ABSTRACT
Large oxygen depleted areas known as oxygen minimum zones (OMZ) have been observed in the Arabian Sea and recent reports indicate that these areas are expanding at an alarming rate. In marine waters, oxygen depletion may also be related to global warming and the temperature rise, acidification and deoxygenation can lead to major consequences wherein the plants, fish and other biota will struggle to survive in the ecosystem.
The current study has identified the microbial community structure using NGS based metagenomics analysis in the water samples collected at different depth from the oxygen depleted and non-OMZ areas of Arabian Sea. Environmental variables such as depth, site of collection and oxygen concentration appeared to influence the species richness and evenness among microbial communities in these locations. Our observations clearly indicate that population dynamics of microbes consisting of nitrate reducers accompanied by sulphate reducers and sulphur oxidizers participate in the interconnected geochemical cycles of the OMZ areas. In addition to providing baseline data related to the diversity and microbial community dynamics in oxygen-depleted water in the OMZ; such analysis can provide insight into processes regulating productivity and ecological community structure of the ocean.