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Abstract 

Thousands of epigenomic datasets have been generated in the past decade, but it is difficult for 

researchers to effectively utilize all the data relevant to their projects. Systematic integrative 

analysis can help meet this need, and the VISION project was established for ValIdated 

Systematic IntegratiON of epigenomic data in hematopoiesis. Here, we systematically 

integrated extensive data recording epigenetic features and transcriptomes from many sources, 

including individual laboratories and consortia, to produce a comprehensive view of the 

regulatory landscape of differentiating hematopoietic cell types in mouse. By employing IDEAS 

as our Integrative and Discriminative Epigenome Annotation System, we identified and 

assigned epigenetic states simultaneously along chromosomes and across cell types, precisely 

and comprehensively. Combining nuclease accessibility and epigenetic states produced a set of 

over 200,000 candidate cis-regulatory elements (cCREs) that efficiently capture enhancers and 

promoters. The transitions in epigenetic states of these cCREs across cell types provided 

insights into mechanisms of regulation, including decreases in numbers of active cCREs during 

differentiation of most lineages, transitions from poised to active or inactive states, and shifts in 

nuclease accessibility of CTCF-bound elements. Regression modeling of epigenetic states at 

cCREs and gene expression produced a versatile resource to improve selection of cCREs 

potentially regulating target genes. These resources are available from our VISION website 

(usevision.org) to aid research in genomics and hematopoiesis.  
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Introduction 

Recent work from both individual laboratories and major consortia (e.g., 

The_ENCODE_Project_Consortium 2012; Cheng et al. 2014; Yue et al. 2014; Roadmap 

Epigenomics et al. 2015; Stunnenberg et al. 2016; The_ENCODE_Project_Consortium et al. 

2019) have produced, from diverse cell types, thousands of genome-wide datasets on 

transcriptomes and many epigenetic features, including nuclease accessibility, histone 

modifications, transcription factor occupancy. However, it is challenging for individual 

investigators to find all the data relevant to their projects or, once found, to incorporate the data 

effectively into analyses and hypothesis generation. One approach to address this challenge of 

overwhelming data is to integrate these deep and diverse datasets (Ernst and Kellis 2010; 

Ernst and Kellis 2012; Hoffman et al. 2012; Hoffman et al. 2013; Zhou and Troyanskaya 2015; 

Greenside et al. 2018; Lee et al. 2018; Ludwig et al. 2019). An effective integration will produce 

simplified representations of the data that facilitate discoveries and lead to testable hypotheses 

about functions of genomic elements and mechanisms of regulatory processes. Our multi-lab 

project called VISION (for ValIdated Systematic IntegratiON of hematopoietic epigenomes) is 

endeavoring to meet this challenge by focusing on an important biological system, 

hematopoietic differentiation. Not only is hematopoietic differentiation an important biological 

and medical system with abundant epigenetic data available (e.g., Cheng et al. 2009; Fujiwara 

et al. 2009; Yu et al. 2009; Wilson et al. 2010; Pilon et al. 2011; Tijssen et al. 2011; Wong et al. 

2011; Wu et al. 2011; Kowalczyk et al. 2012; Su et al. 2013; Lara-Astiaso et al. 2014; Pimkin 

et al. 2014; Wu et al. 2014; Corces et al. 2016; Huang et al. 2016; Heuston et al. 2018; Ludwig 

et al. 2019), but it also provides a powerful framework for validation of the integrative modeling. 

Specifically, work over prior decades has established key concepts that a successful modeling 

effort should recapitulate, and predictions of the modeling can be tested genetically in animals 
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and cell lines. Here, we report on our initial systematic integrative modeling of mouse 

hematopoiesis.  

 

The production of many distinct blood cell types from a common stem cell (hematopoiesis) is 

critically important for human health (Orkin and Zon 2008). This process has been studied 

intensively in humans and mouse. Despite some differences between these species (An et al. 

2014; Cheng et al. 2014; Pishesha et al. 2014), the mouse system has served as a good model 

for many aspects of hematopoiesis in humans and mammals in general (Sykes and Scadden 

2013). In adult mammals, all blood cells are produced from mesodermally-derived, self-

renewing hematopoietic stem cells (HSCs) located in the bone marrow (Till and McCulloch 

1961; Kondo et al. 2003). Several distinct populations of multilineage progenitor cells with 

different capacities for differentiation to specific lineages have been purified using cell surface 

markers (Weissman and Shizuru 2008). In a common model derived from these cell 

populations, hematopoietic differentiation proceeds from HSC through progenitor cells with 

progressively more restricted lineage potential, eventually committing to a single cell lineage 

(Reya et al. 2001). More recent analyses of single cell transcriptomes have revealed 

heterogeneity in each of these populations, and in some cases, they uncovered a bias in 

multilineage progenitors toward a single cell type (Sanjuan-Pla et al. 2013; Psaila et al. 2016). 

Overall, analysis of single cell transcriptomes support an ensemble of pathways for 

differentiation (Nestorowa et al. 2016; Laurenti and Gottgens 2018). After lineage commitment, 

cells progress through multiple stages to form mature, circulating blood cells. Regardless of the 

complexity in cell-fate pathways, it is clear that changes in patterns of gene expression drive the 

differentiation program (Cantor and Orkin 2002; Graf and Enver 2009). Mis-regulation of those 

gene expression patterns can cause diseases such as leukemias and anemias (Higgs 2013; 

Lee and Young 2013), and thus efforts to better understand the molecular mechanisms 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted August 10, 2019. ; https://doi.org/10.1101/731729doi: bioRxiv preprint 

https://doi.org/10.1101/731729


5 

regulating gene expression can help uncover the processes underlying cancers and blood 

disorders. 

 

Comprehensive epigenomic and transcriptomic data can be used to describe how both the 

patterns of gene expression and the regulatory landscapes change during hematopoietic 

differentiation. Previous publications provided many insights and datasets on epigenomic 

changes during hematopoiesis in mouse (e.g., Lara-Astiaso et al. 2014) and in human (e.g., 

Adams et al. 2012; Corces et al. 2016). Additional informative datasets have come from detailed 

studies in cell line models of hematopoietic differentiation. In the intensively studied process of 

hematopoiesis, such comprehensive datasets could encompass virtually all the recognized 

regulatory and transcriptional changes that occur during differentiation. However, elucidating 

from these comprehensive datasets the regulatory events most critical to producing the 

transcriptional patterns needed for distinctive cell types is still a major challenge.  

  

Here, our major aim is to determine the value of systematic integration of the extensive 

epigenomic data to improve accessibility and understanding of the data and to facilitate the 

generation of novel hypotheses about changes in the regulatory landscape during 

hematopoietic differentiation. We used the Integrative and Discriminative Epigenomic 

Annotation System (Zhang et al. 2016; Zhang and Hardison 2017) to learn and assign 

epigenetic states, which are common combinations of features such as nuclease accessibility, 

histone modifications, and CTCF occupancy, jointly along chromosomes and across 20 

hematopoietic cell types. This methodological choice was guided by previous results showing 

that, compared to other segmentation approaches (Ernst and Kellis 2010; Ernst and Kellis 

2012; Hoffman et al. 2013), IDEAS provides significant improvement in the precision and 

consistency of state assignments (Zhang et al. 2016; Zhang and Hardison 2017). It also is able 

to assign states in a principled, effective way despite missing data (Zhang and Mahony 2019). 
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The resulting segmentations provide a readily interpretable “painting” of the epigenomic 

landscape across selected hematopoietic cell types. 

  

Furthermore, we combined the integrated features in the form of epigenetic states with peaks of 

nuclease accessibility to produce an initial compendium of over 200,000 candidate Cis- 

Regulatory Elements (cCREs) active in one or more hematopoietic lineages in mouse. 

Comparison with other datasets indicate these cCREs cover many of the known and likely 

regulatory elements, suggesting that this compendium is valuable for further study of individual 

loci and genome-wide assessments. Investigation of state transitions in the cCREs across 

differentiation revealed insights into epigenetic dynamics, including progressions from poised to 

active or inactive enhancers and loss of nuclease accessibility at some CTCF-bound sites. 

Furthermore, exploration of the correlations of cCRE states and gene expression produced a 

flexible, user-tunable resource for assigning cCREs to candidate target genes in the 

investigated cell types, which in turn can help explain the impacts of genetic variation in 

noncoding regions, including eQTLs and trait associated variants from genome-wide association 

studies.  

 

Results 

  

Epigenomic and transcriptomic datasets of mouse hematopoietic cells 

A large number of genome-wide determinations of RNA levels and epigenetic features related to 

gene expression across hematopoietic cell types have been published. We reasoned that 

integrative analysis of these data should provide a more accessible view of the information that 

would help investigators utilize the multiple diverse datasets, and it may lead to novel insights 

into gene regulation. In order to build a set of data for integrative and discriminative analysis, we 
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collated the raw sequence data for 150 determinations of relevant epigenetic features (104 

experiments after merging replicates), including histone modifications and CTCF by ChIP-seq, 

nuclease accessibility of DNA in chromatin by ATAC-seq and DNase-seq, and 20 experiments 

on transcriptomes by RNA-seq. The data were gathered from a set of purified cell populations 

including LSK (Lin-Sca1+Kit+, which includes hematopoietic stem cells or HSC and multipotent 

progenitor cells or MPP), several multilineage progenitor cells (common myeloid progenitor cells 

or CMP, granulocyte monocyte progenitor cells or GMP, megakaryocyte erythrocyte progenitor 

cells or MEP, and common lymphoid progenitor cells or CLP), and committed cells of the major 

blood cell lineages at different stages of maturity (for erythroblasts or ERY and megakaryocytes 

or MK) (Figure 1A). Most of the cell populations were from adult bone marrow or spleen, but 

some cell populations were from the hematopoietic organ fetal liver. We included data from 

three immortalized cell lines used extensively in mechanistic studies of gene regulation at 

distinct stages of differentiation and maturation. These were HPC7 cells, which are models for 

multilineage myeloid progenitor cells (Pinto do et al. 1998; Wilson et al. 2010), G1E cells, 

which are a model for early erythroid committed cells blocked in maturation by a knockout of the 

Gata1 gene, and G1E-ER4 cells, a rescued subline of G1E that partially matures to 

erythroblast-like cells in a GATA1-dependent manner upon estradiol treatment to activate a 

GATA1-ER hybrid protein (Weiss et al. 1997; Gregory et al. 1999). This collection of cell 

populations was heavily weighted toward the erythroid and myeloid lineages, but 

representatives of some of the major lymphoid lineages were included to provide a broad 

context for the resources built from our integrative modeling. 

 

To establish key signatures of epigenomic and transcriptomic data in various hematopoietic cell 

types, data were gathered from many different sources, including individual laboratories and 

consortia (Figure 1B and Supplementary Tables). The initially gathered data had quality 
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metrics within the ENCODE recommendations (see Materials and Methods and 

Supplementary Tables). However, the diversity of sources presented a challenge for data 

analysis, since each experiment differed widely in sequencing depth, fraction of reads on target, 

signal-to-noise ratio, presence of replicates, and other properties (Xiang et al. 2019), all of which 

can impact downstream analyses. Two strategies were employed to improve the comparability 

of these heterogeneous datasets. First, the sequencing reads from each type of assay were 

uniformly processed, using pipelines similar to or adapted from current ENCODE pipelines (see 

Materials and Methods). One notable difference is that our VISION pipelines allow reads to 

map to genes and genomic intervals that are present in multiple copies, thereby allowing 

interrogation of duplicated chromosomal segments, including multigene families with highly 

similar genes such as those encoding globins, as well as regions subject to deletions and 

amplifications. Second, for the ChIP-seq and nuclease accessibility data, we applied a new 

normalization method, S3norm, that simultaneously adjusts for differences in sequencing depths 

and signal-to-noise ratios in the collected data (Materials and Methods and Xiang et al. 2019). 

As with other normalization procedures, the S3norm method was designed to give similar 

signals in common peaks for an epigenetic feature, but it does so without inflating the 

background signal. Preventing an increased background was necessary to avoid introducing 

spurious signals during the genome-wide modeling of the epigenetic landscape. 
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Figure 1. Hematopoietic cell types and datasets, and correlations among normalized data. A. Schematic 

representation of the main lineage commitment steps in hematopoiesis, along with three immortalized cell 

lines (HPC7, G1E, G1E-ER4) and their approximate position relative to the primary cell types shown. B. 

Available hematopoietic cell types and datasets. Shown in each row: Cell type along with its 

representative color, tissue stage (Ad = adult, ES diff = Embryonic stem cell derived, differentiated) and 

source (BM = bone marrow, sp = spleen, liver, blood). Shaded boxes indicate the presence of the 

dataset, and letters denote the source (V = VISION, L = Lara-Astiaso et. al 2014, O = other). See 

Supplementary Tables for more information. C. Correlations across all features (S3norm normalized) and 

cell types. The genome-wide Pearson correlation coefficients r were computed for each cell type-feature 

pair and displayed as a heatmap after hierarchical clustering (using 1-r as the distance measure). The 

features are indicated by a characteristic color (first column on right), and the cell types are indicated in 

the second column to the right using the same colors as panel B. The more intensely red colors within the 

matrix represent higher correlations.  
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An overview of the similarities across all the datasets showed that most clustered by epigenetic 

features across cell types (Figure 1C). These groupings within epigenetic features were more 

apparent after S3norm normalization (Supplementary Figure 1), which supports the 

effectiveness of the normalization. Determinations across cell types for nuclease accessibility, 

CTCF, the H3K9me3 heterochromatin mark, H3K27me3 Polycomb repressive mark, or the 

H3K36me3 transcriptional elongation mark were highly correlated. In contrast, the signature 

marks for promoters and enhancers, H3K4me3 and H3K4me1, respectively, formed groups 

interspersed with the H3K27ac modification, which is characteristic of active enhancers and 

promoters. These intermingled groups (e.g. H3K4me1 and H3K27ac) tended to form within 

related cell types, such as maturing erythroid cells or lymphoid cells, as expected for the cell 

type-specificity of enhancer-associated marks (Heintzman et al. 2009; Yue et al. 2014). The 

similarity of patterns for a particular feature across cell types suggests that examination of a 

single epigenetic mark may have limited power to find patterns distinctive to a cell type, whereas 

combinations of features appear to be more effective. 

 

Despite our quality checks on the initially compiled experiments, four datasets were problematic. 

They failed to cluster with other datasets for that feature (H3K27ac for CD4 and CD8 T cells) or 

formed an unexpected group such as H3K27me3 with H3K36me3 for LSK (enclosed in a gray 

box in Figure 1C), even after normalization. Inclusion of these datasets in the integrative 

modeling (described below) generated chromatin states that were highly enriched only in those 

cell types, unlike the other states, suggesting that they contained artifactual signals. Thus, these 

four datasets were therefore excluded from the integrative and discriminative modeling.  

 

In summary, our compilation of signal tracks, peak calls, estimates of transcript levels, and other 

material established a unified, consistently processed data resource for mouse hematopoiesis, 

which can be accessed at our VISION website (http://usevision.org). 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted August 10, 2019. ; https://doi.org/10.1101/731729doi: bioRxiv preprint 

https://doi.org/10.1101/731729


11 

 

Simultaneous integration in two dimensions of non-binary epigenomic data 

The frequent co-occurrence of some histone modifications have led to discrete models for 

epigenetic structures of candidate cis-regulatory elements, or cCREs (reviewed in Noonan and 

McCallion 2010; Hardison and Taylor 2012; Long et al. 2016). Moreover, the co-occurrences 

can be modeled formally using genome segmentation to learn the most frequently occurring, 

unique combinations of epigenetic features, called epigenetic states, and assigning each 

segment of DNA in each cell type to an epigenetic state. Computational tools such as 

chromHMM (Ernst and Kellis 2012), Segway (Hoffman et al. 2012),  and Spectacle (Song and 

Chen 2015) provide informative segmentations primarily in one dimension, usually along 

chromosomes. The Integrative and Discriminative Epigenome Annotation System, or IDEAS 

(Zhang et al. 2016; Zhang and Hardison 2017) expands the capability of segmentation tools in 

several ways. It integrates the data simultaneously in two dimensions, along chromosomes and 

across cell types, thus improving the precision of state assignments. It uses continuous (not 

binarized) data as the input, and the number of epigenetic states is determined automatically. 

Also, when confronted with missing data, it can make state assignments with good accuracy 

(Zhang and Mahony 2019). 
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Figure 2. Major steps in integrative and discriminative modeling of epigenomic signals using IDEAS. A. 

Gene models in a 100kb region centered on two complement receptor genes (position chr7:16,190,001-

16,290,000 in GRCm38/mm10). B. In four cell types (G1E, MK, NEU, and B cells), the normalized signal 

for each of the eight epigenomic features was given a distinctive color (burgundy for ATAC-seq, purple for 

CTCF, red for H3K4me3, yellow for H3K4me1, orange for H3K27ac, green for H3K36me3, blue for 
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H3K27me3, and gray for H3K9me3), and the eight  tracks were overlaid for each cell type using the Track 

Collections tool of the UCSC Genome Browser (Haeussler et al. 2019). C. The grouping of cell types 

locally based on their epigenetic profiles is illustrated by distinctive background colors, mauve 

background for chromosomal segments that have similar profiles across all cell types and different colors 

in backgrounds for segments with differing profiles. D. The epigenetic feature profiles that occur most 

commonly are illustrated for three genomic positions as bar graphs representing the intensity of signal for 

each of the eight features (each with the distinctive color listed in B). Those combinations of quantitative 

signals define an epigenetic state, illustrated as a colored square. The epigenetic state at a given position 

can be constant or different across cell types. E. The frequencies of occurrence of the states at the three 

genomic positions are illustrated as pie diagrams; the colors in the pie diagrams represent particular 

states. Panels F, G, and H indicate steps for assigning genomic intervals to epigenetic states in each cell 

type and giving them informative colors. I. The resulting segmentation for the four cell types at this locus 

is shown as a track in dense mode for a genome browser. 

 

We employed IDEAS to analyze the normalized signals for nuclease accessibility, CTCF 

occupancy, and histone modifications (Figure 2). One key step in the IDEAS modeling is to 

group cell types locally based on the epigenomic profiles, finding regions that are similar across 

subgroups of cell types or that are similar across all cell types (Figure 2 A-C). Importantly, cell 

types that were more similar in one locus can differ in another locus. IDEAS then learned the 

epigenetic states, which were defined by the signal strength, not just the presence or absence 

of each feature (Figure 2D), while retaining position-specific information (Figure 2E). 

Leveraging the information about local cell type groups and the position-specific distributions of 

states, genomic intervals in each cell type were assigned to an epigenetic state in an iterative 

process (Figure 2F-I).  

 

The coloring of each state was determined automatically, generating an informative 

representation for each state by mixing colors from a palette of distinctive colors for each 
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feature. The colors provide a visual representation of the contribution of each epigenetic feature 

to the state. The output of the IDEAS segmentation effectively paints the epigenome of each cell 

type in a distinctive pattern, providing a compact and concise display of function-associated 

states along the chromosomes of each cell type. Importantly, the segmentation provides a 

simplified, integrated representation of over 100 tracks of epigenomic data, enabling 

investigators examine the entire dataset in a concise form. 

 

The resulting 27 epigenetic states included many expected ones, as well as others that have 

been less frequently studied. The IDEAS model summary shows the prevalence of each of the 

eight epigenetic features as a heatmap, organized by similarity among the states (Figure 3A).  

These states described an informative landscape, distinguishing multiple states signatures 

representing distinct classes of regulatory elements (including enhancers, promoters and 

boundary elements). For example, six states showed a promoter-like signature, with high 

frequency of H3K4me3 (states 18, 21, 10, 15, 24, and 11); these are displayed in different 

shades of red, and P is the initial character in the explicit label. These six states distinguished 

promoter-like signatures by the presence or absence of other features with functional 

implications. For instance, four promoter-like states were also nuclease accessible (states 21, 

10, 15, and 24), four also had the H3K27ac mark associated with active promoters (states 18, 

21, 10, and 24), one (state 24) also had CTCF, and three had the H3K4me1 modification that 

flanks active promoters as well as marks enhancers (states 21, 24, and 19). Two states (19 and 

23) had equivalent frequencies of the tri- and monomethylated H3K4, and these were 

categorized as a mix of promoter-like and enhancer-like signatures, colored orange. States 22 

and 20 had a high frequency of the Polycomb repressive mark H3K27me3 along with 

methylated H3K4, and they were categorized as bivalent states (Bernstein et al. 2006). 

Similarly, multiple states related to CTCF occupancy (shades of purple), enhancer-like 

signatures (shades of yellow and orange), transcriptional elongation (shades of green), 
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polycomb repression (shades of blue), and H3K9me3-associated heterochromatin (shades of 

gray) were learned in the IDEAS modeling. Several states did not fall exclusively into one of 

these common categories. While H3K9me3 is frequently associated with heterochromatin, state 

17 had the H3K9me3 modification together with the transcription elongation mark H3K36me3. 

This state is unlikely to be in repressed heterochromatin, but it is reminiscent of a previously 

reported association of H3K9 methylation with transcriptional elongation (Vakoc et al. 2005), a 

combination that was also described for KRAB-zinc finger genes (Hahn et al. 2011) and found 

more generally by Segway (Hoffman et al. 2012). Other states identified by IDEAS have not 

been previously considered in detail. One state had the expected co-occurrence of CTCF and 

nuclease accessibility (state 13), but an even more common state had CTCF without nuclease 

accessibility (state 7). While states predominated by H3K27me3 alone (state 3) or H3K9me3 

alone (state 2) were common, state 16 had both repressive marks. Thus, the IDEAS 

segmentation learned and assigned a diverse set of states that not only included previously 

described epigenetic signatures but also identified some new states. 

 

The fraction of the genome in each state reveals the proportion of a genome associated with a 

particular activity. The most common state in all the epigenomes is quiescence, i.e. state 0 with 

low signals for all the features (Figure 3B). The mean percentage of the genome in this state 

was 86%, with values ranging from 85% to 92% in individual cell types. Interestingly, 60% of the 

genome was in this state in all cell types examined, indicating that in hematopoietic cells, about 

40% of the mouse genome is incorporated within chromatin with the dynamic histone 

modifications identified in this study. The most common non-quiescent states were transcribed, 

heterochromatic, and Polycomb repressed (Figure 3B). The remaining portion of the genome 

was populated with a large number of active states, comprising ~4% of the genome. Thus, only 

a small proportion of the genome in each cell type was found in chromatin associated with the 
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dynamic histone modifications assayed here. Importantly, this small fraction of the genome is 

probably responsible for much of the regulated gene expression characteristic of each cell type. 

 

 

Figure 3. Segmentation of the epigenomes of hematopoietic cells after integrative modeling with IDEAS. 

A. Heatmap of the emission frequencies of each of the 27 states, with state number and function-

associated labels. Each letter in the label indicates a function associated with the combination of features 

in each state, defined in the box. The indicator for transcribed is H3K36me3, active is H3K27ac, 

enhancer-like is H3K4me1>H3K4me3, promoter-like is H3K4me3>H3K4me1, heterochromatin is 

H3K9me3, and polycomb is H3K27me3. B. Bar graphs of the average coverage of genomes by each 

state. The top graph emphasizes the high abundance of state Q, and the second graph shows the 

abundances of the 26 non-quiescent states. The key for annotated colors is the same order as the states 

in the bar graph. C. Segmentation pattern at an exemplar locus, Gfi1b, covering 70kb from 
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chr2:28,565,001-28,635,000 in GRCm38/mm10. Signal tracks for EP300 (ENCSR982LJQ, ENCODE 

consortium) and CTCF from mouse fetal liver were included for validation and confirmation, along with the 

locations of enhancers shown to be active (Enh_vald; Moignard et al. 2013). The lower set of tracks 

shows nuclease accessibility, with more intense signal representing greater accessibility, colored by the 

epigenetic state assignments. 

 

Visualizing the regulatory landscape across hematopoietic cell types as defined by the 

IDEAS segmentation 

The IDEAS segmentation gives an informative view of the chromatin activity landscape along 

chromosomes and across cell types. The usual display assigns the distinctive color for each 

state to a DNA segment (Figure 3C). For example, genes transcribed in all cell types, such as 

Gtf3c5 and Tsc1, were painted red at the active promoter and green for regions of 

transcriptional elongation. Within and between the transcription units are short purple segments 

Indicating CTCF binding, aligning with the CTCF occupancy data available for tissues like fetal 

liver and providing a prediction for CTCF binding in other cell types. The gene Gfi1b, encoding a 

transcription factor required in specific hematopoietic lineages, shows different state 

assignments across the cell types, with active promoters (red), intronic enhancers (orange), and 

transcribed regions (green) in CMP, erythroid, and megakaryocytic cells but fewer active states 

in other cell types. Downstream (left) of Gfi1b was a large region with many DNA segments 

assigned to enhancer-associated states; these were model-generated candidates for regulating 

expression of Gfi1b. The potential role of the intronic and downstream candidate enhancers was 

supported by the binding by the coactivator EP300 observed both in mouse fetal liver and MEL 

cells (Yue et al. 2014; The_ENCODE_Project_Consortium et al. 2019), information that was not 

included in training the model. Furthermore, previous studies of cross-regulation between 

GATA2 and GFI1B revealed three enhancers downstream of the Gfi1b gene by reporter gene 

assays in transgenic mouse and transfected cells (Moignard et al. 2013). These enhancers 
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overlap with the model-predicted enhancers and provide strong experimental validation of the 

predictions from the IDEAS segmentation.  

 

Given the frequent association between nuclease sensitivity and cis-regulatory elements, we 

combined the IDEAS segmentation results with nuclease accessibility (ATAC-seq or DNase-

seq) signal intensity to generate a view of the epigenetic landscape with an emphasis on DNA 

segments likely to be involved in regulation. The intensity of the state-associated color was 

adjusted by the signal of the nuclease-sensitivity data, thereby showing more highly accessible 

regions as more intense colors  (lower portion of Figure 3C). Thus, in a single track one can 

view both the level of accessibility and the state assignment determined by the integration of 

epigenetic features. This view emphasizes the candidate regulatory elements. 

 

cCREs across mouse hematopoiesis 

While genomic regions potentially involved in gene regulation can be discerned from the 

segmentation views of regulatory landscapes, it is important to assign discrete genomic 

intervals as candidate cis-regulatory elements (cCREs) to clarify assessments and validations of 

regulatory elements and to empower systematic modeling of regulatory systems. Therefore, we 

combined our nuclease sensitivity data with IDEAS segmentation to infer a set of 205,019 

cCREs in the 20 cell types.   

 

A cCRE was defined as a DNA segment assigned as a validated peak by ATAC-seq or DNase-

seq that was not in a quiescent epigenetic state in all cell types. We considered ATAC-seq or 

DNase-seq data to be validated when peaks were called in each replicate. Some peaks were 

assigned to the quiescent state in all cell types, and these were removed from the set of cCREs. 

No cCREs could be called in mature MK or CLP cells because no ATAC-seq or DNase-seq data 

were available for these cell types; however, we inferred the epigenetic states in these two cell 
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types for the DNA segments predicted to be cCREs in other cell types. This information about 

the locations and epigenetic states of cCREs in hematopoietic cell types provides a valuable 

resource for detailed studies of regulation both at individual loci and globally across the 

genome. 

 

Because a wide range of hematopoietic cells were interrogated for epigenetic features, we 

expected that the set of cCREs from the VISION project would expand and enhance other 

collections of cCREs. Thus, we compared the VISION cCRE set with the Blood Cell Enhancer 

Catalog, which contains 48,396 candidate enhancers based on iChIP data in sixteen mouse 

hematopoietic cell types (Lara-Astiaso et al. 2014), and a set of 56,467 cCREs from mouse fetal 

liver released by the ENCODE project (The_ENCODE_Project_Consortium et al. 2019). 

Furthermore, we examined the set of 431,202 cCREs across all assayed mouse tissues and cell 

types in the SCREEN cCRE catalog from ENCODE (The_ENCODE_Project_Consortium et al. 

2019). The overlapping DNA intervals in the four datasets were merged to generate a common 

set of DNA intervals for comparison; this merger reduced the number of cCREs in each set. The 

overlapping DNA intervals among several combinations of datasets revealed substantial 

consistency among these sets of inferred cCREs (Figure 4A). A large portion of the VISION 

cCREs (70,445 or 41.5%) were also in the iChIP Blood Enhancer Catalog and/or the SCREEN 

fetal liver cCREs. Conversely, a majority of the cCREs in the iChIP catalog (78.7%) were also in 

VISION cCREs, as expected given the large contribution of iChIP data to the VISION 

compilation. An even larger proportion (84%) of the SCREEN fetal liver catalog was also in 

VISION cCREs. The cCREs that are common to each collection, despite differences in data 

input and data processing, are strongly supported as candidate regulatory elements. 

 

The VISION cCRE set is substantially larger than either the iChIP Blood Enhancer Catalog or 

the SCREEN fetal liver cCREs, and we hypothesized that the larger size reflected the inclusion 
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of greater numbers of cell types and features in the VISION catalog. This hypothesis predicts 

that VISION cCREs that were not in the other blood cell cCRE sets may be found in larger 

collections of cCREs, and we tested this prediction by comparing VISION cCREs to the entire 

set of ENCODE SCREEN cCREs. Indeed, we found another 58,504 (34.5%) VISION cCREs 

matching this catalog across mouse tissues, supporting the interpretation that the VISION cCRE 

set is more comprehensive than other current blood cell cCRE collections. Overall, the 

comparisons with other collections supported the specificity and accuracy of the VISION cCRE 

set. 

 

To further assess the quality of the VISION cCRE set, we evaluated its ability to capture known 

cis-regulatory elements (CREs) and independently determined DNA elements associated with 

gene regulation. Using a collection of 212 experimentally determined erythroid CREs curated 

from the literature (Dogan et al. 2015) as known erythroid CREs, we found that while the iChIP 

Blood Enhancer catalog captured only a small portion, the VISION and SCREEN fetal liver 

cCREs overlapped with almost all the erythroid cREs (Figure 4B). The latter two collections 

were built from datasets that included highly erythroid tissues, such as fetal liver, which may 

explain their more complete coverage than the Blood Enhancer Catalog, which was built from 

datasets from fewer erythroid cell types. Increasing the number of cCREs to over 400,000 in the 

SCREEN mouse cCREs did not substantially increase the number of known CREs that overlap. 

Thus, the VISION cCREs efficiently captured known erythroid CREs.  
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Figure 4. Comparative analysis of VISION cCREs.  A. Overlaps of the VISION cCREs with three other 

cCRE catalogs. The overlapping cCREs in all four datasets were merged. The numbers of merged 

cCREs in each set were labeled on each row, and the numbers in each level of overlap were shown in 

columns, visualized using an UpSet plot (Lex et al. 2014). The sets compared with the VISION cCREs 

were the Blood Enhancer Catalog derived from iChIP data (iChIP; Lara-Astiaso et al. 2014), the 

SCREEN cCREs specific to mouse fetal liver at E14.5 (SCR_FL), and those for all tissues and cell types 

in mouse (SCR_all). B. The VISION cCREs capture known regulatory elements and orthogonal predicted 

cCREs. The number of known CREs that are also present in each cCRE collection was plotted against 

the number of regulatory elements (known or inferred) in each dataset. The EP300 peaks were deduced 
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from EP300 ChIP-seq data from ENCODE, reprocessed by VISION pipelines, from FL E14.5, MEL, and 

CH12 cells. Replicated peaks were combined into one dataset and merged, to get over 60,000 peaks. 

The number of known EP300 peaks that were also present in each cCRE collection was plotted against 

the number of cCREs in each dataset. C. A cCRE-centric view of epigenomic data revealing support for 

the cCRE calls and state assignments. The multi-region view feature of the UCSC Genome Browser 

(Haeussler et al. 2019) was used to display only the DNA intervals in the VISION cCRE dataset; 

alternating cCREs have white or light blue backgrounds to distinguish them. Only the portions of gene 

models that overlap cCRE intervals are shown. The IDEAS state assignment in selected cell types are 

shown followed by independent data on binding of the coactivator EP300, GATA1, and TAL1. CTCF 

binding tracks (used in the IDEAS modeling) are also shown to illustrate binding in these CTCF-

associated states. The region covered in this view was 250kb from chr7:103,700,001-103,950,000 in 

mm10, encompassing the Hbb gene complex and flanks. This region was reduced to 17.6kb when 

showing only the cCREs. 

 

The co-activator EP300 catalyzes the acetylation of histone H3K27, and it is associated with 

many active enhancers. We used ChIP-seq data on EP300 in three blood-related cell types 

from mouse as a comparison set of blood cell candidate enhancers that were determined 

independently of the data analyzed in VISION. The ENCODE consortium has released 

replicated datasets of EP300 ChIP-seq data determined in two cell lines, MEL cells representing 

maturing proerythroblasts and CH12 cells representing B cells (Yue et al. 2014), and one tissue, 

mouse fetal liver from day E14.5 (The_ENCODE_Project_Consortium et al. 2019). After re-

processing the ChIP-seq data using the VISION project pipelines, replicated peaks were 

merged across the cell types to generate a set of over 60,000 EP300 peaks in blood related 

cells. The VISION cCRE set efficiently captured the EP300 peaks, hitting almost two-thirds of 

these proxies for regulatory elements, a much larger fraction than captured by the Blood 

Enhancer catalog or ENCODE fetal liver cCREs (Figure 4B). Expanding the number of cCREs 

to over 400,000 gave only a small increase in the number of EP300 peaks captured. The EP300 
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peaks not captured by the VISION cCREs tended to have lower signal strength and were less 

associated with ontology terms such as those for mouse phenotype (Supplementary Material), 

suggesting that the more likely functional EP300 peaks were captured by VISION cCREs. 

 

These analyses show that the VISION cCREs included almost all known erythroid CREs and 

they captured a large fraction of potential enhancers identified in relevant cell types by a 

different feature (EP300). Both these observations supported the quality of the VISION cCRE 

set. More generally, the cCREs were expected to overlap with transcriptional regulatory 

proteins, such as transcription factors, co-activators, and CTCF. This expected overlap was 

apparent when the binding profiles for such regulatory proteins were observed in a cCRE-

centric view of the genome. By restricting the genome browser to show only the cCREs, all the 

dispersed candidate regulatory elements can be viewed together, e.g. focusing on the Hbb gene 

complex (Figure 4C). The cCREs in enhancer-like states tend to be co-bound by GATA1, TAL1, 

and EP300, while those in the CTCF-associated states were indeed bound by CTCF. Also, the 

epigenetic states of cCREs change across cell types, consistent with changes in expression of 

target genes. 

 

Global comparisons of regulatory landscapes and transcriptomes 

The collection of cCREs and transcriptomes in VISION provide an opportunity to examine the 

relationships between cell types, including both purified populations of primary cells and cell 

lines. The cCREs are a prominent feature of the regulatory landscape, and therefore we used 

the correlations between the nuclease accessibility signals in cCREs across cell types to group 

the cell types by hierarchical clustering (Figure 5A). All erythroid cell types, including the G1E 

and G1E-ER4 cell lines, and the MEPs clustered to the exclusion of other cell types. The 

remaining cell types form two groups. One consists of hematopoietic stem and multilineage 

progenitor cells (LSK, CMP and GMP) along with early progenitor (CFUMK) and immature (iMK) 
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megakaryocytic cells. The other contains both innate (NEU, MON) and acquired (B, NK, T-CD4, 

T-CD8) immune cells. Comparisons using a dimensional reduction approach (principal 

component analysis or PCA) confirmed these groupings and revealed additional insights 

(Figure 5B). The first principal component (PC1) captured a substantial fraction (82%) of the 

variation, placing the cell types along an axis with many multilineage progenitor cells on one end 

and many mature cells on the other. As explored in more detail below, this axis relates to the 

numbers of active cCREs, with more cCREs in the multilineage progenitor and megakaryocytic 

cells and fewer in other maturing lineages. The second component separated erythroid cells (to 

the left) from other cells, and the third component tended to separate multilineage progenitor 

cells (toward the top) from more mature cells (toward the bottom). Thus, both the PCA and 

hierarchical clustering of nuclease sensitivity data in cCREs largely supported the groupings of 

megakaryocytic cells with progenitor cells along with separate clusters of erythroid and immune 

cells.  

 

The gene expression landscape was then compared across cell types, using estimates of gene 

transcript levels from RNA-seq data in a subset of 12 cell types interrogated by the same 

method within our VISION laboratories. RNA-seq data on acquired immunity cells were not 

included because the assay was done by a substantially different procedure (Lara-Astiaso et al. 

2014), and this difference in RNA-seq methodology dominated the combined comparison. The 

hierarchical clustering results (Figure 5C) and PCA (Figure 5D) revealed three clusters that 

were consistent with the analysis of the regulatory landscape, grouping megakaryocytic cells 

with multilineage progenitors while keeping primary erythroid cells (CFUE and ERY) and innate 

immune cells (NEU and MON) in distinct groups. In contrast, MEP cells grouped with progenitor 

cells in the transcriptome profiles whereas they grouped with erythroid cells by nuclease 

sensitivity data. MEP cells have a pronounced erythroid bias in differentiation (Psaila et al. 

2016), and this difference in the grouping of MEPs suggests that the regulatory landscape of 
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MEP has shifted toward the erythroid lineage prior to reflecting that bias in the transcriptome 

data. G1E and G1E-ER4 cell lines, which are models for GATA1-dependent erythroid 

differentiation, also were placed differently based on cCRE and transcriptome data, forming a 

separate cluster in the transcriptome data. While that result reveals a difference in the overall 

RNA profiles between G1E and G1E-ER4 cells versus primary cells, their grouping with primary 

erythroid cells by cCRE landscape supports the use of these cell lines in specific studies of 

erythroid differentiation. 
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Figure 5.  Global comparisons of nuclease accessibility profiles and transcriptomes across mouse 

hematopoietic cell types.  A. Heatmap of the hierarchical clustering of  nuclease-sensitive elements 

(ATAC-seq and DNase-seq, using S3norm for normalization), with Spearman’s rank correlation r as the 

similarity measure, and 1-r as the distance measure for hierarchical clustering across 18 cell types. 

Results include replicates for cell types with replicated data (indicated by bars next to the cell type name).  

B. PCA to show groups of cell types, using ATAC-seq and DNase-seq profiles. C. Heatmap of the 

hierarchical clustering of RNA-seq (TPM values for all genes, quantile normalized, showing replicates), 

with Spearman’s r as the similarity measure. D. PCA to show groups of cell types, using RNA-seq. 

 

Numbers of cCREs and their states vary across cell types in an informative manner. 

 

The VISION catalog of cCREs, annotated by their presence and epigenetic state in each cell 

type, can be used to track during differentiation when regulatory elements become active or lose 

activity and to follow the transitions in epigenetic states. This information can provide insights 

into mechanisms of regulation, e.g. which CREs are likely to be inducing or repressing a target 

gene at a specific stage of differentiation. The full scope of state transitions in cCREs across cell 

types is quite complex, and ongoing work aims to provide resources and tools to enable 

interpretations of the transitions. In this section, we focus on major transitions contributing to 

changes in the numbers of cCREs.  

 

One major change in global regulatory landscapes was a striking reduction in the numbers of 

active cCREs (nuclease-accessible regions in a non-quiescent epigenetic state) after 

commitment to a single cell lineage. The number of active cCREs was consistently higher in 

multilineage progenitor cell populations and cells on the megakaryocytic lineage (CFUMK and 

iMK) than in the other lineage-committed cell types (Figure 6A). This trend was observed after 

normalizing for differences in sequencing depth, and was robust to changes in thresholds for 
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peak calling (Supplementary Figures 2 and 3). Furthermore, the nuclease sensitive peaks 

showed enrichment for histone modifications that support the accuracy of the peak calls 

(Supplementary Figure 4). The values for PC1 in the nuclease accessibility analysis (Figure 

4B) were strongly associated with the decrease in the number of nuclease sensitivity peaks 

during differentiation (Figure 6B, Pearson’s correlation r=0.92), indicating that the numbers of 

nuclease sensitive elements were a strong contributor to this principal component that explained 

a large proportion (82%) of the variation. 

 

The decrease in numbers of cCREs during differentiation and maturation could be associated 

with a decrease in numbers of genes expressed. We tested this and found that the numbers of 

expressed protein-coding genes were high (8800 to 10,000) in the progenitor (LSK, CMP, GMP, 

MEP) and megakaryocytic (CFUMK and iMK) cells, medium (~ 8000) in MON and NEU, and low 

(~6500) in erythroid cells (CFUE and ERY) (Figure 6C). A larger number of genes (8000 to 

8500) were expressed in the ES-derived cell lines, G1E and G1E-ER4, than in the primary 

erythroid cells. A similar decline was observed over a ten-fold range of thresholds for declaring 

a gene as expressed (TPM exceeding 1, 5 or 10). The parallel decreases in numbers of active 

cCREs and expressed coding genes led to a strong positive association between these two 

features (Figure 6C; Pearson correlation r= 0.90 or 0.78 when values for G1E and G1E-ER4 

cells were excluded and included, respectively, in a linear fit). The numbers of noncoding genes 

expressed were also positively associated with the numbers of nuclease accessible peaks 

(Figure 6D, Pearson’s correlation r= 0.64 or 0.55 when values for G1E and G1E-ER4 cells were 

excluded and included, respectively, in a linear fit). These reductions in expressed genes and 

active cCREs indicated a progressive decrease in the breadth of transcription during 

differentiation, and furthermore the loss of activity of cCREs may contribute to the decrease in 

numbers of genes expressed. Similar results were reported for transitions during 

megakaryopoiesis and erythropoiesis in Heuston et al (2018) based on peak calls for histone 
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modification and nuclease accessibility. Our results based on integrative modeling confirm these 

conclusions and show that they apply more broadly across hematopoiesis.  

 

Figure 6. Concordant decreases during hematopoietic differentiation in nuclease accessibility and gene 

expression. A. Numbers of active cCREs and nuclease accessible regions (after S3norm normalization) 

in each cell type. B.-D. Positive association between numbers of nuclease accessible peaks in each cell 
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type and (B) negative of PC1 values in PCA of nuclease accessibility, (C ) numbers of expressed protein-

coding genes (TPM>=1), and (D) numbers of expressed non-protein-coding genes (TPM>=1) . Values for 

determinations in replicates are shown in panels B-D. The color code for cell types is displayed in panel 

B. R1 and R2 refer to replicates. 

 

Next, we investigated transitions in epigenetic states throughout hematopoietic differentiation 

that help explain some of the reduction in active cCREs. Within the dominant pattern of 

decreasing numbers of active cCREs during commitment and maturation of lineages (except 

MK), the reduction was particularly pronounced for cCREs in state 9 (EN) and state 13 (CN) 

(Figure 7A) while the numbers of cCREs in other states did not show consistent trends (Figure 

7B). These state-specific reductions suggested that many cCREs in progenitor and MK cells 

were in a poised enhancer mode (state 9 EN) or in a CTCF-bound nuclease accessible state 

(state 13 CN). We then determined the states into which these cCREs tended to transition by 

examining all state transitions in cCREs between all pairs of cells. In the case of CMP cells 

differentiating to ERY, we found that cCREs in the poised enhancer state 9 in CMP did not stay 

in state 9, but rather they most frequently transitioned to states 12 (active enhancer), 3 

(polycomb), and 0 (quiescent) in ERY (Supplementary Figure 8A). These classes of state 

transitions were strongly supported by examination of the underlying signals for the nuclease 

sensitivity and histone modifications (Figure 7C). This systematic analysis of transitions in 

epigenetic states across cell types helps uncover the differentiation history of cCREs and 

provides mechanistic insights into regulation. For example, using SeqUnwinder (Kakumanu et 

al. 2017) to discover discriminative motifs, we found that the CMP cCREs that transition from 

poised to active enhancer in the erythroid lineage were enriched for the GATA transcription 

factor binding site motif, whereas those that transition to a polycomb state were enriched in 

motifs for binding ETS transcription factors such as PU.1. Furthermore, these results illustrate 
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specific mechanisms for the recent report of substantial changes in epigenomic landscape 

during differentiation of CMP to ERY (Heuston et al. 2018). 

 

Another major state of cCREs in progenitor and megakaryocytic cells was CTCF-bound and 

nuclease accessible (state 13). Surprisingly, much of the decrease in numbers of cCREs in this 

state occurred through a loss of accessibility while retaining occupancy by CTCF (state 7, 

Supplementary Figure 8). The frequent observation of transitions from a nuclease-accessible, 

CTCF-bound state to a non-accessible state still bound by CTCF raised the question of whether 

the nuclease accessibility data were sufficiently sensitive, i.e. could the apparent lack of 

accessibility reflect false negatives in the input data? We leveraged the diversity of data in 

VISION to address this concern by examining two independent types of nuclease accessibility 

data. Specifically, we examined DNase-seq data on ERY from fetal liver (fl) and ATAC-seq data 

on ERY from adult bone marrow (ad) in the context of the chromatin state transitions. As a 

positive control, we first examined the set of 8081 cCREs that stayed in state 13 in both LSK 

and ERY. As expected, they show consistently strong signals for both nuclease accessibility 

and CTCF ChIP-seq both in multilineage progenitor cells (LSK, CMP, and MEP) as well as 

differentiating CFUE and ERY from both developmental stages (Figure 7D). In contrast, the set 

of 6354 cCREs that transition from state 13 in LSK to state 7 in ERY (adult bone marrow) 

showed a consistent loss of nuclease accessibility both for ATAC-seq signal in adult bone 

marrow ERY and for DNase-seq signal in fetal liver ERY while retaining a strong CTCF signal 

(Figure 7D). Furthermore, the loss of nuclease accessibility was observed in the CFUE 

precursor to ERY. Because the loss of nuclease accessibility was robust to different methods of 

determination and was observed in multiple related cells at different developmental stages, we 

concluded that the state 13 to state 7 transition was not an artifact of poor sensitivity of the 

accessibility assays. The loss of nuclease accessibility at this subset of CTCF-bound sites 
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occurred between MEP and CFUE stages, suggesting that it could be connected to the process 

of erythroid commitment. 

 

In summary, the number of active cCREs declines dramatically as cells differentiate from stem 

and progenitor cells to committed, maturing blood cells. This decrease in cCREs is strongly 

associated with a reduction in the numbers of expressed genes in committed cells. Our analysis 

of epigenetic states in cCREs across this process revealed major declines in two states. First, 

the poised enhancer state is prevalent in cCREs in stem and progenitor cells, and it has two 

major fates. One is a transition to an active enhancer state, and in the erythroid lineage this 

transition is associated with GATA transcription factor binding site motifs, as expected for 

activation of erythroid genes. The other fate is to lose nuclease sensitivity and switch to a 

repressed state. The occurrence of those transitions is not a novel observation, but our 

extensive annotation of the cCREs allows investigators to identify which cCREs around genes 

of interest are making those transitions. Second, another state prevalent in stem and progenitor 

cells is a CTCF-bound and nuclease accessible state, and the number of cCREs in that state 

declines during differentiation. Surprisingly, we found that a transition to a state with CTCF still 

bound but no longer nuclease accessible was a strong contributor to the decline in numbers of 

active cCREs. Further studies are needed to better understand the roles of these different 

classes of CTCF-bound sites. Many other state transitions were observed, and we have 

developed a tool to help organize and visualize these results (Supplementary Figures 9 and 

10). 
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Figure 7.  Transitions in epigenetic states at cCREs across hematopoietic differentiation. A and B. The 

numbers of cCREs in each cell type are colored by their IDEAS epigenetic state, emphasizing decreases 

in numbers of cCREs in states 9 and 13 (A), while numbers in other states less variable (B).  C. 

Aggregated and individual signal profiles for cCREs in the poised enhancer state 9 in CMPs as they 

transition from LSK through CMP and MEP to CFUE and ERY. Profiles for up to four relevant epigenetic 

features are presented. Data for H3K27me3 are not available for CMP, MEP, or CFUE. The first graph in 

each panel shows the aggregated signal for all cCREs in a class, and graphs beneath it are heatmaps 

representing signal intensity in individual cCREs. In the aggregated signal, red lines show signals for 

cCREs that transition from poised state 9 to active enhancer-like state 12, and blue lines show signals for 

cCREs that transition from poised state 9 to polycomb repressed state 3. D. Aggregated and individual 

signal profiles for CTCF-bound cCREs that either retain or lose nuclease accessibility during 

differentiation from LSK to ERY. In the aggregated signal, red lines show signals for cCREs that stay in 

the CTCF-bound, nuclease sensitive state 13, and blue lines show signals for CTCF-bound cCREs that 

lose nuclease sensitivity as they transition from state 13 to state 7. Signals were normalized by S3norm. 

Abbreviations are AT=ATAC, 4m1=H3K4me1, 27ac=H3K27ac, 27m3=H3K27me3, CT=CTCF. 

 

 

Estimating regulatory output and assigning target genes to cCREs 

Having established that the VISION collection of mouse hematopoietic cCREs overlaps well 

with other indicators of regulatory elements, we investigated the effectiveness of the cCREs in 

explaining levels of gene expression. We developed a modeling approach to evaluate how well 

the cCREs could account for levels of expression in the twelve cell types for which the RNA-seq 

measurements were determined in the same manner. This modeling approach had the 

additional benefit of making predictions of target genes for each cCRE. 

 

We reasoned that the epigenetic state assignments for each cCRE DNA interval in each cell 

type could serve as a versatile proxy for cCRE regulatory activity, since the states were based 
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on a systematic integration of multiple epigenetic signals. As explained in detail in the Materials 

and Methods (Mapping cCREs to Genes), we estimated cCRE effects on expression by 

treating the states as categorical variables and training a multivariate linear model of gene 

expression on the states. Each cCRE could be composed of multiple epigenetic states (Figure 

8A), and we used the proportion of pooled cCREs covered by a state as the predictor variable 

for that state (Figure 8B). All cCREs within 1Mb of the TSS of a gene were initially included in 

the modeling, while allowing for separate effects of proximal (within 1 kb on either side of the 

transcription start site or TSS) and distal (within 1 Mb but beyond 1 kb of the TSS) cCREs for 

each gene. Not all cCREs within the 2 Mb region surrounding a gene’s TSS were expected to 

influence expression. Thus, CREs predicted to have limited contribution to explaining 

expression were removed via a sub-selection strategy, maximizing leave-one-out prediction 

accuracy, during iterations of model fitting (Figure 8B, Supplementary Figure 11B).  

 

The regression coefficients, beta, determined for the epigenetic states showed some expected 

trends (a full set of values is presented in Supplementary Figure 11C). For example, the 

coefficients for the set of differentially expressed genes were high for most promoter-like and 

enhancer-like states and low for most polycomb-repressed and heterochromatin states (Figure 

8B). The coefficients  for some states differed between proximal and distal cCREs. The 

weighted sum of the state-specific regression coefficients can be considered an initial 

approximation of an epigenetic regulatory potential (eRP) score (Figure 8B, Supplementary 

Figure 11D), which measures the impact of each cCRE on expression relative to a quiescent 

state (whose impact is assumed to be 0). In this formulation, each cCRE has an eRP score for 

each potential target gene (distal or proximal, depending on distance from the potential target) 

in each cell type.  
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We evaluated the accuracy of predicting gene expression from the eRP scores using a leave-

one-out strategy. Specifically, we trained a linear model on data from eleven of the twelve cell 

types, used that model to predict expression levels in the twelfth cell type, and then computed 

the adjusted r2 for the accuracy of the predicted expression levels compared to the actual 

expression levels in the left-out cell type. This procedure was repeated leaving out each of the 

cell types in turn. Models were trained using only proximal cCREs, only distal cCREs, or a 

combination of proximal and distal cCREs. For expression of all genes, the prediction accuracy 

was around 50% for proximal cCREs only or distal cCREs only, and it improved to about 60% 

when proximal and distal cCREs were combined (Figure 8C, graph All genes).  

 

Some portion of the explanatory power was expected to derive from the strong differences in 

epigenetic signals for expressed versus silent genes. In an effort to remove this effect from the 

predictions of accuracy, we repeated the linear regression modeling and evaluations on four 

categories of genes separately, specifically those with (1) consistently low, (2) differentially low, 

(3) differentially high, and (4) consistently high expression across cell types. The values of beta 

varied across the four categories and for distal versus proximal cCREs (Supplementary Figure 

11C). Using the eRP scores for the appropriate gene category, the accuracy of predicting 

expression levels in the leave-one-out strategy showed a much smaller impact of the proximal 

cCREs (Figure 8C, graphs 1-4), suggesting that a major effect of the epigenetic states around 

the TSSs was to establish expression or silencing. In contrast, the distal cCREs did contribute to 

expression variation within the gene categories, especially for differentially expressed genes 

(Figure 8C, graphs 2 and 3). Overall, these evaluations indicate that proximal cCREs 

contributed strongly to the broad expression category (expressed or not, differential or 

constitutive), and distal cCREs contributed to the expression level of each gene within a 

category. 
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Figure 8.  Initial estimates of regulatory output and target gene prediction using regression models 

of IDEASs states in cCREs versus gene expression. A. Illustration of cCREs around two potential 

target genes, showing expression profiles of the genes across cell types (shades of blue, left) and 

cCREs with one or more epigenetic states assigned in each cell type. Note that cCREs that are 

proximal to one gene can be distal to another gene. B. Multivariate linear regression of proportion of 

pooled cCREs in each state against expression levels of potential target genes, keeping proximal 

and distal cCREs separate and learning the regression coefficients iteratively in a sub-selection 

strategy. Values of the regression coefficients beta for each epigenetic state for proximal and distal 

cCREs for differentially expressed genes. The values of the regression coefficients for each 

epigenetic state are presented as a blue to red heatmap, with the coefficients expressed relative to 

that for state 0 (quiescent). C. Ability of eRP scores of cCREs to explain levels of expression on 

chr1-chr19 and chrX in the twelve cell types for all genes and (1-4) in the four categories of genes. 

showing the effects. A leave-one-out strategy was employed to calculate the accuracy predicting 

expression. The distribution of adjusted r2 values are shown as box-plots for proximal, distal, and 

combined cCREs. D. Illustration of eRP scores for cCREs in and around the Alas2 gene, including a 

comparison with previously measured enhancer and promoter activities. Nested TADs called by 

OnTAD (An et al. 2019) are shown in the bottom tracks. 

 

The positive predictive power of these initial estimates of eRP scores suggest that they have 

utility in assigning candidates for target genes for cCREs. The estimated eRP scores can serve 

as one indicator of the potential contribution of each cCRE to the regulation of a gene in its 

broad vicinity. Thus, a set of likely cCRE-target gene pairs can be obtained at any desired eRP 

threshold. We provide a large table of potential cCRE-target gene pairs at the VISION project 

website, along with a versatile filtering tool for finding cCREs potentially regulating a specified 

gene in a particular cell type. The filtering tool also allows further restriction of cCREs to those 

within the same topological associated domain or compartment as the candidate target gene. 
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The example from the Alas2 locus (Figure 8D) illustrates how these eRP scores are consistent 

with results from previous experimental assays for CREs within the gene (Wang et al. 2006), 

and they raise the possibility of additional, distal cCREs regulating the gene. These data-driven, 

integrated resources should allow users to make informed decisions about important but 

challenging issues such as finding the set of cCREs likely to regulate a particular gene. 

 

Discussion 

One goal of the VISION project is to gather information from our laboratories, other laboratories, 

and consortia to conduct systematic integrative analysis to produce resources of high utility to 

investigators of genome biology, blood cell differentiation, and other processes. In this study, we 

have compiled and generated epigenomic and transcriptomic data on cell types across 

hematopoietic differentiation in mouse. Most of the data were from purified populations of 

primary blood cells, and we further included data from some cell lines that have been widely 

used in mechanistic studies. After uniform data processing and normalization, the data were 

systematically analyzed by the IDEAS method to assign genomic intervals to epigenetic states 

in the 20 cell types examined. Each state was defined by a quantitative spectrum of nuclease 

sensitivity, histone modifications, and CTCF occupancy. Most of these combinations of 

epigenetic features have been associated with specific regulatory elements or events, such as 

active promoters, poised enhancers, transcribed regions, or quiescent zones. As such, the 

assignments to epigenetic states provide a guide to potential functions of each genomic interval 

in each cell type. In effect, the IDEAS segmentation pipeline described here has reduced 150 

dimensions (or tracks) of epigenomic data to 20 dimensions, i.e. the number of cell types. Thus, 

investigators now have a simplified way to view the large amount of data, e.g. in a genome 

browser, and they can operate computationally on the state assignments. We further simplified 

the epigenomic data by constructing an initial registry of 205,000 cCREs; these are discrete 
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genomic intervals with features predictive of a potential regulatory role in at least one 

hematopoietic cell type. Our evaluation of these cCREs against other groups of candidate 

regulatory regions indicates that this initial set is valuable for identifying likely regulatory regions, 

especially in multilineage progenitors and the erythroid and myeloid cell lineages.  

 

These resources should be valuable to many investigators, and we provide multiple ways to 

access and interact with the data via our VISION website (usevision.org). The raw and 

normalized data tracks can be downloaded for custom analysis. Examination of particular genes 

is enabled by the custom genome browser, which is built on the familiar framework of the UCSC 

Genome Browser (Haeussler et al. 2019). Tables of annotated cCREs and their associations 

with specific genes by regression are available for download, and cCREs for specific genes and 

genomic intervals can be obtained by queries at the website. Links are provided to additional 

resources such as CODEX for more extensive transcription factor occupancy and histone 

modification data (Sanchez-Castillo et al. 2015), the 3D Genome Browser for visualizing 

matrices of chromatin interaction frequencies (Wang et al. 2018), and the ENCODE registry of 

cCREs (The_ENCODE_Project_Consortium et al. 2019).  

 

We chose IDEAS as the systematic integration method because its joint segmentation along 

chromosomes and across cell types retains position-specific information, thereby providing 

more precision to the state assignments (Zhang et al. 2016; Zhang and Hardison 2017). 

Furthermore, the IDEAS method does not require determination of all features in all cell types, 

and thus cell types with missing data were included. Even an extreme case of a cell type for 

which the only epigenomic dataset was ATAC-seq, CFUMK, was assigned a meaningful 

segmentation pattern. The local clustering of cell types by their epigenomic profiles are key to 

the approach to handling missing data. When data for a feature are missing from one cell type, 

IDEAS learns the signal distribution for that feature in locally related cell types, and it uses those 
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signal distributions when assigning likely states to genomic intervals in cell types with missing 

data. A recent systematic study shows that IDEAS is able to produce reliable segmentation 

despite missing data and without resorting to imputation (Zhang and Mahony 2019). While full 

determination of all biochemical features in each cell type is preferred, attaining complete 

coverage across a wide range of cell types, especially for rare cell types, is difficult, and it may 

be impossible in some cases. Indeed, many integrative analysis projects are contending with 

the challenges of missing data (Ernst and Kellis 2015; Schreiber et al. 2019; 

The_ENCODE_Project_Consortium et al. 2019), and we expect that missing data will continue 

to be a challenge in the future. We suggest that the IDEAS method provides a principled 

approach with good utility for integrative analyses in the face of missing data. Future work will 

test experimentally the IDEAS predictions about maps of epigenetic features, such as CTCF 

occupancy or specific histone modifications, in cell types for which those data were missing in 

this study. 

 

Our initial collection of cCREs in mouse blood cells appears to be robust, in that it captures 

virtually all known erythroid regulatory elements and it includes a majority of potential enhancers 

predicted by EP300 occupancy in fetal liver and cell line models for erythroid and B cells. The 

scope of the IDEAS analysis and cCRE predictions was greatly expanded by including the iChIP 

data (Lara-Astiaso et al. 2014) on histone modification profiles in the rare multilineage 

progenitor cells. Thus, despite the larger number of cell types on the erythroid and 

megakaryocytic lineages, the cCRE collection is not limited to those lineages. However, the 

initial cCRE registry is unlikely to be complete. Parallel efforts, such as the Immunological 

Genome Project (Yoshida et al. 2019), are generating complementary resources that can be 

incorporated to expand the cCRE collection. Only DNA intervals in nuclease accessible 

chromatin were assigned as cCREs, and thus, any regulatory elements that function in nuclease 

inaccessible regions will be missed. Such elements may be discovered by further studies on 
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inaccessible regions that are bound by transcription factors. Given the absence of 

comprehensive reference sets of known regulatory elements, neither the completeness nor the 

specificity of the cCRE collections can be evaluated rigorously. Future work will evaluate 

experimentally the impact of cCREs on gene expression via genome editing, such as direct 

targeting of mutagenesis to cCREs or saturation mutagenesis of loci.  

 

Each cCRE has been annotated with its presence or absence in each cell type, as well as its 

epigenetic state. Furthermore, an initial estimate of the epigenomic regulatory potential (eRP) 

from each cCRE for regulating candidate target genes was derived from a multivariate 

regression and sub-selection procedure. These results can be used to identify potential cCREs 

for any gene in the investigated cell types. These initial eRP scores were derived from an effort 

to leverage the correlations between epigenetic states and gene expression to find potential 

target genes. The eRP scores for combined distal and proximal cCREs can explain a 

substantial portion of variance in gene expression, but a considerable amount of expression 

variance remains unexplained. Future work should improve eRP estimates by bringing in 

additional information such as enrichment for transcription factor binding site motifs (Weirauch 

et al. 2014), transcription factor occupancy (Dogan et al. 2015), and patterns in multi-species 

genome sequence alignments (Taylor et al. 2006). Nevertheless, these initial results have 

provided a much smaller number of potential cCREs for genes compared to all cCREs within 

the broad vicinity of a TSS, and the eRP scores track well with previous experimental results on 

regulatory elements around hematopoietic genes. The target gene assignments can be refined 

by inclusion of data on chromatin interaction frequencies, e.g. simply by restricting cCRE-gene 

pairs to those within a topologically associated domain, or TAD (Oudelaar et al. 2017). The 

VISION project has analyzed Hi-C data in G1E-ER4 cells (Hsu et al. 2017) and HPC7 cells 

(Wilson et al. 2016) to provide coordinates of TADs (An et al. 2019) and compartments (Zheng 

and Zheng 2018); and our query interface allows users to use this information to refine choices 
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of cCREs for specific genes. Further improvements can leverage the higher resolution 

interactions obtained with capture approaches (Hughes et al. 2014). 

 

The IDEAS segmentation results across cell types revealed many expected states and 

transitions between states, such as poised enhancers in multilineage progenitor cells either 

shifting to active enhancers or  losing their pre-activation signatures to become repressed or 

quiescent in more differentiated cells. However, one of the most common transitions has not 

been described previously (to our knowledge). Of the CTCF-bound sites in LSK that were also 

accessible to nuclease, a substantial proportion became much less nuclease accessible while 

retaining CTCF occupancy in differentiated cells. This loss of accessibility was observed for 

both ATAC-seq and DNase-seq data. The reduction in accessibility reflects a change in the 

chromatin structure to a more closed state, but unexpectedly, the CTCF protein remains bound. 

Further studies can examine whether the CTCF-bound-but-inaccessible sites are enriched at 

structurally or functionally important regions, such as boundaries of topologically associated 

domains, the base of chromatin loops, mitotically stable or unstable sites, or promoters of active 

or inactive genes.  

 

We found a substantially larger number of cCREs in hematopoietic progenitor cells than in 

mature cells, with the notable exception of megakaryocytic cells. The reduction in numbers of 

cCREs coincides with the decrease in the size of the nucleus during differentiation and 

maturation after commitment to a single lineage (Baron and Barminko 2016), which is indicative 

of a decrease in transcriptional activity. Indeed, the decrease in number of cCREs correlates 

with a decrease in the number of genes being expressed. This reduction in active genes and 

numbers of active regulatory elements appears to be a common feature of lineage-committed, 

maturing cells in most lineages. Megakaryocytic cells present a strikingly different pattern, as 

they retain many aspects of the regulatory landscape and transcriptomes of multilineage 
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progenitor cells. This similarity of MK to multilineage progenitor cells is a robust result, having 

been discerned previously based on phenotypic similarities (Huang and Cantor 2009), 

transcriptome data (Sanjuan-Pla et al. 2013; Psaila et al. 2016), global epigenetic profiles 

(Heuston et al. 2018), as well as from our integrative segmentations, cCRE predictions, and 

transcriptomes. These recent studies have indicated that MK cells can be derived from multiple 

stages of progenitor cells, including HSC, CMP, and MEP (Sanjuan-Pla et al. 2013; Psaila et al. 

2016). It is intriguing to speculate that the similarity of MK to multilineage progenitor cells may 

indicate that multiple stages of progenitor cells could differentiate into MK without substantial 

changes to the regulatory landscape. Such a flexible process differs remarkably from other 

lineage commitment and maturation processes that involved substantial changes to the 

epigenome and reduction in numbers of genes expressed. 

 

A large majority of the genome in each cell type was assigned to the quiescent, low signal state. 

A low-signal state covering most of the genome was observed in previous studies (Wu et al. 

2011; Ernst and Kellis 2012; Hoffman et al. 2013; Yue et al. 2014; Roadmap Epigenomics et al. 

2015; Zhang and Hardison 2017), but the interpretation has ranged from this representing 

artifacts due to high repeats and low mappability (Ernst and Kellis 2012) to a true, dramatic 

under-representation of dynamic histone modifications, CTCF, and open chromatin in most of 

the genome. We favor the latter interpretation, and suggest that much of the quiescent 

chromatin is repressed, but in a state not subject to histone modifications that are revealed by 

conventional ChIP-seq. Nevertheless, the fraction of the genome in a quiescent state may be 

overestimated if current assays are not fully recording some modifications in chromatin (Becker 

et al. 2017). For example, the H3K9me3 modification in highly compacted heterochromatin may 

be less accessible to the antibodies during chromatin immunoprecipitation, or heterochromatin 

may not be sheared adequately to solubilize the compacted chromatin to produce DNA 

fragments that are sequenced efficiently. Even if current methods preclude the identification of 
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some modified chromatin because of such issues, it is still the case that the DNA in the 

quiescent is distinctly different from that in other states. 

 

The systematic integration of 150 tracks of epigenetic data on mouse hematopoietic cells has 

produced an easily interpretable representation of the regulatory landscapes across these cell 

types. Further refinement led to calls of discrete candidate regulatory elements, which in turn 

were annotated with both their epigenetic states in each cell type and an estimate of their 

regulatory output toward each potential target gene. While we expect to improve these 

resources in future work, our initial applications of the resources suggest they will have good 

utility for a broad user community. Similar systematic integration of epigenetic data in human 

blood cells is on-going, which will generate equivalent resources. Catalogs of cCREs, annotated 

by cell type activity and indicators of potential target genes, should provide guidance on many 

important problems, such as suggesting specific hypotheses for mechanisms by which genetic 

variants in non-coding regions can be associated with complex traits and diseases (Ulirsch et al. 

2016; Bao et al. 2019).   

 

Materials and Methods 

Cell Isolation 

All primary hematopoietic cell populations were enriched from 5-8 week old C57BL6 male mice. 

LSK, CMP, MEP, GMP, CFUE, ERY, CFU-MK, and iMK populations were harvested and 

isolated from bone marrow (BM) as described (Heuston et al. 2018). Neutrophils (NEU) and 

monocytes (MON) were isolated from peripheral blood by as described (Heuston et al. 2018). 

Isolation of other cell populations was described in Lara-Astiaso et al. (2014). 

 

Sources of epigenomic and transcriptomic data 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted August 10, 2019. ; https://doi.org/10.1101/731729doi: bioRxiv preprint 

https://doi.org/10.1101/731729


46 

The datasets were collected from many different sources, including individual laboratories and 

consortia (Figure 1B). Much of the data were published or released previously. We started with 

work from our own laboratories in both the cell lines and primary erythroid and megakaryocytic 

cells at various stages (Cheng et al. 2009; Wilson et al. 2010; Wu et al. 2011; Cheng et al. 

2014; Pimkin et al. 2014; Wu et al. 2014; Yue et al. 2014; Hsiung et al. 2015; Jain et al. 2015; 

Stonestrom et al. 2015; Wilson et al. 2016; Heuston et al. 2018). The numbers of hematopoietic 

stem and progenitor cells that could be isolated by FACS on selected surface markers are small 

relative to those for maturing, lineage-committed cells, which presents a limitation for ChIP-seq 

analyses. Thus, for histone modifications in these multilineage stem and progenitors cell 

populations, we used the ChIP-seq data obtained using the iChIP method for interrogating small 

numbers of cells (Lara-Astiaso et al. 2014). The iChIP data also were the primary source for 

epigenomic information on mouse lymphoid cells. Additional datasets obtained through the 

CODEX compendium (Sanchez-Castillo et al. 2015), the GEO database (Barrett et al. 2009) 

and the ENCODE data portal (Sloan et al. 2016; Davis et al. 2018) filled in more features for 

several cell types. A ChIP-seq determination on CTCF in LSK cells is a new dataset for this 

paper. Almost all the experiments from the VISION project and ENCODE projects were done in 

replicates, but experiments without replicates from any source were included if they passed 

quality checks. 

 

Several types of RNA-seq data were compiled across these cell types, including those using 

various strategies for RNA-seq on polyA+ RNA (Lara-Astiaso et al. 2014; Paralkar et al. 2014) 

and on total RNA (Heuston et al. 2018). Comparisons between the RNA-seq collections 

determined by different methods or using different sources of RNA (total vs polyA+) were 

problematic; the differences attributable to method of preparation or RNA source exceeded 

differences between cell populations. Thus, the set of transcriptomes determined in replicate on 

total RNA from twelve cell types and populations using the same procedure in the same 
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laboratories (Heuston et al. 2018) were the primary source of expression level data used in 

evaluating our integration products and target gene assignments.  

 

ChIP-seq 

For CTCF in LSK cells, approximately 5M cells were fixed in 0.4% formaldehyde (16% 

methanol-free, Thermo Scientific) for 15 minutes before quenching in 125 mM glycine for 5 

minutes. Cells were washed in 2X PIC (Roche mini-tabs, 1 tab in 5 ml = 2X) and stored at -

80°C. Cells were then lysed (10 mM Tris-HCl, pH 8.0, 10 nM NaCl, 0.2% NP40) for 10 min on 

ice, washed once in 1x PBS, followed by nuclear lysis (50 mM Tris-HCl 8.0, 10 mM EDTA, 1% 

SDS) for 10 min on ice. Chromatin was then diluted further with Immunoprecipitation Buffer (20 

mM Tris-HCl, pH 8.0, 2 mM EDTA, 150 mM NaCl, 1% Triton X-100, 0.01% SDS) and a 1x 

Protease Inhibitor Cocktail set V, EDTA-free (Calibiochem, La Jolla, CA). Samples were 

sheared for 10-13 cycles of 30 sec on, 30 sec off sonication at medium output power at 40C. 

Sonicated chromatin was pre-cleared overnight at 4°C with 10 μg of normal rabbit IgG (Santa 

Cruz Biotechnology, Santa Cruz, CA; sc-2027). 5 ul of CTCF serum (Millipore Sigma, Cat# 07-

729) was also pre-bound to protein G agarose beads overnight at 4°C. For binding, pre-cleared 

chromatin was added to the antibody:bead complex and incubated with rotation at 4°C for 4 

hours. After binding, the beads were washed with Wash Buffer I (20 mM Tris-HCl, pH 8.0, 2 mM 

EDTA, 50 mM NaCl, 1% Triton X-100, 0.1% SDS), High Salt Wash Buffer (20 mM Tris-HCl, pH 

8.0, 2 mM EDTA, 500 mM NaCl, 1% Triton X-100, 0.1% SDS), Wash Buffer II (10 mM Tris-HCl, 

pH 8.0, 1 mM EDTA, 250 mM LiCl, 1% NP40, 1% deoxycholate), and 1x TE. DNA:protein 

complexes were then eluted with Elution Buffer (1% SDS, 100 mM NaHCO3). Reverse 

crosslinking of immunoprecipitated chromatin was accomplished by the addition of NaCl to ChIP 

and input samples, followed by incubation overnight at 65 °C with 1μg RNase A. To remove 

proteins, each sample was treated with 6 μg Proteinase K for 2 hours at 45 °C. 

Immunoprecipitated DNA was purified using the Qiagen PCR Purification Kit. All samples were 
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processed for library construction using Illumina’s TruSeq ChIP Sample Preparation Kit 

according to manufacturer’s instructions. The DNA libraries were sequenced on NextSeq 500 

using Illumina’s kits and reagents as appropriate. 

 

ChIP-seq data processing 

The sequencing reads from both the new ChIP-seq experiments and many previously published 

ChIP-seq were processed through the VISION pipeline. Reads were mapped to mouse genome 

assembly mm10, using a pipeline that contains essential elements of the ENCODE mapping 

pipeline but adjusted to allow for multiple mapping reads, which allows interrogation of 

duplicated genes and repetitive elements. Specifically, the mapping pipeline consisted of Bowtie 

0.12.8 (Langmead et al. 2009) for mapping, then filtering to remove chrM, unplaced 

chromosomes, and unmapped reads. The alignment is converted to bam format using Samtools 

0.1.8 (Li et al. 2009).  MACS 1.3.7.1 (Zhang et al. 2008) is used to generate the wiggle tracks 

and call peaks. The wigToBigWig program from the UCSC Genome Browser (Haeussler et al. 

2019) is used to convert the wiggle file to a bigWig. 

 

ATAC-seq from VISION project 

ATAC-seq (Buenrostro et al. 2013) from LSK, CMP, MEP, GMP, CFUE, ERY, CFU-MK, iMK, 

NEU, and MON populations were generated as described (Heuston et al. 2018). The sequence 

reads were processed using a pipeline consisting of  trimming the reads to 30 base pairs and 

then mapped using bowtie 0.12.8.  The alignment is filtered to remove chrM, unplaced 

chromosomes, and unmapped reads and is converted to bam format using Samtools 0.1.8.  

Bedtools 2.16.2 (Quinlan and Hall 2010) is used to convert the alignments to bed format for F-

Seq 1.85 (Boyle et al. 2008), which generates the wiggles.  Local peaks of high frequency 

cleavage were determined using HOMER 1.0 (Heinz et al. 2010), as used previously (Ramirez 

et al. 2017). 
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RNA-seq from VISION project 

RNA-seq from LSK, CMP, MEP, GMP, CFUE, ERY, CFU-MK, iMK, NEU, and MON populations 

were generated as described (Heuston et al. 2018). The sequence reads were processed using 

the ENCODE3 long RNA-seq pipeline 

(https://www.encodeproject.org/pipelines/ENCPL002LPE/). In brief, reads were mapped to the 

mouse genome (mm10 assembly) using STAR 2.5.1b_modified (Dobin et al. 2013), followed by 

RSEM-1.2.28 (Li and Dewey 2011) for gene quantifications.  UCSC’s bedGraphToBigWig is 

used to convert the bedgraph files to bigwigs for display in the browser.   

 

Replication and quality evaluation 

Experiments arising from laboratories in the VISION consortium and ENCODE were conducted 

on biological replicates (e.g. either cells isolated from different groups of mice on different days, 

or from the same group of mice, but collected in different aliquots from the sorter and processed 

separately). Experiments from Lara-Astiaso et al. (2014) were determined once. The read 

coverage for all experiments exceeded the recommended level (Landt et al. 2012), providing 

over 4.2 billion mapped reads (1,952,990,660 for RNA-seq, 1,897,113,048 for ATAC-seq, and 

353,030,332 for ChIP-seq) supporting the results of the experiments. The data were high 

quality, as evaluated by metrics currently recommended by the ENCODE Project Consortium. 

  

All ATAC-seq datasets had a FRiP score of 0.27 (27%) or greater, and all ChIP-seq datasets 

had a FRiP score of  0.03 (3%) or greater, consistent with the currently accepted ENCODE 

standards for ATAC-seq, as described at https://www.encodeproject.org/data-standards/. All 

DNase-seq datasets had a FRiP score of 0.21 (21%) or greater.  
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The replicates within RNA-seq experiments were highly correlated, with Spearman correlation 

coefficients equal to or greater than 0.93 for almost all experiments. The exceptions were RNA-

seq for CFUE and ERY, for which the replicate correlation was 0.89. This slightly lower 

correlation values may result from the fact that RNA isolated from these cell types exhibited 

consistently lower RIN scores, which may reflect the presence of older, degraded transcripts 

due to the nuclear condensation process during erythroid maturation. 

 

Comparisons of epigenetic and transcriptional profiles across hematopoietic cell types 

The signal strengths of ATAC-seq and DNase-seq peaks among eighteen cell types were 

compared pairwise by computing the Spearman correlation coefficient (r) across the 

comprehensive set of ATAC-seq peaks for each pair of cell types, and using 1- r as the distance 

measure. Hierarchical clustering of the pairwise comparisons was performed using heatmap.2 

in R. 

  

Using the RNA-seq data on total RNA from twelve cell types (Heuston et al. 2018), we 

estimated transcript levels for each gene annotated by Gencode (M4) (Harrow et al. 2012), 

including both protein-coding and non-coding genes, using the program RSEM (Li and Dewey 

2011). We compared the global transcriptomes across the cell types, again using 1 – r as the 

distance measure, and performed hierarchical clustering. 

  

The pairwise analyses reduced each comparison between cell types to a single value (r) 

summarizing the relationships among the ATAC-seq or RNA-seq signals. To capture the 

genome-wide information more completely, we also analyzed the ATAC-seq signal matrix and 

RNA-seq transcript levels across replicates and cell types by principal component analysis 

(PCA), using the tool prcomp in R. 
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Normalization of ChIP-seq and nuclease sensitivity data 

The datasets for ChIP-seq, ATAC-seq, and DNase-seq came from heterogeneous sources with 

considerable differences in sequencing depth and signal-to-noise ratio. We developed a new 

method, called S3norm, to simultaneously adjust for both sequencing depth and signal-to-noise 

ratio (Xiang et al. 2019).  In contrast to other normalization methods, which are designed to 

rescale signals mainly by focusing on either background regions or peak regions (Liang and 

Keles 2012; Meyer et al. 2012; Shao et al. 2012; Dillies et al. 2013), S3norm simultaneously 

matches the mean signals of both background and peak regions across multiple datasets). 

Maintaining a low background signal is particularly important genome segmentations [ref], since 

an inflation of the background could lead to assigning the background regions with increased 

noise to low signal-containing states. We also explored other normalization methods, such as 

the widely used quantile normalization (Bolstad et al. 2003), which forces the datasets to have 

an identical distribution across datasets. Unlike quantile normalization, the S3norm method 

retains the variation in the overall signal distribution across datasets. Thus, when normalizing 

datasets with a different number of peaks, for example, S3norm is less likely than quantile 

normalization to create false positive peaks in the dataset with fewer peaks. 

 

In brief, the S3norm method converts raw signal (number of mapped reads per genomic 

interval) to p-values, selects reference datasets to use as standards, and normalizes via a 

nonlinear transform to adjust background and foreground simultaneously. This latter adjustment 

was effectively accomplished by rotation of a regression line through a scatter plot of signal 

strengths for each window in the dataset being normalized and the proxy reference, such that 

the mean signals for common peaks were the same between normalized and reference 

datasets, and the mean signals for common backgrounds were also the same for the two 

datasets (Xiang et al. 2019). To maintain a balance between replicated data for some cell types 

and non-replicated data for others, replicate data were merged after conversion to p-values so 
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that only one dataset was used for each feature in each cell type. The S3norm tool is available 

from Github at the link https://github.com/guanjue/S3norm . 

 

IDEAS segmentation 

IDEAS utilizes a Bayesian nonparametric hierarchical latent-class mixed-effect model to achieve 

segmentations simultaneously along chromosomes and across cell types (Zhang et al. 2016; 

Zhang and Hardison 2017). The computational approach has a linear time solution with respect 

to the number of cell types, which allows it to scale to hundreds of cell types simultaneously. For 

the segmentation runs described in this paper, signals in terms of numbers of mapped reads per 

200 bp bin for 8 epigenetic features (histone modification and CTCF ChIP-seq, ATAC-seq or 

DNase-seq) were compiled from 20 cell types to produce a set of 150 tracks of data, including 

replicates. The replicates of the same epigenetic feature were merged (via Fishers’ method that 

emphasizes the replicate with the better signal-to-noise level), and signals were normalized 

using the S3norm procedure (Xiang et al. 2019) to generate 104 datasets. The normalized 

datasets were used as input for IDEAS to generate chromatin segmentation. The current 

version of the IDEAS method includes a preliminary, simple assessment of the most common 

combinations of epigenetic features to initialize the model building. We first binarized the signals 

of each feature by peak calling at FDR 0.05 using a negative-Binomial distribution as the null, 

where the parameters of the negative-Binomial distribution was estimated from the bottom 99% 

of the signals for the feature. From the combinations of 0s and 1s of multiple features at each 

position, we identified the distinct combinations that correspond to a preliminary set of 

epigenetic states. For k features, there are 2^k distinct combinations of 0s and 1s. We removed 

the rare combinations with <0.1% occurrence, and we used the remaining set of preliminary 

epigenetic states as the initial states for IDEAS. The removed rare states were replaced by a 

random sample of the common states. We also applied a relatively high threshold for inclusion 

of signals into the IDEAS modeling to produce a simpler, more interpretable model. Lowering 
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the threshold generated many more states that were small variations on the states described 

here. Using the higher threshold did reduce the coverage of the genome by non-quiescent state 

assignments (from 19% to 14% on average). While higher coverage could be desired for some 

applications, for the current study we felt that the decreased coverage was off-set by the 

improved ability to interpret the model. The current software is available from Github, at the link 

https://github.com/guanjue/IDEAS_2018.  

 

When dealing with datasets that range in quality, the IDEAS segmentation will sometimes 

“discover” states containing almost all features, including ones associated with opposite 

functions. Unlike the situation for most states, the DNA intervals assigned to such states also 

have high variation in the signal for each feature, indicating that the state may be further split to 

substates. We refer those states as ‘heterogeneous states’. When such heterogeneous states 

were returned, we revised our IDEAS pipeline as follows. (1) We identified the most common 

patterns of epigenetic peaks as introduced above from the cell types with all marks available, 

and we calculated the mean signal in each pattern as the initial parameters to train the IDEAS 

model. (2) After the first round of IDEAS run, we identified and removed the potential 

heterogeneous state and used the remaining states as priors to retrain IDEAS for a second 

round. The final segmentation is given by the second round of IDEAS run. 

 

cCREs 

Peaks called by Homer (Heinz et al. 2010) in the DNase-seq and ATAC-seq datasets were 

filtered to remove mitochondrial reads (which map to chrM) and blacklist regions. For datasets 

that have replicates, only peaks called in both replicates were retained. The remaining peaks 

from all cell types were combined, and peaks overlapping by at least one nucleotide were 

merged. This merger caused only a modest increase the size of the peak intervals; the median 

sizes were 150 bp before and 263 bp after merging. The ATAC-seq signal in the DNA interval 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted August 10, 2019. ; https://doi.org/10.1101/731729doi: bioRxiv preprint 

https://doi.org/10.1101/731729


54 

corresponding to each ATAC-seq peak in this comprehensive set was determined by 

aggregating the ATAC-seq reads mapping to that interval in each cell type. Of the 215,120 

merged ATAC-seq peaks, 207,690 were not in a quiescent state (state 0) from the IDEAS 

segmentation. Specifically, if more than 50% of a peak interval was in the quiescent state, it was 

not included as a candidate regulatory element. These non-quiescent, reproducible (if replicates 

were available), merged ATAC-seq peaks constitute the set of candidate Cis-Regulatory 

Elements (cCREs).  

 

Other cCRE datasets were obtained from the Blood Enhancer Catalog (Lara-Astiaso et al. 

2014), and the SCREEN website for ENCODE cCREs (The_ENCODE_Project_Consortium et 

al. 2019). The SCREEN cCREs were downloaded in July of 2018, obtaining one set for all 

mouse cCREs and another set restricted to those with DNase-seq data for "C57BL/6 liver male 

embryo (14.5 days)", which are referred to as the SCREEN fetal liver cCREs. 

 

Mapping cCREs to Genes 

We developed a novel method to use gene expression in 12 cell types to score the cCREs for 

their regulatory potentials based on epigenetic states, map the cCREs to candidate genes, and 

further select the most likely subset of cCREs for predicting gene expression. All genes, both 

expressed and silent, were included so that all of the 27 IDEAS states were covered.  

 

1. Initial calculation of eRP scores to identify an inclusion threshold for cCREs 

Let X=(x1,...,x26) denote the proportions (between [0,1]) of each IDEAS state within the 200bp 

regions that cover the TSSs of genes. Each xi corresponds to the ith IDEAS state, excluding 

state 0 (the quiescent state). Let Y denote the log(y+0.001) transformed tag-per-million (TMP) 

value of RNA-seq data. We first used the regression model Y=𝛼+𝛽X+𝜀 to obtain the coefficient 𝛽 

for each state, which represents the relative impact of the state in TSSs on expression. Given 
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the 𝛽 coefficient for each epigenetic state (where state 0 has coefficient 0), we assign an initial 

eRP0 score to each cCRE in the genome in each cell as the weighted sum of 𝛽 coefficients, and 

the weight of each state is the proportion of that state occurred within the cCRE. For every 

genome location that has at least one cCRE in some cell types, we further assigned the eRP0 

scores to the DNA segments at the same location in all other cell types. This yields a 12-

dimensional vector of eRP0 scores for each location with at least one cCRE. 

  

2. Pre-selection of cCRE-gene pairs 

We next used the 12-dimensional vector of eRP0 scores at each cCRE location to calculate its 

correlations with gene expression of all genes within 1Mb. Our hypothesis is that the TSS-

derived eRP0 scores of a cCRE must be correlated with the expression of its target gene as if 

the cCRE is brought to the promoter region through chromatin looping. As such, our initial 

assignment of target genes for each cCRE is the genes whose correlation with the cCRE eRP0 

is >0.2. This threshold was suggested by a power curve for predicting expression, which 

showed increased adjusted r2 values above this threshold. 

  

3. Refinement of cCRE-gene pairs 

Because we have only 12 cell types for correlation analysis, our initial application of a filter 

based on marginal correlation has limited power to accurately predict target genes, i.e., we do 

not expect all the cCREs passing that filter to be equally predictive of gene expression. We 

therefore developed a novel selection procedure to identify a subset of cCRE-gene pairs that 

are most likely capturing the regulatory relationships between cCREs and genes. Our principles 

are that the true cCRE-gene pairs should better predict gene expression, and that each cCRE 

impacts expression through their epigenetic states, thus cCREs with the same state 

composition should have the same impact on target gene expression. As such, the number of 
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parameters in our model will only depend on the number of epigenetic states but not the number 

of cCREs assigned to each gene.  

  

We assume that the impacts of distal cCREs (1kb away from TSS) may be different from the 

impacts of TSS regions (1kb on each side of TSS) on expression. Let XP=(xP1,...,xP26) denote 

the state proportions observed at the TSS regions, and XD=(xD1,...,xD26) denote the state 

proportions observed at the distal cCRE regions assigned to each gene. Initially, XD is 

calculated by pooling all cCREs assigned to each gene together (based on the marginal 

correlation threshold), and our task is to remove some of the assigned cCREs and recalculate 

XD so to maximize predictive power. Our model is in a regression form 

Y=𝛼+𝛽PXP+𝛽DXD+𝜀 

where Y is the observed gene expression, 𝛽P and 𝛽D are unknown coefficients to be estimated 

from the model for the effects of proximal and distal elements, respectively, and 𝜀 is a Gaussian 

error term with mean 0. The intercept term 𝛼 is set to be 0, so the predicted value of Y depends 

only on the proportions of states of the cCREs. Note, however, that this is not a standard 

regression model: though XP is fixed, we will be updating XD  by adding or removing distal 

cCREs to each gene in order to maximize predictive power. Nevertheless, given XD, the 

coefficients 𝛽P and 𝛽D will be estimated by least squares. 

  

4. Selecting distal cCREs for each gene 

After initial assignment of cCRE-gene pairs based on marginal correlation, there were on 

average 136 cCREs (passing the cor>0.2 filter) assigned to each gene, whereas there were 216 

cCREs per gene without the cor>0.2 filter. We will inevitably over fit our model by adding or 

removing cCREs from XD if our objective is to maximize the model fitting. Instead, we used 

cross-validation accuracy as our criterion to select cCREs. Specifically, we only used data in (K-
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1) cell types to train the model but we evaluated the model performance, and thus whether a 

cCRE should be included or excluded from a gene, by the held-out cell type. At each iteration, 

for each gene, we calculated the change of prediction r2 of expression in the held-out cell type 

by adding or removing each cCRE to or from the current list for the gene. We then add or 

remove each cCRE to and from the list in the direction of increasing prediction r2. This is 

repeated for all genes and the iteration is repeated for 100 times. To speed up the calculation, 

we updated the assignment of multiple cCREs simultaneously based on the previous 

assignment configuration. Each change in cCRE assignment may thus be suboptimal, as the 

assignment of other cCREs may have also changed. We however gradually reduced the 

number of simultaneous cCRE changes to 1 per gene as the iteration increases. 

  

After fitting the model, the regression coefficients 𝛽P  and 𝛽D can be used to recalculate eRP 

scores for cCREs by weighted sums. These final eRP scores would better reflect their 

regulatory potentials, as the coefficients are estimated from the selected cCRE-gene pairs that 

better predicted gene expression. In addition, we call the eRPs calculated from 𝛽P as proximal 

eRPs, and the eRPs calculated from 𝛽D as distal eRPs. 

  

5. Out-sample evaluation of prediction accuracy 

To evaluate if the above method can indeed improve prediction of gene expression by sub-

selecting cCRE-gene pairs, we ran the method in 11 out of 12 cell types, and then used the 

model to predict the gene expression in the 12th cell type (not to be confused with the held-out 

cell type, which is one of the 11 cell types used in cross-validation). We repeated this by leaving 

each cell type out once, predicting its expression from the model trained in the other cell types, 

and calculating an overall r2of the predicted expression for all 12 cell types against the observed 

expression. 
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6. Classification of genes 

To evaluate if the eRP scores differ by genes, we classified the genes into four categories: 1) 

consistently lowly expressed genes (mean <= -4, standard deviation or sd <= 2); 2) differentially 

lowly expressed (mean <= -4, sd > 2); 3) differentially highly expressed (mean > -4, sd > 2); and 

4) consistently highly expressed (mean > -4, sd <= 2). We used in-sample expression data 

(from 11 cell types) to classify the genes into four groups first, and then we ran our method 

within each gene group separately. 

 

Data Access  

The full lists of experiments and datasets are presented in the Supplementary Tables, along 

with information about replication structure of each experiment, read counts, quality metrics, 

literature citations, GEO and ENCODE dataset identification numbers. These lists are currently 

online at this link: 

https://docs.google.com/spreadsheets/d/1q7wwrTfHQlEWCq301yaF-

YZk3cQMb0cRksUmgluB9kQ/edit?usp=sharing 

The Supplementary Tables also provide ids for datasets available from the ENCODE data 

portal and/or the Gene Expression Omnibus, to facilitate access to sequencing reads. 

   

Results of data processing such as the signal tracks (before and after normalization) and peaks 

for ATAC-seq and ChIP-seq data and the estimates of transcript levels from RNA-seq (Li and 

Dewey 2011) are available at the VISION Project website (http://usevision.org). Signal tracks, 

peaks, and ranges of transcript levels can be visualized at the customized genome browser at 

the VISION Project website. 
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