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Abstract 11 

Understanding interspecific viral transmission is key to understanding viral ecology and evolution, 12 

disease spillover into humans, and the consequences of global change. Prior work has 13 

demonstrated that macroecological factors drive viral sharing in some mammalian groups, 14 

but analyses have never attempted to predict viral sharing in a pan-mammalian context. Here 15 

we show that host phylogenetic similarity and geographic range overlap are strong, nonlinear 16 

predictors of viral sharing among species across the entire mammal class. Using these traits, 17 

we predict global viral sharing patterns across 4196 mammal species and show that our 18 

simulated network successfully predicts viral sharing and reservoir host status using internal 19 

validation and an external dataset. We predict high rates of mammalian viral sharing in the 20 

tropics, particularly among rodents and bats, and that within- and between-order sharing 21 

differs geographically and taxonomically. Our results emphasize the importance of 22 

macroecological factors in shaping mammalian viral communities, and provide a robust, 23 

general model to predict viral host range and guide pathogen surveillance and conservation 24 

efforts. 25 

  26 
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Most emerging human viruses originate in wild mammals, so understanding the drivers of 27 

interspecific viral transmission in these taxa is an important public health research priority1,2. 28 

Despite a rapidly expanding knowledge base, the mammalian viruses known to science 29 

remain taxonomically biased and limited in scope, likely comprising less than 1% of the 30 

complete mammalian virome3,4. Furthermore, host range is inadequately characterized even 31 

for the best-studied viruses5–7. To help prioritise viral discovery efforts and zoonotic disease 32 

surveillance in wildlife, studies have revealed high (zoonotic) parasite diversity in certain 33 

host taxa, such as rodents and bats5,8, and/or linked parasite diversity with host phenotypic 34 

traits such as reproductive output9,10
. Viral diversity has also been associated with host 35 

macroecological traits, including geographic range size11 and sympatry with other mammals5. 36 

The rationale for investigating viral diversity is that species with more viruses will generate 37 

more opportunities for viral transmission to other species, including humans. However, in 38 

order to infect a new host species, a virus must transmit, invade, and potentially replicate 39 

within the novel host12. Each of these processes becomes less likely if the two hosts differ 40 

more in terms of their geographic range, behaviour, and/or biochemistry (i.e., cellular 41 

receptors allowing viral attachment and invasion)12,13. Consequently, the probability that a 42 

pair of hosts will share a virus is shaped both by the species’ underlying viral diversity and by 43 

species interactions represented by pairwise measures such as spatial overlap, phylogenetic 44 

relatedness, and ecological similarity14–16.  45 

 46 

Previous investigations into pairwise determinants of viral sharing have been limited to one 47 

or two host orders (e.g., bats17,18, primates19, ungulates16, and carnivores14,16), while 48 

sometimes lumping together different types of pathogen (e.g., helminths, viruses, and 49 

bacteria). Viruses are sometimes shared across large host phylogenetic distances (e.g., Nipah 50 

virus in bats and pigs, among many others20,21), requiring a broader understanding of viral 51 

sharing across mammals to predict patterns at different taxonomic and geographic scales. In 52 

addition, many mammalian orders have yet to be investigated in these analyses – most 53 

notably rodents, which are highly diverse and host important zoonotic viruses5,8. In addition, 54 

although phylogenetic and geographic viral sharing effects have been empirically 55 

demonstrated, the models have not yet been applied to validate viral sharing predictions using 56 

external datasets or make inferences about mammals with no known viral associations. If 57 

geographic and phylogenetic effects on viral sharing are as ubiquitous as they seem, these 58 

variables alone could provide a useful baseline model of viral sharing applicable across the 59 

mammal class.  60 
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Here, we analyse pairwise viral sharing using a novel, conservative modelling approach 61 

designed to partition the contribution of species-level traits from pairwise phylogeographic 62 

traits. This method of analysis stands in contrast to previous studies of mammalian viral 63 

sharing which have mainly focussed on host-level traits, and importantly buffers against 64 

certain inherent biases in the observed viral sharing network, including host sampling bias, 65 

when making predictions.  66 

Results and Discussion 67 

Predictors of viral sharing 68 

We fitted a model designed to partition the contribution of species-level effects and pairwise 69 

similarity measures to mammalian viral sharing probability. We used a published database of 70 

1920 mammal-virus associations (excluding humans) as a training dataset5. These data 71 

included 591 wild mammal species, equalling 174345 pairwise host species combinations, 72 

with 6.4% connectance – that is, 6.4% of species pairs shared at least one virus. We used a 73 

generalised additive mixed model (GAMM) framework, including a species-level effect in 74 

our model as a multi-membership random effect, capturing variation in each species’ 75 

connectedness and underlying viral diversity (see Methods). Overall, our model accounted 76 

for 44.8% of the total deviance in pairwise viral sharing, with 51.1% of this explained 77 

deviance attributable to the identities of the species involved (i.e., the species-level effect). 78 

Our model structure was effective at controlling for species-level variation in our dataset: i.e., 79 

the term had a strong impact on the centrality of each species when we simulated networks 80 

using just these parameters (Figure SI1). This observation suggests that ~50% of the dyadic 81 

structure of observed viral sharing networks (in contrast to the true underlying network) is 82 

determined by uneven sampling and concentration on specific species, and the remainder by 83 

macroecological processes. 84 

 85 
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 86 

Figure 1: Viral sharing GAMM model outputs and data distribution. A: predicted viral sharing 87 

probability increases with increasing phylogenetic relatedness; the different coloured lines represent 88 

different geographic overlap values. B: predicted viral sharing probability increases with increasing 89 

geographic overlap; the different coloured lines represent different phylogenetic relatedness values. C: 90 

the geographic overlap:phylogenetic similarity interaction surface, where the darker colours represent 91 

increased probability of viral sharing. White contour lines denote 10% increments of sharing 92 

probability. Labels have been removed from some contours to avoid overplotting. D: hexagonal bin 93 

chart displaying the data distribution, which was highly aggregated at low values of phylogenetic 94 

similarity and especially of geographic overlap. 95 

 96 

As expected, increasing host phylogenetic similarity and geographic overlap were associated 97 

with increased probability of viral sharing across mammals, together accounting for the 98 
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remaining 49% of explained model deviance (Figure 1A-C). Geography, phylogeny, and their 99 

interaction all showed strong nonlinear effects, with geographic overlap in particular driving 100 

a rapid increase in viral sharing that began at ~0-5% range overlap values, peaked at 50% 101 

overlap values, and then levelled off (Figure 1B). This effect closely mirrors previous 102 

observations of strong, nonlinear effects of geographic and phylogenetic similarity 103 

determining within-order viral sharing14,16–19. Although occupying little of the visual space 104 

within the model presentation, 93% of mammal pairs had less than 5% spatial overlap (Figure 105 

1B,D). The great majority (86%) of mammal pairs in our dataset did not overlap 106 

geographically and rarely shared viruses unless phylogenetic similarity exceeded ~0.5 107 

(Figure 1A). This phylogenetic distance corresponds roughly to order-level similarity; that is, 108 

if two species did not overlap in space, it was highly unlikely that they shared a virus unless 109 

they were within the same taxonomic order (8% of pairs). Notably, phylogenetic similarity 110 

accounted for more than twice as much model deviance as did spatial overlap (33.8% vs 111 

14.4%). The greater importance of phylogeny relative to geography contrasts with previous 112 

analyses concerning viral sharing in primates19 and ungulates16, likely reflecting the wider 113 

phylogenetic range of hosts considered here. This finding supports the important role of 114 

mammalian evolutionary history in shaping contemporary patterns of viral sharing and 115 

diversity5,22. 116 

  117 

In contrast to geography and phylogeny, minimum citation count and domestication status 118 

accounted for a vanishingly small amount of the deviance in viral sharing probability (0.2% 119 

and 0.1%, respectively) even though they have important effects on observed viral diversity 120 

in this dataset5. Their impacts on viral sharing may have been largely accounted for by 121 

species-level random effects. 122 

 123 

Our use of a pan-mammalian viral sharing dataset with a large sample size allowed us to 124 

investigate how geographic overlap and phylogenetic similarity affect viral sharing across 125 

different viral subgroups. These subgroups included RNA viruses, vector-borne RNA viruses, 126 

non-vector-borne RNA viruses, and DNA viruses. The importance of geographic overlap 127 

varied widely across all groups of viruses (Figure SI2; Table SI1), while the influence of host 128 

phylogenetic relatedness was more consistent (Figure SI3; Table SI1). Generally, host 129 

phylogeny was more important in determining sharing of DNA viruses than it was for RNA 130 

viruses, while space sharing was more important for vector-borne RNA viruses, and less so 131 

for non-vector-borne RNA viruses. These results likely reflect important aspects of viral 132 
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ecology, transmission, and evolution: for example, RNA viruses are fast-evolving, allowing 133 

them to more quickly adapt to novel hosts, such that phylogenetic distances are less important 134 

in determining viral sharing patterns23. Conversely, DNA viruses are more evolutionarily 135 

constrained, with an evolutionary rate typically <1% that of RNA viruses, such that 136 

phylogenetic distance between hosts presents a more significant obstacle for sharing of DNA 137 

viruses24. The profound importance of geographic overlap in shaping the viral sharing 138 

network for vector-borne RNA viruses (Figure SI3) likely emerges from the geographic 139 

distributions and ecological constraints placed on vectors, lending further support to efforts to 140 

model the global spread of arboviruses by predicting changes in their vectors’ distributions 141 

and ecological niches25,26. Generally, the fact that viral sharing across different viral 142 

subgroups was predicted by different macroecological relationships suggests they should be 143 

examined separately in future analyses where possible. 144 

Predicting pan-mammalian viral sharing 145 

Previous trait-based approaches to predict viral sharing and reservoir hosts have been 146 

hindered by incomplete and inconsistent characterization of traits central to those modelling 147 

efforts. In contrast, spatial distributions and phylogenetic data are readily available and 148 

uniformly quantified for the vast majority of mammals and, as we have shown, are reliable 149 

predictors of viral sharing (>20% of total deviance). Thus, we used our GAMM estimates to 150 

predict unobserved global viral sharing patterns across 8.8 million mammal-mammal pairs 151 

using a database of geographic distributions27 and a recent mammalian supertree28 (see 152 

Methods). The predicted network included 4196 (non-human) Eutherian mammals with 153 

available data, 591 of which were recorded with viral associations in our training data. We 154 

calculated each species’ predicted degree centrality, as a simple and interpretable network-155 

derived measure of viral sharing: that is, the number of other mammal species a given 156 

mammal species is expected to share at least one virus with. We identified geographic and 157 

taxonomic trends in degree centrality, validated our predicted sharing network using an 158 

external dataset, and simulated reservoir identification to assess host predictability for focal 159 

viruses (see Methods). 160 

 161 

We confirmed that our modelled network recapitulated expected patterns of viral sharing 162 

using the Enhanced Infectious Diseases Database (EID2) as an external dataset29. This dataset 163 

was constructed by mining web-based sequence data to identify host-pathogen associations, 164 
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many of which are mammal-virus interactions29. Pairs of species that share viruses in EID2, 165 

but which were not in our training dataset (see Methods), had a much higher mean sharing 166 

probability in our predicted network (20% versus 5%; Figure 2A). In addition, more central 167 

species in the predicted network were more likely to have been observed with a virus, 168 

whether zoonotic (Figure 2B) or non-zoonotic (Figure 2C), implying that the predicted 169 

network accurately captured realised potential for viral sharing and zoonotic spillover. This 170 

finding concurs with similar work in primates which demonstrated that high centrality in 171 

primate-parasite networks is associated with carriage of zoonoses30. We corroborate these 172 

findings considering all mammal-mammal viral sharing links, not just zoonotic links, and 173 

show that for each mammalian order, species with higher degree centrality in our predicted 174 

network are more likely to have been observed with viruses in the EID2 dataset (Figure 2C; 175 

Figure SI4). It is possible that species with higher centrality in the global viral sharing 176 

network are more important for viral sharing, and thus have been more likely to be observed 177 

with a (zoonotic) virus. Species that are more central in our predicted network could therefore 178 

be prioritised for zoonotic surveillance or sampling in the event of viral outbreaks with 179 

unknown mammalian origins. Given that mammal diversity predicts patterns of livestock 180 

disease31 and zoonoses32, the geographic patterns of degree centrality predicted here (Figure 181 

3, Figure SI5; see below) could also be used as a coarse predictor of viral disease risk to 182 

livestock and human health, providing additional insights that emerge from the joint, 183 

nonlinear effects of geography and phylogeny as opposed to examination of their effects in 184 

isolation. Similarly, where there is limited knowledge of mammalian host range for newly-185 

discovered viruses, our modelled network can be used to prioritise the sampling of additional 186 

species for viral surveillance.  187 

 188 

The high predicted centrality of known hosts may be due partly to selective sampling (i.e., 189 

viral researchers are more likely to sample wide-ranging and common host species that also 190 

share viruses with many other species10,20). This possibility is supported by the increased 191 

degree centrality for species that appear in both EID2 and our dataset rather than in only one 192 

of the two, as these species are presumably more well-known (Figure 2C). Similarly, while 193 

we believe that our model was successful at accounting for variation in host-level diversity 194 

and study effort that influences network topology (see above; Figure SI1), there are certain 195 

inherent biases in the training data which must be considered when interpreting our findings. 196 

Most notably, viral sharing estimates in our dataset may be affected by the fact that zoonotic 197 

discovery efforts commonly search limited geographic regions for a specific virus or group of 198 
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viruses, artificially increasing the likelihood of detecting these viruses in the same region 199 

compared to a geographically random sampling regime. Moreover, when a mammal species 200 

(e.g., a bat) is found with a focal virus (e.g., an ebolavirus), it is logical for researchers to then 201 

investigate similar, closely related species in nearby locales33. These sampling approaches 202 

could disproportionately weight the network towards finding phylogeographic effects on viral 203 

sharing probability. However, it is highly encouraging that our model predicted patterns in 204 

the external EID2 dataset, which was constructed using different data compilation methods 205 

but also comprises global data covering several decades of research29. In sum, we believe that 206 

our approach is a conservative method for minimising the biases inherent in the data. The 207 

knowledge that the observed mammalian virome is biased ultimately calls for more uniform 208 

viral sampling across the mammal class and increased coverage of rarely-sampled groups, 209 

lending support to ongoing efforts to systematically catalogue mammalian viral diversity3. 210 
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 211 

 212 

Figure 2: The modelled mammalian viral sharing network predicts observed viral sharing trends in an 213 

independent dataset. In all figures, points are jittered along the x axis according to a density function; 214 

the black points and associated error bars are means +/- standard errors. A: species pairs with higher 215 

predicted viral sharing probability from our model were more likely to be observed sharing a virus in 216 

the independent EID2 dataset. This comparison excludes species pairs that were also present in our 217 

training data. B: species that hosted a zoonotic virus in our dataset had more viral sharing links in the 218 

predicted all-mammal network than those without zoonotic viruses. C: species that had never been 219 

observed with a virus have fewer links in the predicted network than species that hosted viruses in the 220 

EID2 dataset only, in our training data only, or in both. The y axis represents viral sharing link 221 

number, scaled to have a mean of 0 and a standard deviation of 1 within each order for clarity. Figure 222 

SI4 displays these same data without the within-order scaling. 223 
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Taxonomic and geographic patterns of predicted viral 224 

sharing 225 

Our network predicted strong taxonomic patterns in the probability of viral sharing. Looking 226 

across mammalian orders, rodents (Rodentia) and bats (Chiroptera) had the most predicted 227 

species-level viral links, while carnivores and artiodactyl ungulates had substantially fewer 228 

(Figure 3A). Examining multiple mammalian orders allowed us to partition the predicted 229 

sharing network into within- and between-order links to investigate whether certain orders are 230 

better-connected to other orders. Indeed, this partitioning revealed differences in taxonomic 231 

and geographic patterns of viral sharing. In bats and rodents, large numbers of within-order 232 

links are driven by high within-order species diversity (Figure 3C). Interestingly, when 233 

within-order links were ignored, leaving only out-of-order links, rodents and bats were 234 

among the least-connected Eutherian orders (Figure 3E), while even-toed ungulates and 235 

carnivores were ranked among the most-connected (Figure 3E). Taken together, these results 236 

imply that while bats and rodents are important in viral sharing networks, their sharing is 237 

mainly restricted to other bats and rodents, respectively. This distinction only applied to mean 238 

link numbers; when link numbers were summed, rodents and bats remained highly connected 239 

regardless of which metric was used, as a result of their species richness (Figure SI5).  240 

 241 

Previous analyses have demonstrated that both bats and rodents are important for hosting 242 

zoonotic viruses, with possible explanations including species-level phenotypic traits such as 243 

behaviour5, life history9, or metabolic idiosyncracies34. Our results imply that while both 244 

orders potentially host many zoonoses purely as a result of their species richness (Figure 245 

SI5), the vast majority of their viral sharing occurs within-order even though larger 246 

phylogenetic jumps are necessary for spillover. Intriguingly, recent work has shown that 247 

infection of an aggregated phylogenetic selection of hosts is an important contributor to viral 248 

zoonotic potential35. Rodents’ and bats’ tendency towards high viral interconnectedness could 249 

encourage viruses to achieve such aggregation, leading to opportunities for spillover into 250 

humans. In our analysis, both orders’ high centrality emerged purely as a result of their 251 

phylogenetic diversity and geographic distributions, rather than from other phenotypic traits. 252 

If well-connected species in our network are more likely to maintain a high diversity of 253 

viruses (e.g., via multi-host dynamics leading to an expanded threshold population size36), 254 

this may contribute to the high viral diversity documented in bats and rodents5. Efforts to 255 

prioritise viral sampling regimes should consider biogeography and mammal-mammal 256 
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interactions in addition to searching for species-level traits associated with high viral 257 

diversity.  258 

 259 

Encouragingly, our network showed predictable scaling laws similar to those of other known 260 

ecological networks37. Viral link numbers in within-order subnetworks (e.g., between 261 

different bat species) correlated strongly with species diversity within each order (R2=~0.85), 262 

following a power law with a Z value of ~0.8 (Figure SI6). Similarly, out-of-order links (e.g., 263 

between a bat and a rodent) scaled linearly with the product of the species richness of both 264 

orders (Figure SI7). 265 

 266 

 267 

Figure 3: Taxonomic and geographic patterns of mean predicted viral sharing link numbers (degree centrality). 268 

Top row: all viral sharing links; middle row: viral sharing links with species in the same order; bottom row: 269 
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viral sharing links with species in another order. A,C,E: average species-level viral sharing link numbers for 270 

mammalian orders in our dataset. Bars represent means; error bars represent standard errors. B,D,F: geographic 271 

distributions of mean viral sharing link numbers. Distributions were derived by summing the viral sharing link 272 

numbers of all species inhabiting a 25km2 grid square and dividing them by the number of species inhabiting the 273 

grid square, giving mean degree number at the grid level. 274 

 275 

To visualize geographic patterns of viral sharing, we projected species-level degree centrality 276 

across the species’ ranges then calculated grid cell-level mean degree centrality (Figure 3B), 277 

as well as summed degree centrality (Figure SI5). Average centrality peaked in tropical areas 278 

of South and Central America, Sub-Saharan Africa, and Southeast Asia, especially in the 279 

Andes and Himalayas (Figure 3B). These patterns align with previously-reported hotspots of 280 

emerging zoonoses and predicted viral diversity5,32 and imply that areas of high biodiversity 281 

are centres of viral sharing not just because of the number of overlapping species (i.e., high 282 

species richness), but also because more closely related species create a more connected viral 283 

sharing network in these areas. This densely-connected network structure and the increased 284 

biomass present in the tropics might have synergistic implications for cross-species 285 

maintenance and transmission of viral diversity in these areas. The geographic distributions 286 

of mean predicted within- and between-order viral links differed notably from the distribution 287 

of interspecific links generally: the relative importance of South America and East Asia was 288 

higher for within-order links (Figure 3D), while Sub-Saharan Africa remained a hotspot for 289 

out-of-order links (Figure 3F). Geographic patterns of summed link numbers more closely 290 

mirrored underlying host species richness, whether for all links, within-order links, or out-of-291 

order links (Figure SI5). 292 

 293 

We acknowledge that our phylogeographic model of viral sharing does not account for 294 

complex ecological interactions such as coinfection or coevolution, which could impact how 295 

patterns of exposure and host susceptibility translate to realised viral diversity. Future 296 

investigations could extend our framework to simulate the dynamic co-speciation of 297 

mammals and their viruses in order to account for these processes and/or to explicitly 298 

investigate how viral sharing connectivity and viral diversity are correlated across mammal 299 

species. Our model may also prove useful for building and parameterising much-needed 300 

multi-host network models for conservation purposes, particularly where there is scarce prior 301 

information on interspecific pathogen sharing36,38. 302 

 303 
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The network as a predictive tool 304 

Identifying potential hosts for known and novel viruses is an important component of 305 

preemptive zoonotic disease surveillance that can speed public health responses. Predictive 306 

techniques based on species-level phenotypic and genomic data have been suggested to help 307 

prioritise sampling targets6,7,9. Although these approaches represent a promising 308 

methodological advance, they may not elucidate the mechanistic underpinnings of viral host 309 

range, reducing their potential efficacy for guiding public health interventions. In addition, 310 

genomic approaches require viral sequence data, which can be time-consuming and 311 

operationally challenging to acquire or share publicly. We therefore interrogated our 312 

predicted viral sharing network to investigate whether it could be used to identify potential 313 

hosts of known viruses at the species level. Using a leave-one-out prediction process (see 314 

Methods), our model showed a surprisingly strong ability to predict observed host species for 315 

250 viruses with at least two known (non-human) mammal hosts. 316 

 317 

We investigated the predictive potential of our model by iteratively selecting all but one of 318 

the known hosts for a given virus, then using the predicted sharing patterns of the remaining 319 

hosts to identify how the focal (removed) host was ranked in terms of its sharing probability. 320 

In practical terms, these species-level rankings could set sampling priorities for public health 321 

efforts seeking to identify hosts of a novel zoonotic virus, where one or more hosts are 322 

already known. Across all 250 viruses, the median ranking of the left-out host was 72 out of a 323 

potential 4196 mammals (i.e., in the top 1.7% of potential hosts). To compare this ranking to 324 

alternative heuristics, we examined how high the focal host would be ranked using simple 325 

ranked phylogenetic relatedness or spatial overlap values alone (i.e., the most closely-related, 326 

followed by the second-most-related, etc.). Using this method, the focal host was ranked 327 

288th (for phylogeny) or 283rd (for space), identifying the focal host in the top 7% of 328 

potential hosts and demonstrating that sampling prioritization schemes based on our 329 

phylogeographic model would require only ¼ as many sampling targets in order to identify 330 

the correct sharing host. Our model therefore represents a substantial improvement over 331 

search methods that involve only spatial or phylogenetic similarity. Our model performed 332 

similarly at identifying focal hosts in the EID2 dataset29: for the 109 viruses in the EID2 333 

dataset with more than one host, the focal host was identified in the top 63 (1.5%) potential 334 

hosts. In contrast, ranked spatial overlap predicted the focal host in the top 560 hosts, and 335 

phylogenetic relatedness in the top 174.  336 
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 337 

We observed substantial variation in our model's ability to predict known hosts among 338 

different viruses. For example, the correct host was predicted first in every iteration for 7 339 

viruses and in the top 10 hosts for 42 viruses. Results for 128 viruses had the focal host 340 

falling within the top 100 guesses, and for only 6 viruses were the model-based host searches 341 

worse than chance (focal host ranked lower than 50% of all mammals in terms of sharing 342 

probability). We used this measure of viral sharing “predictability” to investigate whether 343 

certain viral traits affected the ease with which phylogeography predicted their hosts. Viruses 344 

with broad host phylogenetic ranges, most notably Ebola virus, challenge reservoir prediction 345 

efforts since many more species must often be sampled before identifying the correct host(s). 346 

To investigate whether the predictive strength of our model was limited for viruses with 347 

broad host ranges and/or other viral traits, we fitted a linear mixed model (LMM) which 348 

showed a strong negative association between viruses’ known phylogenetic host breadth and 349 

the predictability of focal hosts (model R2=0.70; host breadth R2=0.67; Figure SI9). This 350 

association demonstrates, unsurprisingly, that predicting the hosts of generalist viruses is 351 

intrinsically difficult using our method. This adds a potential limitation to the applicability of 352 

our network approach, given that zoonotic viruses commonly exhibit wide host ranges2,5. A 353 

family-level random effect accounted for little of the apparent variance in predictability 354 

among viral families (Figure SI8).  355 

 356 

Once viral host range was accounted for, hosts of vector-borne viruses were slightly easier to 357 

predict than non-vector-borne viruses (R2=0.1; Figure SI9) – perhaps because the sharing of 358 

vector-borne viruses depends more heavily on host geographic distributions (Figure SI3). 359 

Despite additional variation in the data, no other viral traits (e.g., RNA vs. DNA, segmented 360 

vs. non-segmented) were important in the LMM. This implies that host phylogeographic 361 

traits are a good broad-scale indicator of viral sharing, particularly when ecological specifics 362 

of the virus itself are unknown. 363 

 364 

Conclusion 365 

In summary, we present a simple, highly interpretable model that predicted a substantial 366 

proportion of viral sharing across mammals and is capable of identifying species-level 367 

sampling priorities for viral surveillance and discovery. It is worth noting that the analytical 368 
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framework and validation we describe were conducted on a global scale, while many 369 

zoonotic sampling efforts occur on a national or regional scale. Restricting the focal 370 

mammals to a regional pool may improve the applicability of our model in certain sampling 371 

contexts, and future studies could leverage higher-resolution phylogenetic and geographic 372 

data to fine-tune predictions. In particular, the mammalian supertree28 has relatively poor 373 

resolution at the species tips such that relatedness estimates based on alternative molecular 374 

evidence (e.g., full host genome data) may allow more precise estimates of the phylogenetic 375 

relatedness effect on viral sharing. Alternatively, our model could be augmented with 376 

additional host, virus, and pairwise traits, using similar pairwise formulations of viral sharing 377 

as a response variable, to identify ecological specificities that are critical for the transmission 378 

of certain viruses, to partition viral subtypes, and, ultimately, to increase the accuracy of host 379 

prediction. By generalising the spatial and phylogenetic processes that drive viral sharing, our 380 

model serves as a useful guide for the prioritization of viral sampling, presenting a baseline 381 

for future modelling efforts to compare against and improve upon. 382 

 383 

Our ability to model and predict macroecological patterns of viral sharing is important in an 384 

era of rapid global change. Under all conceivable global change scenarios, many mammals 385 

will shift their geographic ranges, whether of their own volition or through human assistance. 386 

Mammalian parasite communities will likely undergo considerable rearrangement as a result, 387 

with potentially far-reaching ecological consequences39–41. Our findings suggest that novel 388 

species encounters will provide opportunities for interspecific viral transmission, which could 389 

be facilitated by even relatively small changes in range overlap. These future cross-species 390 

transmission events will have profound implications for conservation and public health, 391 

potentially devastating populations of host species without evolved resistance to the novel 392 

viruses (e.g., red squirrel declines brought about by parapoxvirus infections spread by 393 

introduced grey squirrels42) or increasing zoonotic disease risk by introducing viruses to 394 

human-adjacent amplifier hosts (e.g., horses increasing the risk of human infection with 395 

Hendra virus20). Thus, our global model of mammalian viral sharing provides a crucial 396 

complement to ongoing work modelling the spread of hosts, vectors, and their associated 397 

diseases as the result of climate change-induced range expansions25,39.  398 
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Code and data for all analyses are available at 517 

https://github.com/gfalbery/ViralSharingPhylogeography. Our dataset included 1920 mammal-518 

virus associations obtained from an exhaustive literature search which has been used to 519 

investigate how species traits influence mammalian viral diversity5. We removed humans and 520 

rabies virus from the dataset as both were disproportionately well-connected, and we 521 

removed 20 non-Eutherian mammals because they were extreme phylogenetic outliers, 522 

leaving 591 Eutherian mammals that shared 401 viruses. We made an unweighted bipartite 523 

network using the mammal-virus associations and projected the unipartite mammal-mammal 524 

network, which we then converted into a sequence of all unique mammal-mammal pairs 525 

where 1/0 denoted whether the pair of species shared a virus or not. This comprised only the 526 

lower triangle of the adjacency matrix to avoid duplicating associations and to remove self-527 

connections, and only included mammals with at least one sharing link (final N=174345 528 

unique mammal-mammal pairs). 6.4% of these pairs shared at least one virus. 529 

 530 

All analyses were performed in R version 3.6.043. Phylogenetic similarity was calculated 531 

using a mammalian supertree28 as previously described5. Pairwise phylogenetic distances 532 

were defined as the cumulative branch length between the two species and were scaled to 533 

between 0 and 1, and subtracted from 1 to give a measure of relative phylogenetic similarity 534 

(rather than distance). Of the 4716 Eutherian species in the mammalian supertree, 591 had 535 

virus association records in our fully-connected network and 4196 had known geographic 536 

ranges. We used IUCN species ranges to quantify species’ geographic distributions27. These 537 

range maps are generated based on expert knowledge and only comprise species 538 

presence/absence information rather than density. We converted all range polygons to 25 km2 539 

raster grids. For each species-pair, we quantified range overlap as the number of raster grid 540 

squares jointly inhabited by the two species (in the Mollweide projection, which exhibits 541 

equal grid size), divided by the total number of grid squares occupied by these species 542 

combined, so that each value was scaled from 0-1: overlapA,B=gridA,B/(gridA+gridB-gridA,B). 543 

Disease-related research effort for each host species was quantified as previously described, 544 

using counts of studies including species names and disease-related terms such as “virus,” 545 

“pathogen”, or “parasite5. To fit citation number as a pairwise trait, we took the smaller of a 546 

pair of species’ respective citations, and log-transformed the value. Domestication status was 547 

defined sensu lato, again as previously described5, based on whether a species was ever seen 548 

in a domestic setting. We fit this as a binary pairwise trait where 1=at least one of the species 549 

was domesticated and 0=neither species had been domesticated.  550 
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Model formulation 551 

We fitted a Generalised Additive Mixed Model (GAMM) to examine which traits influenced 552 

viral sharing among mammal pairs using accelerated discretized implementation in the mgcv 553 

package44. We fitted viral sharing (0/1) as the response variable, with a binomial family 554 

specification. The model had the following structure: 555 

 556 

Bernoulli(Viral sharing) ~ s(Phylogenetic similarity, by = ordered(Gz)) +  557 

t2(Phylogenetic similarity, Geographic overlap, by = ordered(!Gz)) + 558 

Minimum citation number + Domestication status +  559 

mm (Species 1 + Species 2) 560 

 561 

The first term (“s”) represents a phylogeny effect smooth fitted across species pairs that did 562 

not overlap in space (Gz=1), and “t2” represents a phylogeny:geography tensor product 563 

smooth fitted to species that had geographic overlap greater than zero (Gz=0). This allowed 564 

us to model these two aspects of the data separately, helping us to more effectively model the 565 

large number of spatial zeroes (85% of species pairs did not overlap in space). “mm” 566 

represents a multi-membership random effect, accounting for the identity of both species in 567 

the pair. We implemented this multi-membership effect to control for species-level effects by 568 

including a species-level effect for both the row (Species 1) and column (Species 2) of the 569 

sharing matrix. Using the paraPen specification in mgcv, these random effects were 570 

constrained to sample from the same distribution, resulting in a single estimate of the 571 

variance associated with each unique species. Most precisely, these effects in our model help 572 

capture variation in viral sharing that could likely be explained by species-level factors that 573 

are unobserved or otherwise excluded (i.e., differences in underlying viral diversity, which 574 

would be expected to positively impact the probability of interspecific sharing). In sum, this 575 

model formulation allowed us to estimate the effect of pairwise predictors (geographic 576 

overlap, phylogenetic similarity) in determining viral sharing as well as evaluate the 577 

influence of species identity.  578 

 579 

To investigate whether the effects of geography and phylogeny depended on which subset of 580 

viruses we investigated, we fit the model to non-exclusive subnetworks of mammal-mammal 581 

pairs based on the types of viruses they were connected by. Viral subtypes included RNA 582 

viruses (566 hosts sharing 381 viruses); vector-borne RNA viruses (333 hosts sharing 164 583 
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viruses); non-vector-borne RNA viruses (391 hosts sharing 205 viruses); and DNA viruses 584 

(151 hosts sharing 205 viruses). There were only 2 vector-borne DNA viruses in our data. We 585 

eliminated from each analysis any hosts that were not carrying the focal virus type. 586 

 587 

We elected to use a binary model of viral sharing (0/1) rather than an integer count model 588 

(0+) for two reasons: first, the data distribution was highly skewed, with few very large 589 

values and many zeroes. Under these conditions, we found a count-based model formulation 590 

including species-level random effects computationally intractable. Second, the observed 591 

viral diversity is likely a considerable underestimate, but the extent of this underestimate is a 592 

matter of hot debate3,4. As such, the predictions for viral sharing from such a model could be 593 

relative and biased, while binary models offer a more appropriate resolution to quantify 594 

sharing patterns. We wished to avoid estimating a precise number of viruses shared among 595 

pairs of species for this reason. 596 

 597 

Model validation 598 

To check the fit of the model, we predicted 0/1 viral sharing values from the model 1000 599 

times and examined how the values compared to the proportions of 0’s and 1’s in the 600 

observed data, finding high agreement between the two. We repeated this procedure using a) 601 

the full dataset; b) only the fixed effects, with random effects randomised in each iteration; 602 

and c) only the random effects, with fixed effects held at the mean. We then used these 603 

predicted links to create 1000 unipartite viral sharing networks, estimating link numbers 604 

(degree centrality) for species in each replicated network. We took the mean of these values 605 

across the 1000 replicated networks to give the predicted values displayed in Figure SI1. 606 

 607 

We quantified deviance contributions of our explanatory variables by calculating model 608 

deviance when dropping each variable, and comparing these against the full model and an 609 

intercept-only model deviance. For each of our explanatory variables (geographic overlap, 610 

phylogenetic similarity, minimum citation number, domestication status, and species-level 611 

random effects) we randomised the observed values 1000 times, then predicted sharing 612 

probabilities for these values using our model estimates. This randomisation procedure 613 

allowed us to predict while accounting for the uneven data distribution, rather than using 614 

mean values. 615 
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Simulating viral sharing networks 616 

Following reconstruction of the observed network as part of our model validation, we 617 

repeated the prediction process on an exhaustive mammal dataset to estimate viral sharing 618 

across all mammals. We set minimum citation number to the data mean, and set 619 

domestication status to 0. We repeated the predictions 1000 times, randomising the species-620 

level random effects each time. The full prediction dataset included 4196 Eutherian mammals 621 

with known spatial distributions and phylogenetic associations, resulting in 8.8 million 622 

unique pairwise combinations. After predicting 1000 binary sharing networks across all 623 

mammals, we summarised the average predicted link number (degree centrality) of each 624 

species across the 1000 replicates. We then calculated the mean species-level link number 625 

within each mammalian order to examine taxonomic patterns. To project the spatial patterns 626 

of connectedness, we assigned each species range polygon the link number (degree 627 

centrality) of its host species27 and took the mean value for each grid square, thereby 628 

correcting for species richness. We then repeated these taxonomic and geographic summaries 629 

using within-order and between-order link numbers separately. We also took the summed 630 

values, which more closely reflect underlying patterns of species richness. 631 

 632 

We validated the predicted network by comparing it to sharing patterns in the Enhanced 633 

Infectious Diseases Database (EID2)29. We eliminated species pairs that were in our training 634 

data and identified whether species pairs that shared viruses in EID2 were more likely to 635 

share viruses in our predicted network than species pairs that did not. In addition, we 636 

investigated whether species that were shown to host zoonoses in our training dataset were 637 

more highly-connected in the predicted network. Finally, we investigated whether species 638 

that were present in only EID2, in only our training data, or in both were more highly-639 

connected in our predicted network than species that did not appear in either dataset and were 640 

therefore taken to have not been observed hosting a virus. 641 

Predicting hosts of focal viruses 642 

To investigate the ability of the model to predict known hosts of viruses in our dataset, we 643 

iteratively investigated the sharing patterns of known hosts independently for all viruses with 644 

>1 host. For each virus, we removed one host at a time, and then investigated which species 645 

the remaining known host species were likely to share viruses with based on the all-mammal 646 

predicted network. If the removed host (“focal host”) was on average highly likely to share 647 
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viruses with the remaining species, our model was taken to be useful for predicting patterns 648 

of mammal sharing based on known host distributions. The mean ranking of the focal hosts 649 

across each prediction iteration was used as a measure of “predictability” for each virus. We 650 

carried out this process for the 250 viruses with more than one known host with associated 651 

geographic and phylogenetic data and then on the 109 such viruses in the EID2 data.  652 

Once the predictability of each virus was calculated, we fitted a linear mixed model 653 

examining log10(mean focal host rank) as an inverse measure of predictability (higher rank 654 

corresponds to decreased predictability) for each virus. We added mean phylogenetic host 655 

similarity as a fixed effect and viral family as a random effect to quantify how viral 656 

phylogeny affected predictability. We included additional viral traits in the model, including: 657 

cytoplasmic replication (0/1); segmentation (0/1); vector-borne transmission (0/1); double- or 658 

single-strandedness; DNA or RNA; enveloped or non-enveloped; or zoonotic ability (0/1 for 659 

whether the virus was associated with humans in our dataset).  660 

 661 

 662 

Figure SI1: Predicted degree centrality of species in our training data network, predicted using our 663 

GAMM estimates. Fixed + random effects were very effective at reproducing individual species’ 664 

degree centrality (left); fixed effects were less effective (middle); and random effects alone had a 665 

strong but imperfect effect (right). 666 
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 667 

 668 

Figure SI2: GAMM-derived viral sharing estimates for the effect of phylogenetic similarity for four viral subsets 669 
(top row: all RNA viruses and DNA viruses; bottom row: vector-borne RNA viruses and non-vector-borne RNA 670 

viruses). Each GAMM smooth is displayed at multiple geographic overlap values (different colours). 671 
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 673 

Figure SI3: GAMM-derived viral sharing estimates for the effect of geographic overlap for four viral subsets 674 
(top row: all RNA viruses and DNA viruses; bottom row: vector-borne RNA viruses and non-vector-borne RNA 675 

viruses). Each GAMM smooth is displayed at multiple geographic overlap values (different colours). 676 

  677 
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 678 

 679 

RESPONSE SAMPLES DEVIANCE CONTRIBUTIONS 

  Geography Gz Phylogeny Citations Domestic Spp 

ALL VIRUSES 591 0.077 0.067 0.336 0.005 0.002 0.512 

RNA 566 0.079 0.067 0.33 0.005 0.003 0.516 

DNA 151 0.008 0.031 0.729 0.001 0.004 0.227 

VECTOR-

BORNE 

333 0.153 0.11 0.145 0 0.008 0.584 

NON-VECTOR 391 0.011 0.019 0.625 0.016 0.001 0.328 

 680 

Table SI1: The deviance contributions and sample sizes (number of hosts) for each of our viral 681 

sharing GAMMs. The deviance terms are, in order: proportional geographic overlap; binary 682 

geographic overlap greater than zero (0/1); phylogenetic similarity; minimum citation number; 683 

domestication status; and the species-level random effect. 684 

 685 

 686 

 687 

 688 

 689 

Figure SI4: Mammal species that were observed with at least one virus in the training dataset or the 690 

EID2 dataset had higher degree centrality (link number) in our predicted network. This figure displays 691 

the raw data that are displayed in Figure 2C in the main text, but without being scaled within orders. 692 

 693 
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 694 

Figure SI5: Taxonomic and geographic patterns of predicted viral link numbers. Top row: all links; middle 695 

row: links with species in the same order; bottom row: links with species in another order. A,C,E: summed 696 

species-level link numbers for mammalian orders in our dataset. B,D,F: geographic distributions of link 697 

numbers. Distributions were derived by summing the link numbers of all species inhabiting a grid square. 698 

 699 
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 700 

Figure SI6: Scaling of degree centrality (link numbers) followed a power law when looking within-701 

orders, but not between orders. The trend line and 95% confidence intervals are derived from a linear 702 

model fitted to the data. 703 

 704 

 705 

 706 

Figure SI7: Predicted between-order link numbers scales according to the log-product of the number 707 

of species in the two orders. Each point represents a pair of orders (N=171). 708 

 709 
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 710 

Figure SI8: The phylogeographic predictability of viruses’ reservoir hosts varied considerably across 711 

viral families, although the family-level random effect did not account for much of the model’s 712 

variance. Families are ordered along the x axis in order of decreasing predictability. The y axis 713 

displays the mean rank of the focal host in our reservoir host prediction simulation, on a reversed 714 

log10-scale. Values closer to the top of the figure represent more predictable viruses. 715 

  716 
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 717 

 718 

Figure SI9: Viral host range strongly impacted the predictability of reservoir hosts. The x axis 719 

displays the mean phylogenetic similarity of a virus’s hosts (i.e., an inverse measurement of viral host 720 

range). The y axis displays the mean rank of the focal host in our reservoir host prediction simulation, 721 

on a reversed log10-scale. Values closer to the top of the figure represent more predictable viruses. 722 

The trend lines and 95% confidence intervals were derived from a linear mixed model fitted to the 723 

data. 724 

 725 
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