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Abstract 

Characterization of signal execution dynamics within complex biochemical networks is a highly 
challenging problem yet necessary to understand how cells process signals and commit to a 
biological phenotype. The mechanistic interpretation of experimental results can often be 
misinterpreted due to limited available data or the need for an unrealistic number of 
experimental measurements. Mathematical models of biochemical networks have emerged as 
an alternative to complement experiments and explore signal execution mechanisms. However, 
traditional computational methods require either detailed knowledge of model parameters or 
sufficient data to calibrate models to experiments, both of which can be difficult to obtain. To 
address this challenge, we have taken a probabilistic approach to the analysis of network-driven 
biochemical processes. In this work, we apply a Bayesian multimodel inference formalism to 
identify how relevant pathways and subnetworks contribute to the overall mechanism of a 
biochemical signaling network. We focus this approach on the signal execution pathways of 
mammalian extrinsic apoptosis. We study the effect of changing concentrations of key 
apoptosis regulators such as XIAP, which governs the phenotypic mode of apoptotic execution, 
either via the mitochondria independent (Type I) or dependent (Type II) pathways. Several 
hypotheses were generated regarding (i) differential pathway regulation by XIAP; (ii) apoptotic 
signal arrest through the caspase-only pathway; and (iii) the primary signal amplification 
concomitant with XIAP inhibition leads to signal amplification via mitochondrial involvement. 
Our findings substantiate the use of probabilistic and multimodel inference-based approaches 
for the hypotheses exploration regarding the mechanisms of signal execution dynamics. We 
expect that these approaches could help identify key pathways in complex networks and, in 
turn, accelerate testable hypothesis generation. 

 

Author summary 

Signaling dynamics within complex biochemical networks are remarkably difficult to 
characterize. Mathematical models are often used, in conjunction with experimentation, to 
explore the effect of changes in regulatory proteins on signal propagation. However, 
Mathematical models are often limited by a lack of knowledge regarding reaction rates and the 
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lack of available data to calibrate them. To overcome this issue, we have taken a probabilistic 
approach over parameter space that enables reaction topology and protein concentration 
exploration within a Bayesian evidence context. The mechanisms of signaling dynamics and the 
effects of perturbations in protein concentrations can thus be hypothesized in the absence of 
explicit reaction rates. The method is demonstrated on a model of the extrinsic apoptosis 
network to explore the key drivers of Type I vs Type II signal execution. Key regulators that 
govern the signaling phenotype of this network are modulated and changes in the apoptotic 
signal through the network are analyzed. In addition to supporting established experimental 
results, we generate novel hypotheses regarding phenotypic control and the roles of various 
components of this system are made. 

 

Introduction 

Emergent behaviors of complex biological networks are difficult to characterize [1, 2]. They 
arise from the interplay between various components and pathways that make up the larger 
system and because they appear only when those pieces are brought together, determining the 
role of any singular part can pose a significant challenge. An especially difficult behavior to 
study is the evolution of signal execution dynamics under changing regulatory conditions. Such 
analysis is essential to the identification of regulatory elements that shift signal transduction 
between pathways or those with the potential to elicit phenotype transitions. To study the 
myriad possible cellular regulatory conditions and accelerate the formation of predictive 
hypotheses, computational modeling is often used alongside experimental methods [3]. Such 
an approach was taken by Aldridge et al. [4] to study phenotypic regulation of the extrinsic 
apoptosis network. They used a kinetic model in conjunction with Lyapunov exponent based 
bifurcation diagrams to produce a separatrix which defines a boundary between phenotypes on 
the space of regulatory element concentrations. With this, they predicted that the expression 
of a Type I or II extrinsic apoptosis phenotype (defined as independent and dependent of the 
mitochondria respectively) depends on the concentration of the apoptosis inhibitor XIAP and its 
target Caspase-3. Raychaudhuri and Raychaudhuri [5] also focused on the Type I/II execution 
modes and used Monte Carlo simulations of an extrinsic apoptosis model to evaluate the effect 
of various model perturbations on network dynamics. Their primary conclusion was that the 
Type I phenotype was the result of a deterministic signaling process while the Type II 
phenotype was stochastic in nature.  

Nevertheless, comparison of various subnetworks or pathways that represent different 
phenotypes using traditional physicochemical modeling is problematic. Such models depend on 
reaction rate parameters that are typically unknown and thus must be calibrated to 
experimental data – data that is often scarce [6]. Moreover, data sufficient for model 
calibration and the attainment of reasonable simulated outcomes may not be sufficient for the 
analysis of the inner dynamics of a biochemical network. Calibration of a complex model to 
inadequate data can result in equally good fits for very different parameter sets [7], which 
could potentially lead to inconsistent conclusions regarding signal flow through various 
components the network. To overcome these limitations, we have taken a probabilistic 
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approach to the analysis of differential pathway regulation and phenotype selection by utilizing 
methods from the field of model selection and multimodel inference [8, 9]. Our goal is to 
explore the overall system dynamics through the comparison of dynamics for all relevant 
subnetworks and make predictions regarding apoptotic signal execution and phenotypic 
selection under varying regulatory conditions. For that we require an algorithm to compare 
these subnetworks under varying regulatory conditions. Many model comparison algorithms, 
such as the popular Akaike information criterion (AIC) [10] and Bayesian information criterion 
(BIC) [11], typically use maximum likelihood formalisms to estimate the fit of a model to data. 
Unfortunately, kinetic biological models with different network topologies can often yield 
comparable calibration maximum likelihood outcomes, thus rendering these approaches 
unsuitable [12]. Other approaches integrate a likelihood function over all relevant parameter 
space, resulting in an estimate of the marginal likelihood, or model evidence, which provides a 
relative measure of model fit. In Eydgahi et al. [12] this was done with thermodynamic 
integration [13], an MCMC method, to choose between two proposed models of mitochondrial 
outer membrane permeabilization (MOMP). Although this approach can be accurate, it requires 
significant computational resources, which can pose a challenge for general use. Recently, 
nested sampling approaches have emerged as a more efficient alternative for evidence 
calculation but, to date, seldom used in biology. Here, we employ an implementation of this 
approach to decompose the dynamics of a signaling network and understand the effects of 
signal modulators in apoptosis execution [14, 15, 16]. 

In this work we describe the use of Bayesian multimodel inference methods to explore network 
dynamics across regulatory conditions and demonstrate its efficacy in the analysis apoptosis 
execution. The novel software pipeline used for model construction, evidence calculation, and 
model simulation are described in detail for mechanism exploration. Following the examples 
set by Aldridge et al. [4] and Raychaudhuri and Raychaudhuri [5] we test our approach toward 
understanding the execution and dynamics of the extrinsic apoptosis reaction network. Two 
complementary approaches are used. First, we employ a multimodel inference approach and 
deconstruct the extrinsic apoptosis reaction model (EARM) [17] model into several 
subnetworks, all of which carry the apoptotic signal from initial ligand cue to PARP cleavage 
response. The Bayesian evidence for each of these subnetworks is calculated, using an objective 
function that estimates the signal flow, over increasing quantities of the apoptosis inhibitor 
XIAP. Differential effects elicited by XIAP on the various subnetworks become apparent in the 
trends in evidence as XIAP is increased. The differences in these trends, representing changes in 
signal flow, then allow for hypotheses to be made on the underlying mechanisms of signal 
execution. Secondly, in a pathway targeted approach, the full extrinsic apoptosis model is 
retained but the evidence trends are calculated using objective functions describing the 
chemical flux through the caspase and mitochondrial pathways, as well as the total flux through 
the model. These trends are compared to one another and to the results from the multimodel 
inference approach to compile a complete mechanistic hypothesis of signal execution dynamics 
as well as how these dynamics change as the apoptotic inhibitor XIAP is increased. Lastly, we 
consider the trade-off between computational cost and precision by considering the number of 
required evaluations, the estimated error, and the estimated CPU time as the sampling 
population is increased. To the best of our knowledge, this is the first attempt at a truly systems 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 12, 2019. ; https://doi.org/10.1101/732396doi: bioRxiv preprint 

https://doi.org/10.1101/732396
http://creativecommons.org/licenses/by-nc-nd/4.0/


 4 

description of signal execution using a probabilistic approach and multimodel inference 
methods.  

 

Methods 

Modeling and simulation  

The base model used here is a modified version of the Extrinsic Apoptosis Reaction Model 
(EARM) from Lopez et al. [17]. The modified model recapitulates extrinsic apoptosis execution 
to experimental data [18] upon calibration to time-dependent trajectories of Bid, Smac, and 
PARP (Supplementary Figure 1 Supplementary Table S1). A description of signal flow through 
the various components of this model is detailed in Box 1 below. The various sub-models were 
written in the format of PySB, a rule-based system for constructing and simulating 
physicochemical models under mass-action kinetics [17]. All simulations were run, in the 
context of Bayesian evidence estimation, using the PySB software (http://pysb.org/). All 
representative models and software are distributed with open-source licensing and can be 
found in the GitHub repository https://github.com/LoLab-
VU/Bayesian_Inference_of_Network_Dynamics. 

Bayesian evidence estimation 

Bayesian evidence is the probability of obtaining a set of data given a particular model. It is 
expressed as 

𝑃(𝐷|𝑀) = ∫𝐿(𝐷|𝜃,𝑀) 𝑃(𝜃|𝑀)𝑑𝜃                                                                   (1) 

Where 𝑀 is the model under consideration, 𝐷 is the data, 𝜃 is a particular set of parameter 
values, 𝐿(𝐷|𝜃) is the likelihood function describing the fit of the data to the model under those 
parameter values, and 𝑃(𝜃|𝑀) is the prior distribution of parameters. Note that this also 
represents the expected value of the likelihood function on the prior distribution. All evidence 
estimates were made using nested sampling; introduced by Skilling in [14]. This method 
simplifies the evidence calculation by introducing a prior mass element 𝑑𝑋 = 𝑃(𝜃|𝑀)𝑑𝜃 that is 

estimated by (𝑋𝑖−𝑖 − 𝑋𝑖) where 𝑋𝑖 = 𝑒
−𝑖/𝑁, 𝑖 is the current iteration of the algorithm, and 𝑁 is 

the total number of live points. The evidence is then written as  

𝑍 = ∫𝐿

1

0

𝑑𝑋 ≈∑𝐿𝑖(𝑋𝑖−1 − 𝑋𝑖)

𝑖=1

                                                                       (2) 

Initialization of the algorithm is carried out by randomly selecting an initial population of 
parameter sets (points in parameter space) from the prior distribution, scoring each one with 
the likelihood function, and ranking them from 𝐿ℎ𝑖𝑔ℎ to 𝐿𝑙𝑜𝑤. At each iteration of the algorithm 

a new set of parameter values is selected and scored. If that score is higher than 𝐿𝑙𝑜𝑤, then it is 
added to the population, at the appropriate rank, and 𝐿𝑙𝑜𝑤 is removed from the population and 
added to the evidence sum (2).  
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Nested sampling software 

All evidence estimates in this work are calculated with MultiNest, a nested sampling-based 
algorithm designed for efficient evidence calculation on highly multimodel posterior 
distributions [15, 16]. MultiNest works by clustering the live points (population of parameter 
sets) and enclosing them in ellipsoids at each iteration. The enclosed space then constitutes a 
reduced space of admissible parameter sets. This lowers the probability of sampling from low 
likelihood areas and evaluating points that will only be discarded. The evidence estimate is 
accompanied by an estimate of the evidence error. The algorithm terminates when the 
presumed contribution of the highest likelihood member of the current set of live points, 
𝐿ℎ𝑖𝑔ℎ𝑋𝑖 is below a threshold. Here, we use a threshold of 0.0001 and a population size and 

16,000 unless otherwise noted. See [15, 16], for more details on the MultiNest algorithm. We 
use MultiNest with the Python wrapper PyMultiNest [19], which facilitates the integration of 
PySB into the nested sampling pipeline.  

Objective functions 

In this work we will present two methodologies that use trends in evidence values, as 
regulatory conditions are varied, to make inferences on changing network dynamics. We note 
that our choice for objective function is not a true likelihood but is interpreted in a similar 
manner – a higher value is indicative of a better fit to the expected outcome [20]. Both 
methods incorporate objective functions that represent complete apoptosis of the cell.  

Multimodel inference method. In the multimodel inference method we break down the 
network into various subnetworks and test each, over increasing values of the apoptosis 
inhibitor XIAP, for efficacy in achieving apoptosis. A proxy for apoptosis in this model, and the 
objective function for the nested sampling calculation, is the proportion of the protein PARP 
that has been cleaved by caspase-3 at the end of the in-silico experiment (Supplementary 
Figure 1). The function is thus 

𝑂𝑏𝑗𝑚𝑢𝑙𝑡𝑖𝑚𝑜𝑑𝑒𝑙 =
𝑐𝑃𝑎𝑟𝑝

𝑡𝑃𝑎𝑟𝑝
 

where 𝑐𝑃𝑎𝑟𝑝 is the amount of PARP that has been cleaved and 𝑡𝑃𝑎𝑟𝑝 is the total amount of 
PARP in the system. The evidence calculation thus provides an estimate of the average PARP 
cleavage over the chosen parameter ranges.  

Pathway targeted method. In the pathway targeted method we again vary the regulator XIAP 
but retain the full model while using targeted objective functions that represent the chemical 
flux through different pathways in the network similar to [21]. We consider the signal flux 
through the caspase pathway, the mitochondrial pathway and the total flux through the 
network. The objective function estimating signal flux through a pathway is  

𝑂𝑏𝑗𝑝𝑎𝑡ℎ𝑤𝑎𝑦 =∑
∑ 𝐶3𝑝𝑎𝑡ℎ𝑤𝑎𝑦
𝑡
0

∑ 𝐶3𝑡𝑜𝑡𝑎𝑙
𝑡
0

𝑇

𝑡=0

× (𝑐𝑃𝑎𝑟𝑝𝑡 − 𝑐𝑃𝑎𝑟𝑝𝑡−1) 
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where 𝑡 represents time in seconds, 
∑ 𝐶3𝑐𝑎𝑠𝑝𝑎𝑠𝑒
𝑡
0

∑ 𝐶3𝑡𝑜𝑡𝑎𝑙
𝑡
0

 is the proportion of total currently active 

caspace-3 that was produced in the pathway at time 𝑡, and (𝑐𝑃𝑎𝑟𝑝𝑡 − 𝑐𝑃𝑎𝑟𝑝𝑡−1) is the total 
PARP that has been cleaved by Caspase-3 between times 𝑡 − 1 and 𝑡. The evidence calculation 
in this case estimates the average flux through the target pathway over the chosen parameter 
ranges.  

Parameter ranges and initial conditions 

The prior distribution takes the form of a set of parameter ranges, one for each reaction rate 
parameter. The chosen ranges span four orders of magnitude around generic reaction rates 
deemed plausible [22] and are specific to the type of reaction taking place. The ranges of 
reaction rate parameters, in Log10 space, are 1st order forward: [-4.0, 0.0], 2nd order forward: [-
8.0, -4.0], 1st order reverse: [-4.0, 0.0], catalysis: [-1.0, 3.0]. These ranges were also used in 
calibration of the base model. Initial conditions were either gleaned from the literature [23, 24] 
or taken from a previous model of extrinsic apoptosis [17]. Because the baseline model was 
designed to concur with Type II apoptotic data (see above), literature derived initial conditions 
were based on Type II Jurkat or Hela cell lines. 

Bayes factor Landscape construction 

Evidence estimates are often used to select between two competing models by calculating the 
Bayes factor, or the ratio of their evidence values. This provides a measure of confidence for 
choosing one model over another. We can likewise use trends in evidence values to produce 
trends in Bayes factors that provide additional insights into the dynamical relationship between 
pathways. To facilitate construction of Bayes factor trends with a continuous and symmetric 
range, the Bayes factors were calculated as  

𝐵𝑓 =  

{
 

 −
𝑍2
𝑍1
+ 1  𝑖𝑓 𝑍1 < 𝑍2

𝑍1
𝑍2
− 1  𝑖𝑓 𝑍1 > 𝑍2

 

where 𝑍1 and 𝑍2 are the evidence estimates for two pathways under comparison.  

Computational resources 

Because of the high computational workload necessary for this analysis, a wide range of 
computational resources were used. The bulk of the work was done on the ACCRE cluster at 
Vanderbilt University leveraging up to 600 compute nodes running Intel Xeon processors and a 
Linux OS (www.vanderbilt.edu/accre/). As many as 300 evidence estimates were run in parallel 
on this system. Additional resources included two local servers, also running Intel processors 
and a Linux OS, as well as a small local four node cluster running Linux and AMD Ryzen 1700 
processors. A detailed breakdown of CPU time can be found in the results section.  
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Box 1: Schematic of apoptotic signal flow through the Extrinsic apoptosis network. 
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Extrinsic apoptosis execution. Extrinsic apoptosis is a receptor mediated process for programmed cell death. It’s initiated 
when a death inducing member of the tumor necrosis factor (TNF) superfamily of receptors (FasR, TNFR1, etc.) is bound by 
its respective ligand (FasL, TNF-α, etc.), setting off a sequence biochemical events that result in the orderly deconstruction 

of the cell [28]. The first stage of this sequence is the assembly of the DISC at the cell membrane ① and the subsequent 
activation of Caspase-8. Upon ligand binding and oligomerization of a receptor such as FasR or TRAIL, an adapter protein, 
like FADD (Fas-associated protein with death domain), is recruited to the receptors cytoplasmic tail [29, 30, 31]. FADD, in 
turn, recruits Caspase-8 via their respective death effector domains (DEDs), thus completing DISC formation [30, 31]. Other 
DISC components could also be included here, such as the regulator cFlip [32]. Once recruited, proximal Procaspase-8 
monomers dimerize, inducing their autoproteolytic activity and producing active Caspase-8 [33, 34, 35]. 

After Caspase-8 activation the apoptotic signal can progress down two distinct pathways that both lead to the activation of 
Caspase-3 and the ensuing proteolysis of downstream targets. One pathway consists of a caspase cascade in which active 

Caspase-8 directly cleaves and activates Caspase-3 ② [36], while another, more complex pathway is routed through the 

mitochondria. In the mitochondrial pathway Caspase-8 cleaves the pro-apoptotic Bcl-2 family protein Bid in the cytosol, 

which then migrates to the mitochondria ③ where it initiates mitochondrial outer membrane permeabilization (MOMP) 

and the release of pro-apoptotic factors that lead to Caspase-3 activation [37, 38]. 

MOMP has its own set of regulators that govern the strength of apoptotic signaling through the mitochondria ④. After 

Caspase-8 activated Bid, (tBid), migrates to the mitochondria it activates proteins in the outer mitochondrial membrane, 
such as Bax, that subsequently self-aggregate into membrane pores and allow exportation of Cytochrome-c and 
Smac/DIABLO to the cytosol [39]. Bid and Bax are examples of pro-apoptotic proteins from the Bcl-2 family, all of which 
share BH domain homology [40]. Other members of this family act as MOMP regulators; the anti-apoptotic Bcl-2, for 
example, binds and inhibits both Bid and Bax while the pro-apoptotic Bad similarly binds and inhibits its target, Bcl-2 [41, 
42, 43, 44]. Many other pro- and anti-apoptotic members of the Bcl-2 family have been discovered and together regulate 
MOMP [45]. 

Regardless of which pathway is chosen, the intermediate results are Caspase-3 activation and subsequent cleavage of PARP 

⑧, a proxy for cell death in the analyses here [46, 47]. XIAP (X-linked inhibitor of apoptosis protein) is an inhibitor of 

Caspase-3 and has been proposed to be a key regulator in determining the apoptotic phenotype of a cell (Type I/II cells are, 
respectively, independent/dependent on the mitochondrial pathway) [48]. XIAP sequesters Caspase-3 but also contains a 
ubiquitin ligase domain that directly targets Caspase-3 for degradation. The inhibitor also sequesters and inhibits the 
Caspase-3 activating Caspase-9 residing within the apoptosome complex [49, 50, 51]. Apoptosome formation is initiated by 

Cytochrome-c exported from the mitochondria during MOMP ⑤. Cytochrome-c induces the protein APAF-1 to oligomerize 
and subsequently recruit and activate Caspase-9, thus forming the complex [52]. Another MOMP export, the protein 

Smac/DIABLO ⑥, binds and inhibits XIAP, working in tandem with Cytochrome-c to oppose XIAP and carry out the 

apoptosis inducing activity of the Type II pathway [53]. Finally, Procaspase/Caspase-6 constitutes a feed forward loop 

between Caspase-3 and Caspase-8 ⑦ [54]. 
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Results 

General Strategy 

To investigate the dynamics of apoptosis execution in the EARM, we take a model selection and 
multimodel inference approach and investigate how network components describe signal 
execution. The final goal is to build a composite description of system dynamics by observing 
variations in signal throughput between these subnetworks relative to changes in regulatory 
conditions. This differs from traditional model selection and multimodel inference applications. 
A more typical use of these methods when dealing with physicochemical models is to rank a set 
of proposed models based on their fit to experimental data [12, 25, 26, 27]. High ranking 
models could then be averaged to obtain a composite model [8, 9]. Nevertheless, whether the 
analysis targets model structure (fit to data) or dynamics (fit to expected outcomes), a quantity 
such as the estimated Bayesian evidence indicates a more robust working range of parameters 
and a more likely model for higher evidence values [12]. It should be noted that the evidence 
calculation also inherently penalizes model complexity because models with higher parameter 
counts are integrated over a higher dimensional space [14]. 

Our general approach to use Bayesian evidence calculations and characterize network 
execution modes is shown schematically in Figure 1. Two complementary methods are used. In 
a multimodel inference approach the model is deconstructed into biologically relevant 
components and the evidence is evaluated relative to the desired simulation outcome. If we 
tailor the objective function to represent the strength of signal execution, as measured by 
cleaved PARP at the end of the simulation run, then the evidence describes the likelihood that 
the signal is effectively transmitted through the network. Comparison of the change in signal 
strength through relevant subnetworks, subsequently allows for inferences to be made on the 
effect of both the perturbed network regulator as well as various network components on the 
overall dynamics of the system. We use these trends in Bayesian evidence to examine how XIAP 
alters the dynamics of the extrinsic apoptosis (Box 1) and gain insight into the mechanisms that 
commit the network to either Type I (mitochondria independent) or II (mitochondria 
dependent) execution modes. The EARM reaction topology was deconstructed into six relevant 
network variations (Figure 2A-F). These include the full model, the caspase pathway, and the 
mitochondrial pathway including two subpathways that either directly transduce the apoptotic 
signal (via Caspase-3 cleavage) or inhibit XIAP, the inhibitor of activated Caspase-3 (and 
Caspase-9 in the Apoptosome). Also included are combinations of the caspase pathway with 
either of the two mitochondrial subpathways and the mitochondrial signal transduction 
pathway in isolation. A model for each network variation and each initial value of XIAP was 
encoded in PySB and each model was evaluated using the MultiNest algorithm via the 
PyMultiNest Python wrapper as described in the Methods section [15, 16, 19].  
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We then take a pathway targeted approach and, while retaining the complete network, report 
trends in Bayesian evidence using objective functions that measures apoptotic signal flux (see 
Methods for details) through both the caspase and mitochondrial pathways, as well as the total 
flux through the network. Both XIAP and the mitochondrial apoptosis inhibitor Bcl-2 were 
varied to form evidence landscapes that were used, along with the trends from the multimodel 
inference approach, to make predictions about changing network dynamics under regulatory 
perturbations.  

Taken together, we expect that these two approaches for the decomposition of signal 
execution into network components will provide a systems-level understanding of how the 
dynamics of signal execution are affected by changes in regulator concentrations and allow 
predictions on signaling outcomes to be generated. 

 

 

 

 

Figure 1. General workflow for the analysis of network dynamics using trends in Bayesian evidence. The 

target network is first deconstructed into all relevant subnetworks. A model for each subnetwork and each 

incrementing set of regulatory conditions is then created and passed to an algorithm for estimation the 

Bayesian model evidence. The evidence is calculated on a user-defined objective function, describing signal 

transduction through the network, and over a range of parameter values (the prior). The evidence trends over 

changing regulatory conditions are then compared to make  qualitative inferences regarding network 

dynamics. In an alternative method, the full model is retained, but the objective function is targeted to 

different pathways. Inferences on network dynamics can again be made from the trends in the evidence 

calculations. 
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Differential downregulation of extrinsic apoptosis subnetworks by XIAP 

XIAP has been put forth as a critical regulator in the choice of apoptotic phenotype. In Jost et al. 
[48] they examined hepatocytes (Type II cells) and lymphocytes (Type I cells) under different 
conditions to examine the role XIAP plays in Type I/II determination and made several 
observations. They reported that Fas ligand (FasL) induced apoptosis resulted in increased 
levels of XIAP in hepatocytes but lowered levels in thymocytes. They then found that while XIAP 
deficient mice died earlier than wild-type when injected with hepatocyte targeted FasL or anti-
Fas antibody, XIAP deficient thymocytes showed no increase in apoptosis. From this they 
concluded that XIAP must be a key regulator of apoptosis in hepatocytes. Lastly, they treated 
XIAP, Bid, and XIAP/Bid deficient mice, along with wild-type, with FasL or Fas-antibody. All but 
the Bid-only deficient mice showed hepatocyte effector caspase activation, implying that the 
loss of XIAP rendered previously apoptosis resistant Bid-only knockouts susceptible to apoptosis 
through the Type I pathway. Altogether, they concluded that XIAP is the key regulator that 
determines the choice of pathway. 

The results in Jost et al. [48] imply that the cellular level of XIAP determines the preferred 
apoptosis pathway with higher levels specific to Type II cells and lower levels specific to Type I. 
To test this hypothesis, and infer a mechanism for it, we computed the Bayesian evidence for 
six apoptosis-inducing subnetworks of the extrinsic apoptosis model at varying concentrations 
of XIAP. One of these subnetworks is the caspase pathway in isolation (Figure 2A) which 
represents the Type I phenotype (mitochondria-independent pathway). Also included are the 
caspase pathway along with either the Caspase-3 activating component (Figure 2B) or the XIAP 
inhibiting component (Figure 2C) of the mitochondrial pathway, as well as the isolated 
mitochondrial Caspase-3 activating component (Figure 2D). From these we can examine the 
possible contributions of these subpathways to the overall likelihood of achieving apoptosis. 
Finally, the full isolated mitochondrial pathway (Figure 2E) and the complete model (Figure 2F) 
are included. XIAP was varied from 0 to 200,000 molecules per cell in increments of 250 to 
explore how changes in XIAP affect the likelihood of apoptosis execution. For those networks 
that include components of the mitochondrial pathway Bcl-2 was excluded to ensure those 
components were fully active. All other initial values were fixed at the levels shown in 
supplementary Table S1. In the absence of XIAP all subnetworks have evidence estimates 
greater than 0.98 and those that include XIAP inhibition are greater than 0.99, (Figure 2G, 
supplementary Table S2) indicating that they all reach full PARP cleavage, and by extension 
apoptosis, across the allowed range of parameters. 

As XIAP levels increase we see differential effects on these subnetworks in the form of diverging 
evidence estimates indicating differences in the efficacy of XIAP induced apoptotic inhibition. 
The isolated caspase pathway (Figure 2G green) shows the steepest decline which is most 
prominent for lower values of XIAP but diminishes as XIAP increases. The evidence trend for the 
caspase pathway clearly diverges from those of the rest of the subnetworks, particularly the 
complete model and the (complete) mitochondrial pathway. The expected value for the 
proportion of PARP cleavage, the average PARP cleavage over the provided parameter ranges, 
for the caspase pathway falls to 0.5 at an XIAP level of roughly 32,000. The complete and 
mitochondrial networks on the other hand require XIAP levels nearly 3x as high with the 
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evidence value for the complete network reaching 0.5 at around 92,000 and the mitochondrial 
network reaches the halfway mark at around 95,000. The Bayes factors (ratios of evidence 
values) average 1.205 and 1.204 over the entire range of XIAP for the complete/caspase and 
mitochondrial/caspase ratios respectively. The ratios tend to be higher in the first half of this 
range with respective averages of 1.253 and 1.278 between XIAP values of 250 and 100,000. 
For reference, the estimated errors for log-evidence values are on the order of 10−3 and are 
displayed in Figure S2. 

The small differences in evidence values and subsequently the Bayes factors are not surprising 
since every subnetwork being considered is capable of transmitting the apoptotic signal. Thus, 
we should not expect differences of evidence that would rule out any of them under model 
selection criteria. In a classical model selection and multimodel inference scenario small 
differences in evidence estimates that would not allow for selection of a favored model might 
be used to construct a composite model, weighting the various components by the evidence 
values [8, 9]. Fortunately, we have no need to choose a best model as the complete model 
already represents the biology as we understand it. The goal here is to use the differences in 
evidence to construct a composite picture of, not the structure of the model, but signaling 
dynamics. For that we consider relative changes in the evidence values as XIAP is increased. 
Because the caspase pathway is representative of the Type I phenotype, the disproportionate 
drop in its evidence (expected proportion of PARP cleavage) as XIAP increases is consistent with 
experimental evidence showing XIAP induced transition to a Type II phenotype. Those networks 
containing the full mitochondrial subnetwork, including the isolated network and the complete 
network, are also affected by XIAP but clearly show a higher resistance to its anti-apoptotic 
effects (higher expected PARP cleavage), particularly at moderate levels of the inhibitor. This 
suggests a growing dependence on mitochondrial involvement in apoptosis as XIAP increases 
from low to moderate levels. At higher levels of XIAP the evidence trend for the caspase 
pathway levels off and the gap between the caspase pathway evidence trend and that for the 
mitochondrial and complete networks narrows. Note that the evidence values for the caspase 
pathway at the high end of XIAP levels are around 0.33 and level off. We do not expect to see 
evidence values near the theoretical minimum evidence of apoptosis value of 0 with reasonable 
values of XIAP. The disproportionate effect of XIAP inhibition of apoptosis on the caspase 
pathway suggests that the mechanism for XIAP induced transition to a Type II pathway is simply 
differential inhibition of the apoptotic signal through the isolated caspase pathway vs those 
with mitochondrial involvement.  

The next two highest evidence trends belong to the networks representing caspase with 
mitochondrial activation of Caspase-3 and mitochondrial activation of Caspase-3 alone (Figures 
2G purple and 2G brown). For most of the range with XIAP below 100,000 these two trends 
have largely overlapping trajectories, despite the fact that the former has twice as many paths 
carrying the apoptotic signal. By the time XIAP reaches a level of 100,000 the two trends 
diverge as the decrease in the trend for the mitochondrial activation only network accelerates. 
This can be explained by XIAP overwhelming the Apoptosome at these higher levels. The 
apoptosome is an apoptosis inducing complex (via Caspase-3 cleavage) consisting of 
Cytochrome C, APAF-1, and Caspase-9, and is an inhibitory target of XIAP. As XIAP increases 
past 125,000 the mitochondrial activation only trend falls below even the caspase only 
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evidence values, possibly due to the two-pronged inhibitory action of XIAP at both the 
Apoptosome and Caspase-3. An interesting observation here is that the addition of the caspase 
pathway to the mitochondrial activation pathway does not appear to increase the likelihood of 
achieving apoptosis for lower values of XIAP. It may be that any signal passing through the 
caspase pathway is quashed by XIAP until the Apoptosome becomes active, at which point it 
does not matter which pathway the signal takes.  

Above those two trends is the trend for the network consisting of the caspase pathway and 
mitochondrial inhibition of XIAP (Figure 2G red). Below an XIAP level of 100,000 this trend is 
consistently above the trend for the network of the caspase pathway plus mitochondrial 
activation of Caspase-3. Note that while the caspase pathway does not appear to increase the 
likelihood of achieving apoptosis when added to the mitochondrial activation pathway (Figure 
2G purple) the amplification of the caspase pathway via mitochondrial inhibition of XIAP leads 
to a higher likelihood than direct activation through the mitochondria. This suggests the 
possibility that the primary mechanism for mitochondrial apoptotic signal amplification may be 
inhibition of XIAP, with direct signal transduction a secondary mechanism. Above an XIAP level 
of 100,000, the caspase with XIAP inhibition trend drops to levels roughly in line with the trend 
for the caspase pathway plus direct activation, possibly due to the fact that Smac, the 
mitochondrial export that inhibits XIAP, is also set to 100,000 molecules per cell. Both, 
however, remain more likely to attain apoptosis than the caspase only pathway. 

The two subnetworks with the highest evidence trends for apoptotic signal execution are the 
complete model and the isolated mitochondrial pathway (Figures 2E orange and 2F blue). As 
previously mentioned, both of these networks contain the full mitochondrial pathway implying 
that this pathway supports resistance to XIAP inhibition of apoptosis. Between XIAP levels of 0 
to 100,000 the two trends track very closely, with the mitochondrial only pathway showing a 
slight but consistent advantage for apoptosis execution. The average difference between an 
XIAP level of 20,000 and 80,000 is roughly 0.014, meaning we expect the average PARP 
cleavage to favor the mitochondrial only pathway by about 1.4 percentage points. The average 
mitochondrial/complete Bayes factor for this range is only 1.024, which would typically be 
considered unremarkable. Context matters however, and the context here is that the complete 
network has potentially twice the bandwidth for the apoptotic signal, namely the addition of 
the more direct caspase pathway. Together, this raises the possibility that under some, likely 
narrow, conditions the caspase pathway is not a pathway but a sink for the apoptotic signal. In 
such a scenario, the signal through the caspase pathway would get lost as Caspase-3 is 
degraded by XIAP. Not until the signal through the mitochondrial pathway begins inhibiting 
XIAP could the signal proceed. Around the 100,000 level of XIAP the evidence trend for the 
mitochondrial pathway crosses below that for the complete network. This could be due to the 
parity with Smac, components of the Apoptosome, or a combination of the two. 
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Bayes factor trends and XIAP influence on Type I/II apoptosis phenotype 

Typical model selection methods calculate the evidence ratios, or Bayes factors to choose a 
preferred model and estimate the confidence of that choice [8, 9]. When comparing the trends 
in the evidence, the associated trends in the Bayes factors can provide additional information 
about changing network dynamics under regulatory perturbations. To characterize the effect of 
XIAP on the choice of apoptotic phenotype, Type I or II, we calculated the evidence ratios 
(Figure 3B), as defined in the Methods section, for each value of XIAP between the caspase 
pathway and both the complete network and mitochondrial pathway (Figure 2G and 3A) with a 
fully active mitochondrial pathway (no Bcl-2 activity). In these Bayes factor calculations, the 
denominator is set to the evidence for the caspase pathway so that higher values favor a need 
for mitochondrial involvement. An interesting feature of both the complete and mitochondrial 
evidence ratio trends is the peak and reversal at a moderate level XIAP. This reflects the initially 
intense inhibition of the caspase pathway that decelerates relatively quickly as XIAP increases, 
and a steadier rate of increased inhibition on networks that incorporate the mitochondrial 
pathway. The ratios peak between 45,000 and 50,000 molecules of XIAP, more than double the 
value of its target molecule Caspase-3 at 21,000, and represents the optimal level of XIAP for 
the requirement of the mitochondrial pathway and attainment of a Type II phenotype. Given 
the near monotonic decline of the evidence trends of both pathways, representing increasing 
suppression of apoptosis, the turn and decline in the Bayes factor landscape may represent a 
shift toward complete apoptotic resistance. This could be tested with more traditional kinetic 
modeling as was shown experimentally in Aldridge et al. [4]. 

A common technique to study apoptosis is to knockdown Bid, overexpress Bcl-2, or otherwise 
shut down MOMP induced apoptosis through the mitochondrial pathway. This strategy was 
used in Jost et al. [48] to study the role of XIAP in apoptosis and in the work of Aldridge et al. 
[4]. Taking a similar approach, we set Bcl-2 levels to 328,000 molecules per cell, in line with 
experimental findings [23], to suppress MOMP activity and recreated the evidence and 
evidence ratio landscapes (Figures 3C and 3D). Under these conditions the evidence trend for 
the mitochondrial pathway drops well below that of the caspase pathway which is reflected in 
the Bayes factor trend as a shift into negative territory, an indication that the caspase pathway 
is favored. The evidence trend for the complete network under MOMP inhibition is shifted 
closer to that for the caspase pathway but continues to be more likely to execute apoptosis 
throughout the range of XIAP. The peak for the associated Bayes factor trend is flattened by 
roughly two-thirds implying increased XIAP levels are less likely to induce a transition to a Type 

Figure 2. Extrinsic apoptosis subnetworks and Bayesian evidence for achieving apoptosis. (A) The isolated 

caspase pathway. (B) The caspase pathway with the Caspase-3 activating component of the mitochondrial 

pathway. (C) The caspase pathway with the XIAP inhibiting component of the mitochondrial pathway. (D) The 

isolated Caspase-3 activating component of the mitochondrial pathway. (E) The complete network. (F) The 

isolated mitochondrial pathway. (G) The trends in Bayesian evidence for each of the networks in (A)-(F) over a 

range of values the apoptosis inhibitor XIAP and for an objective function that computes the proportion of 

Parp cleavage (a proxy for cell death) at the end of a simulated run. 
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II phenotype in a system with an already hampered mitochondrial pathway. Inhibition of 
MOMP to the point of annihilating any contribution from the mitochondrial pathway would 
result in uninformative mitochondrial pathway evidence values and the mitochondria/caspase 
ratio trend that is simply an inverted reflection of the caspase evidence trend. The evidence 
trend for the complete network would be indistinguishable from that for the caspase pathway 
alone and the complete/caspase ratio trend would simply flatline. Isolation of active biologically 
relevant subnetworks and direct comparison under changing conditions using trends in 
Bayesian evidence enables the extraction of information regarding the pathway interactions 
and differential network dynamics. 
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Figure 3. Evidence ratio trends under increasing levels of the apoptotic inhibitor XIAP for am inhibited and 

uninhibited mitochondrial pathway. (A) Evidence trends for the caspase pathway (green), mitochondrial 

pathway (blue), and complete network (orange) with no MOMP inhibition. (B) Trends for the 

mitochondria/caspase (blue) and the complete/caspase (orange) evidence ratios from the trends in (A). (C) 

Evidence trends for the caspase pathway (green), mitochondrial pathway (blue), and complete network 

(orange) with MOMP inhibitory protein BCL-2 at 328,000 mol. per cell. (D) Trends for the mitochondria/caspase 

(blue) and the complete/caspase (orange) evidence ratios from the trends in (C). 
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Caspase and mitochondrial pathway signal flux 

Deconstruction of a network into all relevant subnetworks and comparison of the relative 
changes in the evidence for apoptosis as regulatory conditions change provides a reductionist 
view of how various network components interact with one another and affect the overall 
signaling dynamics. To get a holistic view of changes in signaling dynamics that incorporates 
every network component we calculate the evidence for signal flux through both the caspase 
and mitochondrial pathways while retaining the complete network model. Instead of 
considering different models with the same objective function this method considers the same 
network but equivalent objective functions for different pathway target. Inference of 
differential signal flow via calculation of pathway flux was introduced in Shockley et al. [21]. In 
that work they calculated the path fluxes for a number of initial conditions and over an 
ensemble of parameter sets. Nested sampling, along with a signal flux-based objective function, 
extends this idea with the calculation of the expected value for signal flux through a target 
pathway via integration over a parameter range. Because both pathways cleave Caspase-3, 
which goes on to cleave the final product PARP, the objective for each pathway was the sum, 
over time T in seconds, of the proportion of Caspase-3 cleaved through that pathway at time t 
multiplied by the amount of PARP cleaved from time t-1 to time t (see Methods). In addition to 
runs for both pathways an additional run for the total signal flux was carried out. We explored 
an XIAP concentration ranging from 0 to 100,000 molecules per cell and Bcl-2 from 0 to 200,000 
molecules per cell, in increments of 2500 and 10,000 respectively, producing a 3-dimensional 
evidence landscape for each target objective. Because the computational cost of these 
objectives is significantly higher than simply calculating the proportion of cleaved PARP at the 
end of a simulation, the number of live points in the sampling algorithm was reduced from 
16,000 to 4,000.  

The evidence for signal flux through the caspase pathway showed a sharp initial decline that 
becomes more gradual as XIAP increases (Figure 4A). This appears to be more pronounced at 
the higher end of the Bcl-2 range. As Bcl-2 is increased the evidence increases, again becoming 
more gradual at higher levels of Bcl-2. This effect is clearly more prominent for lower levels of 
XIAP, likely because of the overall higher levels of signal throughput. The increase in signal flux 
through the caspase pathway as Bcl-2 increases is indicative of a shifting apoptotic signal from 
the mitochondrial to the caspase pathway; this is also evident in the decreasing mitochondrial 
signal flux as Bcl-2 increases (Figure 4B). As with the caspase pathway, increasing XIAP levels 
causes a decrease in signal flux through the mitochondrial pathway. The effects of both Bcl-2 
and XIAP appear to diminish as the other increases. The combined responses to increases in 
XIAP and Bcl-2 for the caspase and mitochondrial pathways are evident in the evidence 
landscape for total flux. The total apoptotic signal flux decreases sharply as XIAP increases but 
remains largely stable, with only relatively small declines, as Bcl-2 is increased. Thus, while XIAP 
inhibits the flux through both pathways, Bcl-2, under the given simulation conditions, appears 
to primarily shift the flux to the caspase pathway and inhibits apoptosis to only a small degree 
compared to XIAP. Note that because the evidence calculations produce expected values for 
signal flux, the values produced for the caspase and mitochondrial pathways are additive. The 
average and average absolute differences between the total flux and the combined caspase and 
mitochondrial flux are -0.00565 and 0.00866 respectively (Supplementary Table S3). 
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Figure 4D displays the evidence trends for each objective over the full range of XIAP and at a 
Bcl-2 level of 0 for a fully active mitochondrial pathway. Throughout the range of XIAP (and Bcl-
2 as well, Figures 4A and 4B), the caspase pathway retains a consistently higher expected signal 
flux. This supports the hypothesis that a significant proportion of the mitochondrial signal 
amplification is due to facilitation of the signal through the caspase pathway via XIAP inhibition 
and may, in fact, be the primary mechanism. Figure 4E displays the evidence trends over the 
range of Bcl-2 at an XIAP level of 0, which clearly shows a shift in flux from the mitochondrial to 
the caspase pathway. Total flux is nearly complete throughout the range, meaning that the 
signal results in the cleavage of nearly all available PARP. The shift in signal flux from the 
mitochondrial to the caspase pathway appears to be, at every level of XIAP and under these 
simulation conditions, the primary effect of Bcl-2. This implies that even a weak signal through 
the mitochondria may be enough to inhibit XIAP via SMAC and that much higher binding 
affinities than the given parameter ranges allowed would be required for Bcl-2 to have a 
substantial inhibitory effect on apoptosis. Shifting the ranges for the rates of Bcl-2:Bid and Bcl-
2:Bax dissociation to [-8.0, -4.0] and [-7.0, -3.0] respectively brings the Kd values roughly in line 
with [55] and does indeed produce a more pronounced, but still modest, effect (Figure S3). 
Further adjustments of the model, both in the initial values and parameter ranges, may be 
necessary to elicit a higher impact from Bcl-2. 
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Figure 4. Apoptotic signal flux. (A)-(C) Apoptotic signal flux evidence landscapes over the apoptosis regulators 

XIAP (range of 0 to 100,000 molecules per cell) and Bcl-2 (range of 0 to 200,000) for (A) the caspase pathway, 

(B) the mitochondrial pathway and (C) the total system flux. (D) and (E) Comparison of the landscapes at a Bcl-

2 and XIAP levels of 0 (D and E respectively). 
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Precision vs computational cost 

Increasing the precision of the evidence estimates, and tightening the evidence trendlines, is 
accomplished by increasing the number of live points in the nested sampling algorithm. The 
trade-off is an increase in the number of evaluations required to reach the termination of the 
algorithm and an accompanying increase in total computation time. Figures 5A and 5B display 
the required number of evaluations for the caspase pathway and complete network at 
population sizes of 500, 1000, 2000, 4000, 8000, and 16,000, when run with the PARP cleavage 
objective function. For both models the number of evaluations roughly doubles for every 
doubling in population size. Of note here is the higher number of required evaluations for the 
lower parameter model. The caspase pathway has only 22 parameters and required an average 
of 64,612 evaluations at a population size of 16,000 while the complete network, with its 56 
parameters required only 53,652 evaluations, on average (Supplementary Table S4). Figures 5C 
and 5D are the average estimated errors calculated by the MultiNest algorithm over each 
population size for the caspase and complete networks respectively. As expected, error 

estimates fall roughly as 𝑛−1/2 [56], signifying clear diminishing returns as the number of live 
points is increased. The average CPU process times, as estimated by Python’s time.clock() 
method, are given in Figures 5E and 5F for the caspase and complete networks respectively. 
Despite the greater number of required evaluations for the caspase network the average clock 
times for the complete network is significantly higher. At a population of 16,000 the caspase 
network had an average clock time of 11,964 seconds compared to 76,981 for the complete 
network. The difference is due to the greater simulation time for the much larger complete 
model. Ultimately, the choice of population size for the methods we have laid out here will 
depend on the networks to be compared, the objective function, and how well the evidence 
trends must be resolved in order to make inferences about network dynamics. For example, at 
a population size of 500 the evidence trend for the caspase pathway is clearly discernable from 
the mitochondrial pathway and the complete network, but the latter two are largely 
overlapping (Figure s4A). At higher population levels, however, two distinct mitochondrial and 
complete trends become apparent (Figure s4K). If Bayes factor trends are desired then the 
choice of population size must take into consideration the amplification of the noise from both 
trends (see Figures s4 (B, D, F, H, J, L) for complete/caspase Bayes factor trends).  
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Figure 5. Precision vs. computational cost. (A) and (B) Average number of evaluations before termination of 

the MultiNest algorithm over a range of population sizes for the caspase pathway and complete network 

respectively. (C) and (D) Average of error estimates from MultiNest for each population size and the caspase 

and complete networks. (E) and (F) Average estimated CPU  clock time over each population size for the 

caspase and complete networks respectively. *MultiNest was unable to estimate the error at Xiap = 0. 
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Discussion 

Characterizing information flow in biological networks, the interactions between various 
pathways or network components, and shifts in phenotype upon regulatory perturbations is an 
exceedingly difficult task. Although comparative analysis of subnetwork regulation is possible 
with current computational methods, standard physicochemical modeling is highly dependent 
on a model’s kinetic parameters and, unfortunately, parameters are typically unknown and 
must be calibrated to data that is often sparse. Any network inferences made with a particular 
set of parameters may be good only for that set of parameters because when data is lacking, 
different parameter sets that favor different network components may fit equally well. To 
overcome this limitation, we take a probabilistic approach to the inference of changes in 
network dynamics. The Bayesian evidence (expected value) is calculated for relevant 
subnetworks, with an objective function that quantifies an anticipated outcome, such as cell 
death, over an incrementing range of quantities for key regulators of the system in question. 
Differences in the trends in evidence for the subnetworks reveals information about their 
interactions and how they vary under regulatory changes. Alternatively, retaining the complete 
network while using objective functions that estimate the same quantity, such as pathway 
signal flux, but target different pathways can offer an alternative but complimentary view of 
changing network dynamics under regulatory perturbation.  

There are several advantages to using this method over more traditional modeling. As model 
selection methods are designed for model comparison, they are a natural choice for the 
inference of differential response in subnetworks under changing regulatory conditions. Nested 
sampling is ideal when those pathways are modeled with physicochemical representations as 
the method provides a measure of robustness for attaining the desired outcome. The evidence 
calculation effectively integrates out the impact of parameters, so long as reasonable 
parameter ranges are chosen. This leaves the network topology and initial conditions as the 
remaining factors influencing pathway response from regulator perturbation. Lack of 
dependence on parameter calibration also obviates the need for the data to carry it out. 
Typically, model selection methods also require a fit to experimental data to select the best 
model candidate. Here though, we are not choosing a preferred model by comparison of a 
single evidence value for each one but instead, considering the relative changes in evidence 
values as a proxy for differential pathway response to regulatory changes. All that is required 
for such an analysis is a desired final model state or a functional process that can be estimated 
for a simulated run. Thus, although experimental data can certainly be used, it is not a 
requirement. In all, these properties allow for a head-to-head, topology-dependent, data-free 
comparison of subnetwork response to changes in regulatory conditions. 

The utility of the method is evident when applied to the regulation of extrinsic apoptosis with 
the apoptosis inhibitor XIAP. By deconstructing the network into all relevant subnetworks and 
comparing the evidence trends of each of them, several insights/hypotheses were made. First, 
our results are in line with experimentation and the hypothesis that increasing XIAP, 
particularly from very low levels, puts the apoptotic system into a state that favors the Type II 
pathway. The diverging evidence trends between the isolated caspase pathway and both the 
mitochondrial pathway and the complete network imply that XIAP produces this state by 
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differentially suppressing the caspase pathway over networks that include the mitochondrial 
pathway, thus requiring mitochondrial amplification to achieve apoptosis. There also appears to 
be an optimal XIAP value for achieving the Type II phenotype at around 41,000 molecules per 
cell, as demonstrated by the trend in the Bayes factors between the caspase pathway and the 
complete network. Second, it appears that XIAP inhibition may be the primary mechanism by 
which mitochondrial amplification of the apoptotic signal is executed. This is illustrated by 
higher likelihood of apoptosis, at lower levels of XIAP, for the caspase plus XIAP inhibition 
network than for the caspase plus mitochondrial signal transduction or the mitochondrial signal 
transduction alone. This hypothesis is further supported by the estimated expected values for 
signal flux. The caspase pathway flux is consistently higher than that for the mitochondrial 
pathway indicating that it is more likely that the majority of the signal is passing through the 
caspase pathway. Finally, the lower trend for the complete network versus the mitochondrial 
pathway at lower values of XIAP, despite the additional pathway for apoptotic signaling 
contained in the complete network, suggests that the signal through the caspase pathway may 
get degraded under some narrow regulatory conditions, conditions that may be altered by the 
mitochondrial pathway to enable flow of the apoptotic signal through the caspase pathway. 
Given all these observations, a reasonable mechanistic hypothesis would be that under low 
signal throughput the caspase pathway acts as a sink until the amplified signal makes its way 
through the mitochondrial pathway. Inhibition of XIAP then allows the signal to pass through 
the caspase pathway, carrying the bulk of the apoptotic signal, but also through the 
mitochondrial induced apoptosome as a secondary route.  

One limitation to using trends in Bayesian evidence for pathway or phenotype analysis is the 
computational cost. For example, the average estimated clock time of 76,981 seconds for the 
complete network under the PARP cleavage objective function and at a population size of 
16,000 equates to nearly 714 CPU days for that entire run. Although the run time for evidence 
calculation can vary greatly it is correlated to the size of the model as was seen with the 
equivalent caspase pathway run at an average of 11,964 seconds. Fortunately, reducing the 
resolution (the number of sets of initial values for which an evidence value is estimated) and 
the precision (the population size) can drastically reduce the cost and in many cases the 
method will still be viable. The chosen objective function can also have a significant effect on 
the run time. The precision of the flux-based evidence landscapes was reduced by 75% for this 
reason. One aspect of the method that is severely restrictive is the number of model 
components that can be varied in the same run since the computational cost increases 
exponentially with each additional variable. Another consideration is the interpretation of 
results. The evidence and Bayes factor landscapes provide an abstract view of how the 
subnetworks respond to perturbations of their components, the meaning of which must be 
deduced in the context of the networks they represent and the objective function that 
generated them. 
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Conclusions 

Trends in the Bayesian evidence for pathways in a biological network under regulatory 
perturbations provide a probabilistic approach to the analysis of pathway dynamics, the 
interplay between them, and the differential effects on them as regulatory conditions change. 
The method effectively removes the dependence on calibrated parameters, leaving model 
topology and initial conditions as the primary driver of pathway response to changes in protein 
concentration. In this work we used the method to evaluate the mechanisms underpinning 
apoptotic signal execution and the transition from a Type I to Type II apoptotic phenotype in 
the extrinsic apoptosis network. We found that while XIAP has an inhibitory effect on both the 
caspase and mitochondrial pathways, it disproportionally affects the caspase pathway, thus 
requiring mitochondrial amplification. There also appears to be an optimal level of XIAP for 
achieving a Type II phenotype, after which the system likely tends toward complete resistance 
to apoptosis. Mitochondrial amplification appears to primarily take the form of inhibition of 
XIAP and the abatement of signal inhibition through the caspase pathway, with direct signaling 
through the mitochondrial pathway a secondary mechanism. Without amplification the caspase 
pathway may very well be a sink for the apoptotic signal. Overall, these computational results 
confirm the experimental results regarding XIAP and its regulation of extrinsic apoptosis but 
also suggest the mechanisms that effect that regulation and provides insight into the crosstalk 
between the caspase and the mitochondrial pathway. 

Construction and comparison of Bayesian evidence trends is a powerful approach to the 
analysis of network dynamics, particularly when experimental data is sparse. Each comparison 
lends additional insights that can be built into an overall hypothesis for the causal mechanisms 
of changes in network dynamics under regulatory perturbation. Such a probabilistic approach 
to systems biology may prove to be a valuable tool going forward. 
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