats. Previously, Teichmann et al. 512 
(2018) also reported evidence for shared representations between two symbolic formats: digit 513 
and dice stimuli. They show significant between-format decoding for a brief period around 400 514 
ms, suggesting a late emergence of a shared number representation. Similarly, we found 515 
limited evidence of shared representations from 300-400 ms, but we also demonstrated 516 
significant cross-classification between digits and words at very early time points from ~50 – 517 
110 ms after stimulus presentation. Our results suggest that associations between symbolic 518 
formats might be an early component of the visual representation for number. In both studies, 519 
this association may be due to shared word representations between the two stimulus formats 520 
rather than shared magnitude representations. 521 

Our cross-classification results between digits and dot displays suggest that associations 522 
between digit representations and the magnitude representations of the ANS may arise within 523 
100 ms of stimulus onset. Our stimulus set (numbers 6-13) was chosen to avoid numbers in or 524 
near the subitizing range, so all non-symbolic numbers were represented by the ANS rather 525 
than working memory systems that rely on parallel individuation. Therefore, the association 526 
between symbolic and non-symbolic number in our study is likely supported by the ANS. These 527 
results are consistent with behavioral findings that adults can accurately compare symbolic and 528 
non-symbolic number up to about the number twelve, though the associative mapping is 529 
weaker for higher numbers (Sullivan and Barner, 2013). In contrast to our study, Teichmann et 530 
al. (2018) utilized the numbers 1-6, so most of their stimuli were nameable numbers within the 531 
subitizing range. By using larger numbers outside of this range, our findings build upon these 532 
previous results and provide some evidence that the association between digit representations 533 
and the ANS is registered automatically and quickly by the visual system. 534 

Although the dot / word cross-classification did not yield any periods of significant 535 
decoding, this null result cannot speak to the existence or lack of representational overlap 536 
between number words and dot stimuli. These two formats showed the weakest within-format 537 
classification accuracies, so perhaps a higher-powered study focusing just on these two formats 538 
would yield the data necessary to investigate whether shared representations can be found 539 
between number words and the ANS. 540 

The variance partitioning analyses allowed us to tease apart when the GIST model and 541 
an approximate number model explained variance in the neural representations for number 542 
stimuli. For digits, the MEG signal contains an early response within the first 100 ms that is 543 
uniquely explained by the GIST model as well as shared information between GIST + 544 
approximate number models to a certain degree. Later, the MEG signal for digits is increasingly 545 
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explained by the approximate number model rather than the GIST model. Strikingly, the 546 
approximate number model explains the most variance at 916 ms, or 116 ms after the 547 
presentation of the second number stimuli in each trial. This latency precisely coincides with 548 
the timing by which magnitude information from the first stimulus becomes behaviorally 549 
relevant. This pattern of results suggests that neural responses transitioned from representing 550 
visual information to representing magnitude information at the time in the trial when those 551 
magnitude representations became task-relevant. Results from the word stimuli showed 552 
contrasting results: the approximate number model did not explain the MEG signal across the 553 
entire time course, and instead the GIST model uniquely explains a majority of the variance 554 
within 500 ms of stimulus presentation. The unique pattern of results for digits in comparison 555 
to words could indicate the frequency and facility with which we manipulate number 556 
information in the form of digits as opposed to number words.  557 

The model analyses for the dot stimuli highlight the unavoidable fact that approximate 558 
number representations are highly correlated with other low-level visual features. The 559 
correlation between the GIST model and the approximate number model for the dot displays 560 
was r = 0.72 while it was much smaller for the digit and word displays (r = 0.39 and r = 0.26, 561 
respectively). This exemplifies that the mapping between visual features and numerosity is 562 
fairly arbitrary for number symbols, but highly meaningful for dot arrays: GIST features provide 563 
dominant information on number magnitude. Neuroscientific experiments (Harvey et al., 2013; 564 
Nieder et al., 2002) and psychophysical experiments (Burr and Ross, 2008; Cicchini et al., 2016) 565 
have established that number representations can be formed without the use of any one low-566 
level visual feature that usually correlates with number. At the same time, accuracy of number 567 
comparison is affected by the ways in which low-level visual features covary with number, 568 
suggesting that the visual system ordinarily relies on these low-level visual features to form 569 
more accurate number representations (Gebuis et al., 2009; Gebuis and Reynvoet, 2012). 570 
Future MEG decoding studies could address the current observations by systematically varying 571 
low-level features of dot display stimuli to explore their role in tuning dynamic representations 572 
of approximate number.  573 

Despite the fine-grained temporal resolution of our analyses, we cannot comment on 574 
the spatial origin of the representations being studied here. Particularly with regards to the 575 
early contributions of the GIST model to MEG signal variance across all three number formats, 576 
an important expansion of this work could entail using human intracranial recordings to 577 
examine the spatial extent of early visual activity in representing symbolic and non-symbolic 578 
number across ventral temporal and lateral parietal areas.  579 

Many studies have searched for shared representations between symbolic and non-580 
symbolic number with the assumption that these “abstract” number representations provide 581 
the foundation for mathematical cognition (Gallistel and Gelman, 2000; Dehaene, 2007; 582 
Dehaene, 2009; Piazza, 2011). We agree that ANS representations play a role in some everyday 583 
mathematical tasks; the heavily replicated distance effect supports the view that the ANS plays 584 
a role in common number comparison tasks in both children (Holloway and Ansari, 2009) and 585 
adults (Libertus et al., 2007; Moyer and Landauer, 1967; Dehaene et al., 1990). Moreover, 586 
structural alignment processes may allow the ANS to be recruited broadly when reasoning 587 
about any magnitude, for example reward probabilities (Luyckx, 2019). However, neither 588 
empirical evidence nor theoretical arguments support the view that the ANS is the primary 589 
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foundation of mathematical cognition. While individual studies have argued for stronger 590 
effects, a recent meta-analysis concluded that the ability to compare the magnitude of non-591 
symbolic number stimuli is only weakly correlated with mathematical achievement (r = 0.241, 592 
CI [.198, .284]) (Schneider et al., 2017). More importantly though, a primary source of 593 
mathematical thought during development is the construction of integer representations when 594 
learning to count, and these representations cannot in principle be supported by the ANS 595 
(Carey, 2009). Adults and children alike can form integer representations that exactly 596 
enumerate sets, giving us the knowledge that 278 is exactly one less than 279; the approximate 597 
number system is by its very definition incapable of supporting this knowledge. In order to 598 
understand how mathematical thought gets off the ground, we not only need to understand 599 
how number symbols are associated with ANS representations, but also how the brain forms 600 
exact representations that transcend the limitations of the ANS. Representations unique to 601 
symbolic number play a foundational role in mathematical thought, a role that could never be 602 
filled by “abstract” number representations shared for digits and dot displays.  603 

Collectively, our results provide evidence that representations of numerosity and 604 
number symbols are formed from dot displays, digits, and number words within 100ms after 605 
stimulus presentation. These representations are largely format-specific as evidenced by 1) 606 
higher decoding accuracy for within-format classification as compared to between-format 607 
classification, and 2) heterogeneous model contributions to the MEG signal for each stimulus 608 
format. We do find some evidence for shared representations between symbolic and non-609 
symbolic number at early (~100 ms) and later (~300 ms) timepoints, though evidence for a 610 
robust and singular “abstract” number representation was much weaker than evidence for 611 
format-specific representations. Our results support the view that multiple format-specific 612 
representations, more so than a singular “abstract” number representation, underlie the ability 613 
to compare numerical magnitudes. In order to more fully understand the neural underpinnings 614 
of mathematical thought, future work will need to characterize how the brain implements 615 
integer representations in a symbolic number system in concert with approximate number 616 
representations in a nonsymbolic number system. 617 
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