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Abstract

Summary: Point-based visualisations of large, multi-dimensional
data from molecular biology can reveal meaningful clusters. One
of the most popular techniques to construct such visualisations
is t-distributed stochastic neighbor embedding (t-SNE), for which
a number of extensions have recently been proposed to address
issues of scalability and the quality of the resulting visualisations.
We introduce openTSNE, a modular Python library that imple-
ments the core t-SNE algorithm and its extensions. The library
is orders of magnitude faster than existing popular implementa-
tions, including those from scikit-learn. Unique to openTSNE is
also the mapping of new data to existing embeddings, which can
surprisingly assist in solving batch effects.
Availability: openTSNE is available at https://github.
com/pavlin-policar/openTSNE.
Contact: pavlin.policar@fri.uni-lj.si, blaz.zupan@fri.uni-lj.si

The abundance of high-dimensional data sets in molecular bi-
ology calls for techniques for dimensionality reduction, and
in particular for methods that can help in the construction
of data visualizations. Popular approaches for dimensional-
ity reduction include principal component analysis, multidi-
mensional scaling, and uniform manifold approximation and
projections (1). Among these, t-distributed stochastic neigh-
bor embedding (t-SNE) (2) lately received much attention as
it can address high volumes of data and reveal meaningful
clustering structure. Most of the recent reports on single-
cell gene expression data start with an overview of the cell
landscape, where t-SNE embeds high-dimensional expres-
sion profiles into a two-dimensional space (3, 4). Fig. 1.a
presents an example of one such embedding.

Despite its utility, t-SNE has been criticized for poor scala-
bility when addressing large data sets, lack of global orga-
nization t-SNE focuses on local clusters that are arbitrar-
ily scattered in the low-dimensional space and absence of
theoretically-founded implementations to map new data into
existing embeddings (5, 6). Most of these shortcomings,
have recently been addressed. Linderman et al. (7) sped-
up the method through an interpolation-based approximation,
reducing the time complexity to be merely linear dependent
on the number of samples. Kobak and Berens (8) proposed
several techniques to improve global positioning, including
estimating similarities with a mixture of Gaussian kernels.
While no current popular software library supports mapping
of new data into reference embedding, van der Maaten (9)
proposed a related approach using neural networks.

We introduce openTSNE , a comprehensive Python library
that implements t-SNE and all its recently proposed exten-
sions. The library is compatible with the Python data science
ecosystem (e.g., numpy, sklearn, scanpy). Its modu-
lar design encourages extendibility and experimentation with
various settings and changes in the analysis pipeline. For ex-
ample, the following code uses multiscale similarity kernels
to construct the embedding from Fig. 1.b.
adata =

anndata.read_h5ad("macosko_2015.h5ad")
affinities = openTSNE.affinity.Multiscale(

adata.obsm["pca"], perplexities=[50,
500], metric="cosine")

init = openTSNE.initialization.pca(
adata.obsm["pca"])

embedding = TSNEEmbedding(init, affinities)
embedding.optimize(n_iter=250,

exaggeration=12, momentum=0.5,
inplace=True)

embedding.optimize(n_iter=750,
momentum=0.8, inplace=True)

Here, we first read the data, define the affinity model based
on two Gaussian kernels with varying perplexity, use a PCA-
based initialization, and run the typical two-stage t-SNE op-
timization. Notice that the code for the standard t-SNE
used for Fig. 1.a is similar but uses only a single kernel
(perplexities=[30]).
The proposed openTSNE library is currently the only
Python t-SNE implementation that supports adding new sam-
ples into constructed embedding. For example, we can reuse
the embedding created above to map new data into existing
embedding space in the following code,
data =

anndata.read_h5ad("shekhar_2016.h5ad")
adata, data = find_shared_genes(adata, data)
genes = select_genes(adata.X, n=1000)
embedding.affinities =

affinity.PerplexityBasedNN(
adata[:, genes].X, perplexity=30,

metric="cosine")
new_embedding = embedding.transform(data[:,

genes].X)

which loads and prepare the new data, defines the affinity
model, and computes the embeddings. openTSNE embeds
new data points independently of one another, without chang-
ing the reference embedding. The example of combining
two data sets with mouse retina cells is shown on Fig. 1.c,
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Fig. 1. Example application of openTSNE on mouse retina cells from Macosko
et al. (3) and Shekhar et al. (4). a) Standard t-SNE embedding using random initial-
ization and perplexity of 30. b) t-SNE embedding using multi-scale affinities leads
to better global cluster organization. Cluster annotations in both a) and b) are from
Macosko et al. c) Embedding of independent mouse retinal cells from Shekhar et
al. (points in color) to a reference t-SNE visualization of data from Macosko et al.
(points in gray) places cells in the clusters that match classifications from original
publications and alleviates batch effects.

where the cells from the secondary data set are matched to the
cells in the reference embedding. This procedure can there-
fore be used to handle batch effects (10), a key obstacle in
molecular biology when dealing with the data from differ-
ent sources (11). The code used to plot the embeddings is
not shown for brevity, but is, together with other examples,
available on openTSNE ’s GitHub page.
Our Python implementation introduces computational over-
head: openTSNE is about 25% slower than FIt-SNE (7), a
recent t-SNE implementation in C++. However, openTSNE
is still orders of magnitude faster than other Python im-
plementations, including those from scikit-learn and
MulticoreTSNE (see Benchmarks in openTSNE docu-
mentation on GitHub). An example data set with 200,000
cells is processed in more than 90 minutes with scikit-learn
and in less than 4 minutes with openTSNE . The framework
includes controlled execution (callback-based progress mon-
itoring and control), making it suitable for interactive data ex-
ploration environments such as Orange (12). A pure Python
implementation offers distinct advantages that include inte-
gration with Python’s rich data science infrastructure and
ease of installation through PyPI and conda.
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Starič, Janez Demšar, Gad Shaulsky, Vilas Menon, et al. scorange—a tool for hands-on
training of concepts from single-cell data analytics. Bioinformatics, 35(14):i4–i12, 2019.
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