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Abstract  

Association areas in neocortex encode novel stimulus-outcome relationships but the 

principles of their engagement during task learning remain elusive. Using chronic wide-field 

calcium imaging we reveal two phases of spatiotemporal refinement of layer 2/3 cortical 

activity in mice learning whisker-based texture discrimination. Even before mice reach 

learning threshold, association cortex—including rostro-lateral (RL), posteromedial (PM), 

and retrosplenial dorsal (RD) areas—is generally suppressed early during trials (between 

auditory start cue and whisker-texture touch).  As learning proceeds, a spatiotemporal 

activation sequence builds up, spreading from auditory areas to RL immediately before 

texture touch (whereas PM and RD remain suppressed) and continuing into barrel cortex, 

which eventually efficiently discriminates between textures. Additional correlation analysis 

substantiates this diverging learning-related refinement within association cortex. Our 

results indicate that a pre-learning phase of general suppression in association cortex 

precedes a learning-related phase of task-specific signal flow enhancement.       
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Introduction 

The neocortex dynamically changes when we learn new tasks. Learning to discriminate between 

different stimuli, e.g. visual stimuli or texture touches, leads to changes in the respective primary 

sensory areas, i.e., primary visual cortex and barrel cortex (BC)1–9. Specifically, neural responses 

in these areas are enhanced in expert subjects compared to naïve subjects with increased 

discrimination power to distinguish between stimuli2,7,10,11. But what cortical processes during task 

learning set the ground for this enhancement in primary sensory areas? In other words, are there 

cortical changes that precede this discrimination, both before the stimulus presentation and also 

before gaining expertise? Higher-order areas, e.g. retrosplenial cortex and secondary motor cortex, 

have been shown to mediate learning-induced cortical modulation via top-down effects4,12,13. It 

remains largely unknown, however, how spatiotemporal cortical dynamics reorganizes during 

learning so that the animal can solve a specific task. Three relevant dimensions to be considered 

are (1) the large-scale spatial dimension across multiple cortical areas, (2) the temporal dimension 

relating to the seconds-long duration of individual trials, and (3) the temporal dimension spanning 

the entire training and learning time course across days. 

In terms of the spatial dimension, we have previously applied wide-field calcium imaging 

to measure large-scale cortical dynamics while mice used their whiskers to discriminate between 

two textures in a go/no-go task11. We found that expert mice displayed enhanced activity for the 

rewarded go-texture in BC, secondary somatosensory cortex (S2), and rostro-lateral cortex (RL). 

RL is part of the posterior parietal cortex (PPC)14,15, which is part of the higher-order areas in 

posterior cortex that cluster around the primary visual cortex. These associational areas, and 

especially PPC, are traditionally thought to represent associations between stimuli and stimulus-

outcome sequences: they play a pivotal role in cross-modal sensory integration16–20 and hold 
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history-dependent information21–24. Nevertheless, the interaction between different association 

areas and their relationship to learning has not been shown. 

The second dimension relates to the temporal sequence of events within an individual trial 

lasting several seconds. Whereas most studies focus on the time period when the relevant, to-be-

learned stimulus is presented to the subject2–7,13, little is known about cortical dynamics before the 

stimulus occurs. For example, when presented with a cue indicating the start of the trial, it is unclear 

which areas are involved in developing preparatory and anticipatory activity throughout learning2. 

Are there association areas that may show enhanced activity just before a task-relevant stimulus is 

sensed?  

The third dimension relates to the temporal scale across learning, involving many hundreds 

of trials and lasting several days. Most studies either compare between expert and naïve mice1–

3,5,13,25 (i.e. two discrete time points) or sample learning on a per-day manner (i.e. 3-8 time 

points4,6,7; but see9,26). This relatively low sampling frequency precludes studying the trial-by-trial 

development of learning, which in some animals can occur within a relatively short period. For 

example, it is possible that some cortical areas display changes before learning occurs whereas 

other areas might change when task performance actually improves9,10,26. 

To study spatiotemporal cortical dynamics during learning we here performed wide-field 

calcium imaging across a large part of the dorsal cortex while mice learned to use their whiskers to 

discriminate between two textures that were presented after an initial auditory cue signaling the 

start of the trial. We measured layer 2/3 activity in 25 cortical regions trial-by-trial continuously 

during task training across several days. We find learning-related cortical changes—especially in 

posterior association areas—that can be divided into two phases: First, a pre-learning phase, in 

which several association areas are suppressed, followed secondly by an enhancement of a specific 

task-related cortical activation sequence which occurs in parallel with increased task proficiency.  
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Results 

Texture discrimination learning. To study learning-related changes in both brain activity and 

behavior we trained transgenic mice expressing GCaMP6f in layer 2/3 (L2/3) excitatory neurons 

in a head-fixed, whisker-based go/no-go texture discrimination task27 (Fig. 1a). Using operant 

conditioning we trained 5 mice to lick upon whisker-touch with a coarse surface texture (sandpaper 

with grit size P100) and 2 mice to lick for a smooth P1200 texture. The respective other sandpaper 

type served as no-go stimulus. An auditory tone served as ‘stimulus cue’ signaling the start of the 

2-s long texture approach in each trial. In ‘hit’ trials mice were rewarded for correctly licking for 

the go texture after an additional auditory ‘response cue’, they were punished with white noise for 

incorrectly licking for the no-go texture during the response period (‘false alarm’ trials, FA), and 

they were neither rewarded nor punished when they withheld licking for the go and no-go textures 

(‘correct-rejections’, CR, and ‘Misses’, respectively). The water spout with lick detector always 

remained within reach at a fixed position. Licking before the response cue was neither rewarded 

nor punished. As mice learned to discriminate between the two textures, we measured large-scale 

neocortical L2/3 activity in the hemisphere contralateral to the texture stimulus using wide-field 

calcium imaging through an intact skull preparation11,28 along with concurrent video monitoring of 

whisking and body movements (Online Methods). In total, we imaged 7 mice throughout 5-11 days 

(total trial numbers ranging from 2274 to 5626). 
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Fig. 1 │ Spatiotemporal dimensions relevant for texture discrimination learning. a, Behavioral setup. 

b, Schematic of the three relevant dimensions. c, Functional maps for two example mice (m3 and m5) 

obtained by overlaying sensory-evoked activity maps for different sensory stimuli. Maps are registered to 

the Allen reference atlas (white outlines). d, Area definitions used in this study (see also Supplementary 

Figure 1). Four rough divisions are auditory areas (green), association areas (pink), sensory areas (visual 

and somatosensory, blue), and motor areas (red). e, Trial structure and possible trial outcomes. After an 

initial auditory tone (‘stimulus cue’), the P100 or P1200 sandpaper approached and stayed in place for 2 s. 

At withdrawal start, an additional auditory tone (‘response cue’) signaled that the beginning of the report 

period. Cue-, pre- and stim-period as analysis windows are marked by different colors. f, Performance (d’) 

for all mice across the entire learning period, fitted with a sigmoid function. Red dashed bar indicates 

threshold for learning (d’=1.5). g, Learning threshold for all mice in ascending order. 
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We focused our analysis on the three spatiotemporal dimensions mentioned in the 

introduction (Fig. 1b). For analysis of the spatial dimension—covering the entire dorsal cortex—

we functionally mapped sensory areas for each mouse during anesthesia. Based on these maps 

(together with skull coordinates) we registered all wide-field images to the 2D top view of the Allen 

reference atlas29 and defined 25 areas of interest, consolidated in 4 major groups  (Fig. 1c,d and 

Supplementary Fig. 1 with a list of region abbreviations; Online Methods). As one relevant 

temporal dimension we analyzed signals on the fast time scale of the individual trials (Fig. 1e). 

Here, we were especially interested in the time period before the touch occurred—in addition to 

the touch-sensation period—because learning-related changes can be expected early in trial time. 

We defined three time windows during this time period: the ‘cue-period’ (0.1 to 0.6 s after the 

stimulus cue) to capture the responses to the initial tone signaling the trial start; the ‘pre-period’ 

when the texture approaches the whiskers (-1 to -0.5 s relative to the texture stop; mainly before 

the first whisker-texture touch occurred); and the ‘stim-period’ during texture touch (-0.5 to 0.5 s 

relative to texture stop). We did not include the response period in our analysis because mice licked 

and moved rigorously during this time period, causing large-scale activity across the cortex that is 

difficult to interpret (there was no delay period and mice were free to lick outside the response 

window). The second relevant temporal dimension is the much slower time scale across the days 

of learning. All mice increased their performance with training (5-11 days; ~500 trials/day), 

eventually reaching high discrimination levels as quantified by calculating the d-prime (d’) in a 50-

trial bins (Fig. 1f; refs. 11,27; Online Methods). Performance increased mainly because of an increase 

in the CR rate (Supplementary Fig. 2). In the learning curves we defined the ‘learning threshold’ 

for reaching expert level as the crossing point at d’=1.5 (in units of ‘trial number’). To compare 

‘naïve’ versus ‘expert’ phase we averaged across the first 500 and the last 500 trials, respectively. 

The fastest learning mouse reached the learning threshold slightly before a thousand trials whereas 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 12, 2019. ; https://doi.org/10.1101/732115doi: bioRxiv preprint 

https://doi.org/10.1101/732115
http://creativecommons.org/licenses/by-nc-nd/4.0/


8 

 

mouse #7 took a substantially longer time (Fig. 1g). Jointly, these definitions of cortical areas, trial 

periods of interest, and naïve-to-expert learning phases enabled us to reveal key learning-related 

changes in both behavior and L2/3 activity across the cortex.  

Motor behavior changes during learning. We first quantified changes in motor actions during 

learning. Mice may start moving more or differently when they begin to associate the go-texture 

with the upcoming reward. Because movements are accompanied by wide-spread cortical 

activity11,30,31 changes in motor behavior potentially confound the interpretation of learning-related 

changes of cortical activity. Indeed, once mice reached expert level they indicated their future 

action before the response cue, by moving their body and by whisking and licking rigorously. To 

quantify body movements, we detected forelimb and back movements in the body camera video 

and calculated the movement probability across trial time and across learning (50-trial bins; ref. 11, 

Online Methods). When mice approach and reach their learning threshold, they begin to move their 

body earlier, clearly before the response cue and reward consumption, resulting in a significantly 

higher movement probability in the stim-period for the expert compared to the naïve phase (Fig. 

2a,b and Supplementary Fig. 3; p<0.05, n = 7 mice, Wilcoxon signed-rank test). In the pre-period, 

movement probability was relatively low and did not significantly change from naïve and expert 

(p=0.47), whereas in the cue-period movement probability showed a significant reduction in expert 

mice from a relatively low naïve level (p<0.05; Wilcoxon signed-rank test).  
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Fig. 2 │ Motor parameters during stim period are associated with learning. a, Movement probability 

for go-trials of two example mice plotted as heat maps along the two temporal dimensions (trial dimension 

on x-axis; learning dimension on y-axis; 50-trial bins along learning dimension). Red dashed line indicates 

learning threshold. Cyan dashed lines demarcate ‘texture in’ period. Naïve and expert phases were analyzed 

in the 500 first and last trials, respectively. b, Left: Time course of movement probability averaged across 

all 7 mice during go-trials for naïve phase (grey dashed  line) and expert phase (black solid line), 

respectively. Error shading indicates s.e.m. Green arrows indicate stimulus and response cue. Right: Mean 

movement probability (± s.e.m) in cue-, pre-, and stim-period for naïve and expert phase. n = 7 mice; 

*p<0.05, n.s. not significant, Wilcoxon signed-rank test. c, Movement probability during stim-period across 

learning for all mice. Each curve was fitted with a sigmoid function. Dashed red line indicates movement 

threshold (=0.3). d, Movement threshold for all mice (circles). For comparison the learning thresholds from 

Fig. 1g are shown (crosses). e-h, Same plots as a-d for whisking behavior. The envelope amplitude of 

whisking was analyzed. Whisking threshold was defined as 0.4°. i-l, Same plots as a-d for licking behavior. 

The probability of licking was analyzed. Licking threshold was defined as 0.075. Licking threshold could 

not be detected for mouse #6. 

 

To further understand the relationship between learning and body movement, we calculated 

the average movement probability during the stim-period for each mouse throughout learning (Fig. 

2c). By setting a movement threshold of 0.3 (i.e. moving in 30% of the trials) we could accurately 

predict the learning threshold (Fig. 2d; r=0.99, p<0.001 between learning and movement threshold 

across mice). Thus, although not yet receiving any reward during the stim-period, mice started to 
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move more extensively shortly after texture sensation almost exactly at that time point during 

training when they learned that the go-texture was associated with a reward.  

We performed the same analysis for whisking and licking behavior. On average, the 

amplitude of the whisking envelope significantly increased with learning in the stim-period 

(p<0.05, n = 7 mice, Wilcoxon signed-rank test) but showed little change in cue- and pre-period 

(Fig. 2e,f). As for body movements, increased whisking during and following texture touch 

occurred in parallel to the learning curve and the learning threshold could be well predicted by 

defining a whisking threshold (Fig. 2g,h). With regard to licking behavior during go-trials we found 

that licking was reduced in expert animals in the cue- and pre-period—highlighting the key 

requirement of lick suppression for learning—whereas it was enhanced in the stim-period (Fig. 

2k,l). This increase did not reach significance, presumably because pronounced licking started only 

at the end of our defined stim-period but was clearly enhanced thereafter in the expert phase. We 

conclude that mice exhibit consistent learning-related changes in motor behaviors, engaging their 

body to solve the discrimination task and receive the reward. Once mice learned to discriminate 

between textures, they initiate various movements during the stim-period whereas they remain 

relatively quiet before texture touch (i.e. during cue- and pre-period). We therefore first focused on 

the time period before touch, allowing us to study learning-related changes of cortical processes 

that lead up to the task-relevant stimulus without the confound of movement-related cortical 

activity. 

 

Learning-related changes in cortical activity early during trials. We next analyzed the 

spatiotemporal dynamics of L2/3 cortical activity across learning, as revealed by wide-field 

calcium imaging. In the following we present the results for go-trials, i.e. for one type of texture 

stimulus (hit and miss trials pooled together). We calculated activity maps by averaging F/F 
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signals during the cue-, pre-, and stim-period, respectively, and compared maps obtained during 

naïve (first 500 trials) and expert (last 500 trials) phase. Maps from two example mice show 

activation during the cue-period in A1 (also anterior-medial and hindlimb areas) and lower 

activation in postero-medial (PM) and retrosplenial-dorsal (RD) association areas (Fig. 3a). During the 

pre-period, RL displayed high activation especially in expert mice. During the stim-period, BC 

displayed the highest activation level. These example maps suggest that a specific sequence of 

activation emerges during learning, starting from auditory cortex in response to the stimulus cue, 

followed by RL activation as the texture approaches the whiskers, and continuing to BC activation 

during touch sensation. This notion of sequential activation is further highlighted by plotting the 

time course in the expert phase for the mean F/F traces in the regions A1, RL, and BC (Fig. 3b 

for the two example mice; Supplementary Fig. 5 for all mice).  

   Next we analyzed in more detail how the cortical activation sequence from cue- to pre- to 

stim-period changes across learning. Surprisingly, we found learning-related changes during these 

early trial periods before texture touch. Based on the example activation maps we focused on 5 

areas of interest during specific time periods: A1, PM and RD during the cue-period; RL during 

the pre-period; and BC during the stim-period. For each area we plotted the heat map of trial-related 

F/F signals across learning (i.e. trial dimension against learning dimension), the comparison of 

naïve and expert average F/F traces, and the mean F/F responses in the respective trial period 

across learning (Fig. 3c). In the cue-period, A1 activity displayed variable changes during learning, 

increasing in one mouse while slowly decreasing in the other. We will return to this variability 

further below. Interestingly, RD and PM showed a suppression of responses across learning for the 

cue-period. In contrast, in the pre-period RL responses showed  
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Fig. 3 │ Changes in wide-field calcium signals across cortex during learning. a, Example activation 

maps from two mice averaged during cue-, pre- and stim-period in naïve (top) and expert (bottom) phase. 

Color scale bar indicates min/max of percent ΔF/F. Overlay of areas in gray for all maps. 5 areas of interest 

are marked b, Expert trial-related responses in A1, RL and BC for the two example mice. Green arrow marks 

stimulus cue. c, Continuation of examples in a. Top: Population responses plotted for the two temporal 

scales (trial scale along x-axis; learning scale along y-axis) for five areas of interest (from left to right): A1, 

PM, RD, RL and BC. Data is binned every 50 trials. Red lines indicate mean first touch of the whiskers on 

the incoming texture. Dashed red line indicates learning threshold. Middle: Trial-related area responses for 

expert (colored) and naïve (gray). Bottom: Mean responses across learning for each area averaged during 

the specific trial period indicated. Each curve is fitted with a sigmoid function. d, Mean activation of all 25 

cortical areas in expert (black) and naïve (gray) mice during cue-, pre- and stim-period and grouped into 

auditory (green), association (pink), sensory (blue) and motor (red) areas (see also inset). Error bars are 

s.e.m. across mice (n=7).  
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consistent enhancement during learning. Finally, BC activity in the stim-period was enhanced in 

the expert phase. Thus, cortical areas display diverse learning-related changes during specific trial 

periods, ranging from enhancement (e.g., RL and BC) to suppression (e.g., PM and RD).  

 We expanded our analysis to all 25 cortical areas by calculating the mean ΔF/F activation 

for each area during the cue-, pre- and stim-period, averaged across all mice for expert and naïve 

phase (Fig. 3d). During the cue-period, several association areas, including PM and RD, showed 

reduced activation in expert mice. During the pre-period, expert mice displayed a saliently 

enhanced activation in RL (actually the largest ΔF/F change for this period) whereas PM and RD 

maintained lower activation levels. Notably, RL still displayed strong activation during the pre-

period when we positioned the texture out of reach of the whiskers in two expert mice so that the 

relevant stimulus was omitted (Supplementary Fig. 4). This finding suggests that RL responses 

do not directly relate to texture touch per se and possibly rather represent the expectation of the 

upcoming touch. Finally, BC displayed the highest activation in expert mice during the stim-period, 

along with activation of other sensory and motor areas that presumably relates to the initiation of 

movements during this period.  

Two phases of cortical changes: wide-spread suppression followed by specific enhancement. 

Because we imaged large-scale cortical activity throughout the entire learning process, we could 

relate the time course of learning-related activity changes in the various areas more precisely to the 

behavioral learning curve. As a first step, we applied sigmoidal fits to the mean F/F changes in 

the areas of interest selected in Figure 3 and compared the time courses of the normalized curve 

fits (Fig. 4a; for non-normalized traces for all mice see Supplementary Figure 5). Surprisingly, 

activity in PM and RD showed suppression long before the enhancement in BC and RL and even 

clearly before the behavioral learning threshold was reached. The inflection point where the 
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normalized curve crossed 0.5 occurred significantly earlier for PM and RD than for RL and BC 

and also significantly preceded the learning threshold (p < 0.05; Wilcoxon signed-rank test; Fig. 

4b for individual mice and Fig. 4c averaged across all mice). Suppression in PM and RD occurred 

about 500 trials before the mouse reached learning threshold and before the enhancement in RL 

and BC. In addition, for each of these four areas the inflection point positively correlated with the 

behavioral learning threshold across mice (r = 0.97. 0.97, 0.79 and 0.79 for BC, RL, PM and RD 

respectively; p < 0.05). Consequently, the early suppression in PM and RD could predict well when 

the mouse will learn the task hundreds of trials in advance. In contrast, the inflection points for BC 

and RL were not significantly different from the learning threshold (p > 0.05; Wilcoxon signed-

rank test), implying that they occur rather in parallel with increases in d’ and thus cannot predict 

when threshold is reached. 

As indicated in Figure 3c the learning-related changes of A1 activity during the cue-period 

varied widely, with one example mouse displaying mostly enhancement and the other  mostly 

suppression. A closer look reveals that suppression and enhancement were discernible as two 

consecutive phases in the A1 signals (Fig. 4d and Supplementary Figure 6). Plotting the cue-

period A1 signal changes across learning, together with the respective learning thresholds, we 

noticed that suppression consistently occurred before mice reached learning threshold whereas 

enhancement occurred thereafter. The relative amplitude of modulations (suppression or 

enhancement) varied between mice but A1 calcium signals in the cue-period were significantly 

lower in amplitude around the time of learning compared to naïve and expert phases (Fig. 4e; p < 

0.05; Wilcoxon signed-rank test; averaged across ±100 trials around threshold). Thus learning-

related changes of activity in cortical areas do not need to be uni-directional, i.e., exclusively 

decreasing or increasing, they may display mixed effects. Apparently, stimulus-cue induced A1 
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Fig. 4 │ PM and RD suppression occurs before learning and precedes RL and BC enhancement. a, 

Normalized sigmoidal fits to the learning-related mean F/F changes in PM and RD (for cue-period), in RL 

(for pre-period), and in BC (for stim-period) for two example mice. Horizontal dashed red line indicates 

0.5-level for determining steepest points of change. Vertical solid gray line indicates the learning threshold 

of the mouse. b, Steepest points of change for all mice in each of the four areas. Learning threshold is marked 

with a gray plus sign (similar to Fig. 1g). c, Steepest points of change and learning threshold averaged across 

mice. Error bars are s.e.m. across mice. d, Learning-related F/F changes in A1 during the cue-period for 

two example mice. Vertical gray line indicates learning threshold. e, Mean F/F changes in A1 during the 

cue-period for naïve, learning and expert mice. Error bars are s.e.m. across mice. *p < 0.05; n.s. – not 

significant; Wilcoxon signed-rank test.  

  

activity is suppressed early during training before learning, similar to PM and RD, and then 

dynamically shifts to enhancement after the learning threshold has been reached, similar to RL and 

BC but to a variable degree. 

We wondered whether such two phases of pre-learning suppression and learning-related 

enhancement are also apparent in other cortical areas and for different trial periods. We therefore 

applied a two-phase model to all areas by fitting the learning-related F/F signals in cue-, pre- and 

stim-period with a double sigmoid. This analysis corroborated the concept of two phases of cortical 

activity changes and substantiated the pre-learning suppression in association areas and later 
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specific enhancement in task-related areas in congruence with learning (Supplementary Figure 

7).   

 As an alternative approach to quantify the relationship between the learning curve of the 

mouse and the learning-related changes in cortical activity, we defined a learning map for the cue-

, pre-, and stim-periods by correlating the learning curve (d’ values) with the corresponding time 

course of the F/F signals for each pixel (averaged over the respective trial period; Fig. 5a). The 

maps for two example mice reveal that several association areas display negative correlation values 

during the cue-period (Fig. 5b), reflecting the predominance of suppression in these areas during 

the early cue-period. During the pre-period, RL displayed the highest positive correlation whereas 

PM and RD specifically maintained negative values. Finally, BC displayed the highest correlation 

during the stim-period. Other sensory and motor areas showed strong correlation, too, presumably 

reflecting behavior-related neural activity. The divergence of activity patterns across areas during 

the pre-period (positive correlation with learning in RL and BC vs. low or negative correlations in 

PM and RD) also became obvious when plotting correlations with the learning curve for each time 

frame during the trial period (Fig. 5c). Pooled across mice correlations between activity and 

learning were mostly negative in our 5 prime areas during the cue-period, then became significantly 

positive in RL and BC for the pre-period (while staying significantly negative for PM and RD) and 

significantly positive in BC for the stim-period (along with RL; Fig. 5d; p<0.05; Wilcoxon signed-

rank test). Across all 25 areas, many association areas were negatively correlated with d’ values 

during the cue-period, followed by a spatial refinement during the pre-period with RL displaying 

positive correlation with learning whereas PM and RD exclusively pertained negative correlations 

(Fig. 5e). As indicated by the learning maps, BC displayed positive correlation for the stim-period 

as well as most of the sensory and motor areas. 
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Fig. 5 │ Learning maps reveal dissociation of association areas in relationship to learning. a, Schematic 

illustration for calculating a learning map. Each pixel in the maps reflects the correlation coefficient (r) 

between the mouse’s learning curve and the curve of learning-related F/F change of the respective pixel. 

The latter can be averaged across the key trial periods (i.e. cue, pre, or stim) or calculated for each time 

frame. b, Learning maps during cue-, pre-, and stim-periods in two example mice. Color denotes r-values. 

c, Correlation with learning as a function of time for the 5 key areas in two example mice. d, Correlation 

with learning during cue-, pre-, and stim-periods for the 5 areas. Error bars are s.e.m. across mice. e, 

Correlation with learning during cue-, pre-, and stim-periods for all areas. Error bars are s.e.m. across mice.   
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These findings highlight the spatial refinement that the association areas undergo during learning, 

especially during the trial period bridging the initial stimulus cue and the arrival of the texture as 

task-relevant stimulus. 

Seed pixel analysis reveals dissociation within the association network. We next aimed to 

further quantify the differences and potential interactions among different areas during learning. 

Similar to the learning maps we calculated ‘seed maps’, for which—instead of correlating F/F 

signals pixel-wise to the learning curve—we correlated the learning-related F/F changes for all 

pixels with the reference time course in a ‘seed’ area (Fig. 6a).  Guided by the learning maps, we 

first calculated pre-period maps with the association areas RL, PM, or RD as seed areas. The RL 

seed map revealed a positive correlation of activity in this area with sensory and motor cortices as 

well as with adjacent association areas (Fig. 6b). In contrast, PM and RD seed maps showed high 

correlations among each other and with their adjacent areas but lower correlations with RL, BC, 

and most of the other cortical areas (Fig. 6c; pooled across all mice).   

A closer look at the inter-areal correlations in the posterior part of cortex during cue- and 

pre-period revealed that all association areas are highly correlated during the cue-period but vary 

dramatically during the pre-period (Fig. 6d). For further quantification, we divided the association 

cortex into anterior (RL, A, AM and AL) and posterior (PM, RD, LM, LI, PL, PR and RA) areas 

(see dashed red line in Figure 6c). For all three seed areas the variance of correlation with other 

association areas was higher during the pre-period compared to the cue-period (Fig. 6e; p<0.001; 

Wilcoxon signed-rank test). Moreover, during the pre-period, unlike the cue-period, RL displayed 

significantly higher correlation with anterior compared to posterior association areas whereas PM 

and RD displayed the opposite effect (Fig. 6f; p<0.05 for the pre-period; p>0.05 for the cue-period; 

Wilcoxon signed-rank test; see a full correlation matrix for the 
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Fig. 6 │ Functional reorganization of association cortex during learning. a, Schematic of calculating a 

seed correlation map. Each pixel in the map reflects the correlation coefficient (r) between the learning curve 

of a seed area (e.g. RL, PM or RD) and the learning-related F/F signal changes of the respective pixel. 

Seed maps can be calculated separately for cue-, pre-, or stim-period. b, Seed maps for RL, PM and 

RD during pre-period in two example mice. Color denotes r-values. c, Correlation between the three seed 

areas and all the other areas during pre-period, averaged across all mice. Error bars are s.e.m. across mice. 

d, 2D overview of the inter-areal correlations across learning during cue- (top) and pre-period (bottom) 

between RL (left), PM (middle), and RD (right) and the surrounding cortical areas (also including A1, BC 

and V1). Line width is proportional to the average r-value across all mice. Red dashed line indicates 

separation into anterior and posterior association areas. e, Variance of inter-areal correlations within all 

association areas for each seed area in cue- and pre-period. Error bars are s.e.m. across mice. f, Seed area 

correlation values for the three areas during cue- and pre-period, averaged separately for anterior or posterior 

association areas. Error bars are s.e.m. across mice. *P < 0.05. ***P < 0.001.  n.s. – not significant. Wilcoxon 

signed-rank test. 
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learning-related F/F changes in all 25 areas and for all 3 trial periods in Supplementary Figure 

8). In summary, we find that the network of association areas is reorganized and spatially refined 

during learning by enhancing anterior association areas in a correlated manner while maintaining 

suppression in posterior association areas, specifically in the trial period before texture touch. 

 

Barrel cortex discriminates best between go and no-go textures. So far, we have mainly 

concentrated on go trials and on how large-scale cortical dynamics changes during learning. Most 

of the effects (e.g. widespread suppression followed by specific enhancement involving RL) related 

to the trial periods before the texture touches the whiskers and thus were also present for the no-go 

trials. But which areas can eventually develop discriminative power to distinguish between the two 

textures? Based on previous studies we first concentrated on the primary sensory area, i.e. 

BC2,7,10,11. The average time courses of trial-related F/F signals in BC for go and no-go textures 

did not differ in the naïve mice (Fig. 7a). In the expert phase, in contrast, touch-evoked F/F changes 

were generally enhanced with the response to the go-texture being substantially higher than for the nogo-

texture (Fig. 7a). To calculate the discrimination power between go and no-go textures we computed 

receiver operating characteristic (ROC) curves of single trials27,32, with the area under the curve (AUC) 

relating to discrimination power. AUC values in BC showed a significant increase during the stim-period in 

the expert but not in the naïve phase (Fig. 7b). High AUC values in BC developed across learning during 

the stim-period (Fig. 7c). Finally, we calculated AUC values during the stim-period for all 25 areas in naïve 

and expert mice. Pooled across all mice, BC displayed the highest AUC values, followed by other areas 

mostly in motor, sensory and frontal association areas (Fig. 7d). Highest discrimination power in BC is 

further highlighted when calculating AUC values for each pixel to obtain an AUC map (Fig. 7e). Next, we 

further investigated the development of AUC in BC across learning (during the stim-period; Fig. 6f). In all 

mice, AUC values increase with learning and the learning threshold of each mouse was correlated with the 

inflection point of a sigmoidal fit to the AUC curve (Fig. 7f,g; r = 0.98; p<0.05). Thus, discrimination power 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 12, 2019. ; https://doi.org/10.1101/732115doi: bioRxiv preprint 

https://doi.org/10.1101/732115
http://creativecommons.org/licenses/by-nc-nd/4.0/


21 

 

in BC emerges at the same time when mice pass the learning threshold, indicating the tight link of the 

changes in cortical processing with improved task performance.  

 

 

Fig. 7 │ Emergence of discrimination power in barrel cortex during learning. a, BC activity in an 

example mouse for go (cyan) and no-go (red) trials in naïve (left) and expert (right) mouse. Error bars are 

s.e.m. across trials. b, ROC-AUC values for go vs. no-go trials as a function of time for naïve (gray) and 

expert (cyan) mice. Dashed gray lines indicate mean ± 2 s.d. of shuffled data. Same example as in a. 

Histogram below depicts the distribution of the first touch for this example. c, Heat map of trial-related AUC 

values across learning dimension (vertical axis) in the same example mouse. Dashed red line indicates 

learning threshold. Dashed cyan lines indicate texture-in period. d, Pooled AUC values during stim-period 

in all areas for expert (blue) and naïve (black) mice. Error bars are s.e.m. across mice. e, AUC maps during 

stim-period in three example expert mice. Color denotes AUC values. f, AUC values in BC during stim-

period across learning for all mice. Threshold for each mouse is indicated with a vertical line at the inflection 

point of the sigmoid fit. g, Inflection points of AUC curves defining ‘AUC thresholds’. Learning thresholds 

are marked with gray plus signs.  

 

 

Discussion 

We have identified learning-related changes in cortical activity covering a wide range in 

spatiotemporal space. First, changes were distributed across many cortical areas and they 

comprised suppression, enhancement, as well as sequential combinations thereof. Second, these 

changes were observed in the early trial periods before the texture-touch, indicating that an essential 

part of learning the animal needs to grasp the experimental setting and to understand the trial 
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structure, within which the relevant stimulus for discrimination (here the texture touch) is 

embedded. Third, decreases in cortical activity occurred consistently several hundreds trials before 

the actual learning, suggesting that preparatory changes are required for the subsequent cortical 

adaptations that then presumably underlie the improvement of performance. The main pattern we 

observed is an early widespread suppression in association areas followed by an enhancement of a 

spatially more confined set of task-relevant areas (Fig. 8). Eventually, the emergence of a robust 

trial-related activation sequence from auditory cortex to RL to barrel cortex leads to the highest 

neural discrimination power in barrel cortex upon touch.        

 

 

Fig. 8 │ Learning starts with a general suppression phase followed by a specific enhancement phase. 

a, A schematic illustration of the main cortical changes within the two temporal scales: trial (x-axis) and 

learning (y-axis). Two phases occur across learning: before mice actually learn to discriminate between 

textures, association areas display non-specific suppression of activity in response to the cue (phase 1: non-

specific suppression). Only later, as mice learn the task, a specific sequential pattern is enhanced: starting 

from A1 in response to the cue, then RL just before the texture touches the whiskers, and BC during texture 

touch (phase 2: specific enhancement). Association areas PM and RD specifically remain suppressed. b, 

Schematic diagram showing the distribution of responses across association areas, in preparation of the 

upcoming texture touch (pre period) for the naïve (gray) and expert (black). 

  

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 12, 2019. ; https://doi.org/10.1101/732115doi: bioRxiv preprint 

https://doi.org/10.1101/732115
http://creativecommons.org/licenses/by-nc-nd/4.0/


23 

 

 The activation of RL (as part of PPC) before the texture touch may reflect predictive, 

anticipatory, expectation or attentional processes, as reported previously in PPC of primates (area 

LIP)33,34. Consistent with this notion, RL in mice displays predictive responses in the absence of 

the texture stimulus35 (see also Supplementary Fig. 3). In addition, anatomical projections from 

RL to BC29,36 imply top-down processing that may aid the preparation of adequate processing of 

the incoming relevant texture stimulus in BC and the association between the stimulus and a 

possible future reward. This is in line with our finding that the establishment of a robust temporal 

sequence with RL bridging the stimulus-cue to the task-relevant texture stimulus follows a similar 

time course as the divergence of BC signals for Hit and CR trials. The emergence of discrimination 

power in BC also went hand in hand with increases in body movements, apparently in expectation 

of and preparation for the upcoming reward. These extensive movements result in widespread and 

large cortical activity, including forelimb cortex and motor areas, which makes it difficult to 

separate task-related stimulus processing from behavior-related activation patterns, as they 

increasingly mix in the later trial phase after the touch has happened. Further experiments will be 

required to dissect the cortical signal flow related to the conversion of touch information into 

preparatory and executive motor signals.  

 Regarding the temporal dimension of learning that spans several days, we found a general 

suppression of several association areas, e.g. PM and RD, as a particularly salient event (Fig. 8). 

This early suppression was obvious around 500 trials before a mouse learns to discriminate between 

the textures, during a time period when the mean performance is still low (d’ = 0.32 ± 0.31 mean 

± s.e.m.; most mice still lick for both textures). Because these suppression events occurred 

consistently before onset of learning, we could even predict when the mouse is likely to reach 

learning threshold based on this dynamic feature. In our interpretation, suppression during the cue-

period may indicate a general attentive state that is a prerequisite for learning. It is likely that such 
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increased attention is also apparent in the animal’s behavior and we indeed observed a decrease in 

obsessive licking during the reward period, which occurred about at the time when the suppression 

was observed. In auditory cortex we found a combination of early suppression followed by later 

enhancement, indicating that mice may use the stimulus cue information in order to prepare for the 

upcoming trial. There was no significant difference in the A1 response to the stimulus cue between 

expert and naïve mice but a clear reduction during the steepest part of the learning curve (Fig. 3e). 

This result points to a pronounced reorganization during this training phase and also emphasizes 

the dynamic process that is induced during learning in order to feed anticipatory signals into the 

task-relevant area.  

Interestingly, we found dissociation of signaling between anterior and posterior sets of 

association areas, which may reflect different roles of these areas in neural processing. Anatomical 

evidence suggests that RL uni-directionally projects to PM36, which possibly could exert inhibitory 

control via interneurons. PM and RD are strongly bi-directionally connected, but less so with 

anterior association areas29,36, thus substantiating our functional findings. What could be the reason 

for the pronounced and persistent suppression of PM and RD? PM has been studied mostly in the 

context of visual tasks highlighting its role in spatial processing and navigation37–39. RD is also 

connected with hippocampal regions and has been shown to convey top-down effects in a visual 

discrimination task4 and has been linked to spatial navigation and memory40–42. Therefore, it may 

be that under our experimental conditions, where spatial navigation is not relevant, this network is 

actively suppressed. Future studies may investigate whether in tasks distinct from ours, where 

spatial aspects are important, posterior association areas may show enhanced activity while anterior 

association areas including RL may be suppressed. Alternatively, RL could be the association area 

for processing tactile information whereas PM serves as association area for visual information and 

is not needed in our task. In summary, our results highlight the distributed functional reorganization 
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that cortical dynamics undergoes during learning, progressing in two distinct major phases that first 

reflect the transition into a ready-for-learning modus and second establish the specific cortical flow 

pattern that is needed to solve the task.  

 

ACKNOWLEDGEMENTS 

This work was supported by grants from the Swiss National Science Foundation (SNSF) (31003A-

149858; F.H.), the European Research Council (ERC Advanced Grant BRAINCOMPATH, project 

670757; F.H.), an Edmond and Lily Safra Center for Brain Sciences (ELSC) postdoctoral 

fellowship (A.G.), an EMBO long-term postdoctoral fellowship (ALTF_1077-2014; A.G.), and a 

Marie-Curie Individual Fellowship (659719-AG-GF; A.G.).  

AUTHOR CONTRIBUTIONS 

A.G. and F.H. designed the experiments. A.G. conducted the experiments. A.G. and F.H. 

performed data analysis. A.G. and F.H. wrote the manuscript.    

DATA AVAILABILITY 

The data and code that support the findings of this study are available from the corresponding 

author upon reasonable request. 

 

  

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 12, 2019. ; https://doi.org/10.1101/732115doi: bioRxiv preprint 

https://doi.org/10.1101/732115
http://creativecommons.org/licenses/by-nc-nd/4.0/


26 

 

METHODS 

Animals and surgical procedures. Methods were carried out according to the guidelines of the 

Veterinary Office of Switzerland and following approval by the Cantonal Veterinary Office in 

Zurich. A total of 7 adult male mice (1-4 months old) were used in this study. These mice were 

triple transgenic Rasgrf2-2A-dCre;CamK2a-tTA;TITL-GCaMP6f animals, expressing GCaMP6f 

in excitatory neocortical layer 2/3 neurons11. To generate triple transgenic animals, double 

transgenic mice carrying CamK2a-Tta 43 and TITL-GCaMP6f 44 were crossed with a Rasgrf2-2A-

dCre line (45; individual lines are available from The Jackson Laboratory as JAX# 016198, 

JAX#024103, and JAX# 022864, respectively). The Rasgrf2-2A-dCre;CamK2a-tTA;TITL-

GCaMP6f line contains a tet-off system, by which transgene expression can be suppressed upon 

doxycycline treatment46,47. However, doxycycline treatment is not necessary in these animals, since 

the Rasgrf2-2A-dCre line holds an inducible system of its own, given that the destabilized Cre 

(dCre) expressed under the control of the Rasgrf2-2A promoter needs to be stabilized by 

trimethoprim (TMP) to be fully functional. TMP (Sigma T7883) was reconstituted in Dimethyl 

sulfoxide (DMSO, Sigma 34869) at a saturation level of 100 mg/ml, freshly prepared for each 

experiment. For TMP induction, mice were given a single intraperitoneal injection (150 µg TMP/g 

body weight; 29g needle), diluted in 0.9% saline solution.  

We used an intact skull preparation48 for chronic wide-field calcium imaging of neocortical 

activity which we previously described11. Mice were anesthetized with 2% isoflurane (in pure O2) 

and body temperature was maintained at 37°C. We applied local analgesia (lidocaine 1%), exposed 

and cleaned the skull, and removed some muscles to access the entire dorsal surface of the left 

hemisphere (Figure 2A; ~6 x 8 mm2; from ~3 mm anterior to bregma to ~1 mm posterior to lambda;  

from the midline to at least 5 mm laterally). We built a wall around the hemisphere with adhesive 

material (iBond; UV-cured) and dental cement “worms” (Charisma). Then, we applied transparent 
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dental cement homogenously over the imaging field (Tetric EvoFlow T1). Finally, a metal post for 

head fixation was glued on the back of the right hemisphere. This minimally invasive preparation 

enabled high-quality chronic imaging with high success rate.  

Texture discrimination task. Mice were trained on a go/no-go discrimination task (Fig. 1a). The 

behavioral setup has been described previously27. Each trial started with an auditory cue (stimulus 

cue; 2 beeps at 2 kHz, 100-ms duration with 50-ms interval), signaling the approach of either two 

types of sandpapers (grit size P100: rough texture; P1200: smooth texture) to the mouse’s whiskers 

as ‘go’ or ‘no-go’ textures (Fig. 1a; pseudo-randomly presented with no more than 3 repetitions). 

The texture stayed in touch with the whiskers for 2 seconds, and then it was moved out after which 

an additional auditory cue (response cue; 4 beeps at 4 kHz, 50-ms duration with 25-ms interval) 

signaled the start of a 2 second response period. A water reward was given to the mouse for licking 

for the go texture only after the response cue (‘hit’). Punishment with white noise was given for 

licking for the no-go texture (‘false alarms’; FA). Licking before the response cue was not rewarded 

or punished. Reward and punishment were omitted when mice withheld licking for the no-go 

(‘correct-rejections’, CR) or go (‘Misses’) textures. The licking detector remained in a fixed and 

reachable position throughout the entire trial. Note that the auditory tones merely served as cues 

defining the temporal trial structure, but had no predictive power with respect to go or no-go 

condition. The first auditory tone signaled the trial-start and thus predicted the upcoming arrival of 

the texture as the task-relevant stimulus, whereas the second auditory tone indicated the availability 

of a water reward in the go trials. Licking before the response cue was allowed and did not lead to 

punishment or early reward. 

Training and performance. Five mice were trained to lick for the P100 texture (mice #1-4 

and 7) and 2 mice were trained to lick for the P1200 texture (mice #5 and 6). Mice were first 

handled and accustomed to head fixation before starting water scheduling. Before imaging began 
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mice were conditioned to lick for reward after the presentation of the texture. Imaging began only 

after mice reliably licked for the response cue (typically after the 1st day; 200-400 trials). On the 

first day of imaging, mice were presented with the ‘go’ texture and after 50 trials the ‘no-go’ texture 

was gradually introduced (starting from 10% and increasing by 10% approximately every 50 

trials;49) until reaching 50% probability for the no-go texture by the end of the day. During the 2nd 

day, most mice continuously licked for both textures (supplementary Fig. 2). Thus after around 100 

trials, we increased no-go probability to 80% and waited for mice to perform three continuous CR 

trials before returning to 50% probability. This was done for several times until mice increased 

their performance, specifically withheld licking for the no-go texture. In mice that still continued 

to lick for both textures we additionally repeated the wrong response until a correct response. In all 

mice, a 50% protocol was presented with no repetitions as soon as they reached expert level 

(d’>1.5). 6 out of the 7 mice learned the task within 3-4 days after around a thousand trials (Fig. 

1d; supplementary Fig. 2). Mouse #7 learned the task within 10 days. An effort was made to 

maintain a constant position of the texture and cameras across imaging days in order to maintain 

similar stimulation and imaging parameters. 

 

Wide-field calcium imaging. We used a wide-field approach to image large parts of the dorsal 

cortex while mice learned to perform the task11. A sensitive CMOS camera (Hamamatsu Orca Flash 

4.0) was mounted on top of a dual objective setup. Two objectives (Navitar; top objective: D-5095, 

50 mm f0.95; bottom objective inverted: D-2595, 25 mm f0.95) were interfaced with a dichroic 

(510 nm; AHF; Beamsplitter T510LPXRXT) filter cube (Thorlabs). This combination allowed a 

~9 mm field-of-view, covering most of the dorsal cortex of the hemisphere contralateral to texture 

presentation. Blue LED light (Thorlabs; M470L3) was guided through an excitation filter (480/40 

nm BrightLine HC), a diffuser, collimated, reflected from the dichroic mirror, and focused through 
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the bottom objective approximately 100 µm below the blood vessels. Green light emitted from the 

preparation passed through both objectives and an emission filter (514/30 nm BrightLine HC) 

before reaching the camera. The total power of blue light on the preparation was <5 mW, i.e., <0.1 

mW/mm2. At this illumination power we did not observe any photo-bleaching. Data was collected 

with a temporal resolution of 20 Hz and a spatial resolution of 512x512. On each imaging day a 

green reflectance image was taken as reference to enable registration across different imaging days 

using the blood vessel pattern (fiber-coupled LED illuminated from the side; Thorlabs).  

Mapping and area selection. Each mouse underwent a mapping session under anesthesia 

(1% isoflurane), in which we presented five different sensory stimuli (contra-lateral side): a moving 

bar stimulating multiple whiskers, the forelimb paw, or the hindlimb paw (20 Hz for 2 s); visual 

stimulation with a blue LED in front of the eye (100 ms duration; approximately zero elevation and 

azimuth); and white noise auditory stimulation (2 s. duration). The averaged evoked maps clearly 

showed activation patches in the expected areas (Fig. 1c; supplementary Fig. 1a). Next, we 

registered each imaging day to the mapping day using skull coordinates from the green images. 

Finally, we registered each mouse onto a 2D top view mouse atlas using both functional patches 

from the mapping and skull coordinates (supplementary Fig. 1). Within the atlas borders, we 

defined 25 areas of interest, with some manual modifications within these borders to fit the 

functional activity for each mouse. Motor cortex areas were defined based on stereotaxic 

coordinates and functional patches for each mouse (see below). Thus all mice had similar regions 

of interest that were comparable within and across mice. 

We grouped these 25 areas into auditory (green; Au), association (pink; Asc), sensory (blue; 

somatosensory along with primary visual cortex; SV), and motor (red; M) areas (Fig. 1d and 

supplementary Fig. 1b). Auditory areas: Primary auditory (A1), Auditory dorsal (AD) and 

Temporal association area (TEA). Senosory areas: Somatosensory mouth (Mo), Somatosensory 
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nose (No), Somtosensory hindlimb (HL), Somtosensory forelimb (FL), Barrel cortex (BC; primary 

somatosensory whisker); Secondary somatosensory whisker (S2), Somtosensory trunk (Tr) and 

Primary visual cortex (V1). Motor areas: whisker-related primary motor cortex (M1; 1.5 anterior 

and 1 mm lateral from bregma, corresponding to the whisker evoked activation patch in M1 from 

the mapping session), anterior lateral motor cortex (ALM; 2.5 anterior and 1.5 mm lateral from 

bregma50) and secondary motor cortex (M2; 1.5 anterior and 0.5 mm lateral from bregma 

corresponding;11). Association cortex: Rostrolateral (RL), Anterior (A), Anterior lateral (AL), 

Anterior medial (AM), Posterior medial (PM), Lateral medial (LM), Lateral intermediate (LI), 

Posterior lateral (PL), Post-rhinal (PR), Retrosplenial dorsal (RD) and Retrosplenial angular (RA). 

We note that our definition of association cortex is broad and may include or exclude areas that are 

not necessarily classical association areas. In addition, we further divided association areas into 

anterior (RL, A, AM and AL) and posterior (PM, L, LI, PL, PR, RD and RA) association cortex 

(dashed red line in Fig. 5d). 

Control experiments. In control experiments, we excluded confounding effects of 

autofluorescence or non-calcium-related intrinsic signals, by exciting the wide-field preparation 

with green light, showing no positive responses during cue-, pre-, and stim-period (Supplementary 

Fig. 9; For additional controls for non-calcium related optical signals see11). Therefore, in the 

experiments presented in this study non-calcium-related intrinsic signals have no major influence 

on the GCaMP6f signals, especially in the cue and pre periods. To control for possible changes in 

responses across several days that are not necessarily related to learning, we evaluated the stability 

of areal activity in expert mice imaged across 5 consecutive days. Responses in BC (during stim-

period), RL (during pre-period), and A1 (during cue-period) across 5 days were relatively flat (n = 

4 mice). In addition, trial-shuffled data across learning eliminated these changes in responses and 

resulted in a relatively flat change in response (103 iterations). Taken together, changes in activity 
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across a learning period of several days is more likely to be learning related rather than day-to-day 

fluctuations in activity.  

  

Whisker and body tracking. In addition to wide-field imaging, we tracked movements of the 

whiskers and the body of the mouse during the task (Fig. 1a). The mouse was illuminated with a 

940-nm infra-red LED. Whiskers were imaged at 50 Hz (500x500 pixels) using a high-speed 

CMOS camera (A504k; Basler), from which we calculated time course of whisking envelope and 

the time of first touch (see below). An additional camera monitored the movements of the mouse 

at 30 Hz (The imaging source; DMK 22BUC03; 720x480 pixels). We used movements of both 

forelimbs and the head/neck region to assess body movements, to reliably detect large movements 

(Fig. 1a; see Data Analysis below).  

 

Data analysis. Data analysis was performed using Matlab software (Mathworks). All mice were 

continuously imaged during learning (5-11 days). Wide-field fluorescence images were sampled 

down to 256x256 pixels and pixels outside the imaging area were discarded. Each pixel and each 

trial were normalized to baseline several frames before the stimulus cue (frame 0 division). In this 

study, we grouped trials based on the texture type, i.e. go or no-go texture (see Calculating learning 

curves below). We define three time period within the trial structure: cue (-1.9 to -1.6 relative to 

texture stop), pre (-1 to 0.5 s relative to texture stop) and stim (-0.5 to 0.5 relative to texture stop; 

Fig. 1d). Naïve and expert mice are defined as the first and last 500 trials respectively.     

Calculating body movements. We used a body camera to detect general movements of the 

mouse (30 Hz frame rate; supplementary Fig. 1a). For each imaging day, we first outlined the 

forelimbs and the neck areas (one area of interest for each), which were reliable areas to detect 

general movements. Next, we calculated the body movement (1 minus frame-to-frame correlation) 
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within these areas as a function of time for each trial. Thresholding at 3 s.d. (across time frames 

before stimulus cue) above baseline (defined as the 5th percentile) resulted in a binary movement 

vector (either ‘moving’ or ‘quiet’) for each trial11. 

Whisker tracking and first-touch analysis. The average whisker angle across all imaged 

whiskers was measured using automated whisker tracking software51. The mean whisker envelope 

was calculated as the difference between maximum and minimum whisker angles along a sliding 

window equal to the imaging frame duration (50 ms;11,27). Whisker envelope was normalized just 

before the auditory cue similar to widefield data (Frame zero). In addition, we manually detected 

the first frame, in which any whisker touched the upcoming texture, using the movies from the 

whisker cameras (LabVIEW custom program). The first touch occurred on average 0.33 and 0.34 

s before the texture stopped for naïve and expert mice respectively. Time of first touch did not 

differ between expert and naïve mice (P > 0.05; Mann-Whitney U-test; n=7 mice). We note that 

the pre period from -1 to -0.5 relative to texture stop mostly (but not exclusively) does not contain 

the first touch. 

 Calculation of curves across learning. Trials were binned (n=50 trials with no overlap) 

across learning and the performance (defined as d’ = Z(Hit/(Hit+Miss)) – Z(FA/(FA+CR)) where 

Z denotes the inverse of the cumulative distribution function) was calculated for each bin. Next, 

each behavioral learning curve was fitted with a sigmoid function 

𝑆(𝑡) = 𝑎
1

1+𝑒
−(𝑡−𝑏)

𝑐

         (1) 

Where a denotes the amplitude, b the time point (in trial numbers) of the inflection point, and c the 

steepness of the sigmoid. A d’=1.5 was defined as the threshold and mice were ordered based on 

the trial number in which they crossed threshold (i.e. learning threshold; Fig. 1g). Different 

threshold maintained the order of the mice based on their learning threshold (see Fig. 1f). 
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To compare the behavioral learning curve with other behavioral parameters and neuronal 

activity, we similarly grouped trials and separated them based on the texture type, i.e. hit and miss 

trials were grouped into the go texture; CR and FA trials were grouped into the no-go texture. Our 

main focus in this study was on the go texture (presented in figures 1-6). Therefore, stimulus 

identity was kept similar across learning. Results were maintained when considering only the no-

go texture. Only in figure 7 we compare between go and no-go textures to calculate discrimination 

power. Next, we can present a behavioral parameter (i.e. body movement, whisking envelope or 

licking probability) or cortical areas (averaged over pixels) in 2 dimensional temporal spaces where 

the x-axis is the trial temporal structure (i.e. trial dimension) and the y-axis is the learning profile 

across trials and days (i.e. learning dimension; for examples see Fig. 2a, e, i; Fig. 3c top). From this 

2D temporal space we could average across trials of the learning dimension, e.g. during naïve and 

expert states (for example see Fig. 2b, f, j; Fig. 3c middle). Alternatively, we can average across 

time frames within the trial dimension, to obtain a response curve across learning for a specific 

time period (i.e. cue, pre or stim period; additionally smoothed with a Gaussian kernel (2σ=9) and 

fitted with a sigmoid function; for example see Fig. 2c, g, k; Fig 3c bottom). Thus we are able to 

obtain a curve across learning for a specific area or behavioral parameter which are comparable to 

the behavioral learning curve of the mouse. The sigmoid fits of the response curves from different 

cortical areas were normalized between 0 and 1 in order to compare between response curves of 

different areas. This was done mainly because of the different activation ranges across learning for 

each area. Non-normalized learning curves are presented in supplementary Figure 6. In an 

additional analysis we also fitted each response curve for all areas and time periods with a double 

sigmoid fit in order to fit both the initial suppression and the later enhancement that was present in 

some curves (e.g. Fig. 4d; Supplementary Fig. 8): 
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𝑑(𝑡) = 𝑎1(1 −
1

1+𝑒
(
−(𝑡−𝑏1)

𝑐1
)
) + 𝑎2(1 +

1

1+𝑒
(
−(𝑡−𝑏2)

𝑐2
)
) + 𝑑     (2) 

with a1 and a2 as amplitudes, b1 and b2 as inflection points (in trial numbers), and c1 and c2 as 

steepness parameters of the descending and ascending sigmoid. respectively. d is baseline 

parameter, which was set to the minimum value of a curve. Thus, for each area we could quantify 

the amount (amplitude) and timing (latency) of both suppression and enhancement during each 

time period relative to the learning threshold. Finally, to quantify the enhancement suppression 

ratio we calculated the modulation index (MI) as 

MI =
𝑎2−𝑎1

𝑎2+𝑎1
           (3) 

ranging from -1 and 1, with positive values indicating more enhancement, negative values 

indicating more suppression, and near zero values indicating similar amounts of suppression and 

enhancement. 

Calculating learning maps and seep maps. To study the relationship between the 

behavioral learning curve and the learning curves of all pixels we calculated a learning map (Fig. 

5). This was done by calculating the correlation coefficient (r) between the behavioral learning 

curve of the mouse and the learning-related ΔF/F changes of each pixel (Fig. 5a). This can be done 

for a specific time period (i.e. cue, stim or stim periods; Fig. 5a, b) or for each time frame (Fig. 5c). 

To calculate the relationship between the learning-related ΔF/F changes of a specific area (i.e. seed) 

and the learning-related ΔF/F changes of all pixels we calculated a seed correlation map (Fig. 6). 

This was done similarly to the learning map by only substituting the behavioral learning curve with 

the learning-related ΔF/F changes of the desired area (defined as the seed area; Fig. 6a). We chose 

seed areas to be RL, PM and RD which were of the most interest from previous analysis and best 

represent the main trends of neuronal changes during learning. A full correlation matrix between 

all learning curves is presented in Supplementary Fig. 8. 
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  Discrimination power between go and no-go texture. To measure how well could 

neuronal populations discriminate between go and no-go textures, we calculated a receiver 

operating characteristics (ROC) curve and calculated its area under the curve (AUC). This can be 

done for each pixel (Fig. 7e), each area (Fig. 7d), each time frame (Fig. 7b), and across learning 

(Fig. 7f). Our main focus is during the stim period where texture touched the whiskers. To calculate 

significance, we calculated the sample distribution by trial shuffling between go and no-go textures 

(n=100 iterations). Exceeding mean±2std of the sample distribution is defined as significant (Fig. 

7b).   

Statistical analysis. In general, non-parametric two-tailed statistical tests were used, Mann-

Whitney U-test to compare between two medians from two populations or the Wilcoxon signed 

rank test to compare a population's median to zero (or between two paired populations). Multiple 

group correction was used when comparing between more than two groups.  
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