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Abstract 12 

Mathematical models of biochemical reaction networks are central to the study of dynamic 13 

cellular processes and hypothesis generation that informs experimentation and validation. 14 

Unfortunately, model parameters are often not available and sparse experimental data leads to 15 

challenges in model calibration and parameter estimation. This can in turn lead to unreliable 16 

mechanistic interpretations of experimental data and the generation of poorly conceived 17 

hypotheses for experimental validation. To address this challenge, we evaluate whether a 18 

Bayesian-inspired probability-based approach, that incorporates available information 19 

regarding reaction network topology and parameters, can be used to qualitatively explore 20 

hypothetical biochemical network execution mechanisms in the context of limited available 21 

data. We test our approach on a model of extrinsic apoptosis execution to identify preferred 22 

signal execution modes across varying conditions. Apoptosis signal processing can take place 23 

either through a mitochondria independent (Type I) mode or a mitochondria dependent (Type 24 

II) mode. We first show that in silico knockouts, represented by model subnetworks, 25 

successfully identify the most likely execution mode for specific concentrations of key 26 

molecular regulators. We then show that changes in molecular regulator concentrations alter 27 

the overall reaction flux through the network by shifting the primary route of signal flow 28 

between the direct caspase and mitochondrial pathways. Our work thus demonstrates that 29 

probabilistic approaches can be used to explore the qualitative dynamic behavior of model 30 

biochemical systems even with missing or sparse data. 31 
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Introduction 45 

The complex dynamics of biochemical networks, stemming from numerous interactions and 46 

pathway crosstalk, render signal execution mechanisms difficult to characterize [1, 2, 3]. 47 

Mathematical modeling of biochemical networks has become a powerful compliment to 48 

experimentation for generating hypotheses regarding the underlying mechanisms that govern 49 

signal processing and suggesting targets for further experimental examination [4, 5]. Models of 50 

biochemical reaction networks, often based on a mass action kinetics formalism, are built to 51 

represent known pathway mechanics with knowledge garnered from years or even decades of 52 

experimentation [6, 7]. Although these models have yielded important predictions and insights 53 

about biochemical network processes, they also depend on kinetic rate parameters and protein 54 

concentrations that are often poorly characterized or simply unavailable. A typical workaround 55 

is to employ model calibration methods to estimate suitable parameter values via optimization 56 

to protein concentration time course data [8, 9, 10]. However, the data needed for parameter 57 

optimization is often scarce, leading to the possibility of multiple parameter sets that fit the 58 

model to that data equally well but exhibit different dynamics. [7, 9]. This poses a challenge for 59 

the study of dynamic network processes as the mode of signal execution can be highly 60 

dependent on a specific parameter set and could in turn lead to inadequate model-based 61 

interpretation. A computational approach that enables the exploration of biochemical signal 62 

execution mechanisms from a probabilistic perspective, constrained only by available data, 63 

would facilitate a rigorous exploration of network dynamics and accelerate the generation of 64 

testable mechanistic hypotheses [11]. 65 

In this work, we investigate whether a Bayesian-inspired probabilistic approach can identify 66 

network signal execution mechanisms in extrinsic apoptosis restricted only by experimental 67 

observations. Two execution phenotypes have been identified for extrinsic apoptosis signaling: 68 

a mitochondria independent (Type I) phenotype, whereby initiator caspases directly activate 69 

effector caspases and induce cell death, and a mitochondria dependent (Type II) phenotype 70 

whereby initiator caspases engage the Bcl-2 family of proteins, which ultimately lead to effector 71 

caspase activation (see Box 1 for biology details). Most mammalian cells execute apoptosis via 72 

the Type II mechanism, yet the Type I mechanism plays a central role in specific cell types, 73 

particularly certain types of lymphocytes [12]. A significant body of experimental and modeling 74 

work has identified key regulators for Type I vs Type II execution (see Box 1). However, it is still 75 

unclear how network structure and the interplay among multiple regulators can modulate 76 

signal execution for either cell type. A more traditional approach would prescribe intricate and 77 

detailed experimental measurements of cellular response to yield the desired data and improve 78 

our understanding of signal execution. However, the time and cost associated with such 79 

experiments makes it unlikely, and at times infeasible, to obtain said data. It is here that we see 80 

probabilistic inference approaches as complementary to experimentation, providing qualitative 81 

insights about signal execution mechanisms by integrating the expected parameter space 82 

subject only to available computer time. Here we demonstrate that a probabilistic approach, 83 

constrained by network structure or molecular concentrations, can identify the dominant signal 84 

execution modes in a reaction network. Specifically, we demonstrate the dependence of Type I 85 

or a Type II cellular apoptosis execution on network structure and chemical-species 86 
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concentrations. We use expected values for quantifiable in silico experimental outcomes as 87 

metrics for comparisons of signal flow through different pathways of the network and 88 

subnetworks in order to identify how regulators affect execution modes. We introduce two 89 

complementary approaches that can be used in tandem to explore signal execution 90 

modulation. We first define a multimodel exploration method to explore multiple hypothesis 91 

about apoptosis execution by deconstructing an established apoptosis network model into 92 

functional subnetworks that effectively represent in silico knockout experiments. We also 93 

define a pathway flux method to characterize the signal flux through specific network pathways 94 

within the chosen canonical network. Combined, these two approaches enable us to 95 

qualitatively identify key network components and molecular regulator combinations that yield 96 

mechanistic insights about apoptosis execution. Our approach is generalizable to other mass 97 

action kinetics-based networks where signal execution modes play important roles in cellular 98 

outcomes. This work leverages Nested Sampling algorithm methods to efficiently calculate 99 

expected values on high performance computing (HPC) platforms, both of which are seldom 100 

used in biological applications. In this manner we are able to carry out the necessary 101 

calculations to consider the entirety of the proposed parameter space and estimate expected 102 

values within the timespan of hours to days. 103 

Methods 104 

Apoptosis model and simulations 105 

The base model used in this work is a modified version of the Extrinsic Apoptosis Reaction 106 

Model (EARM) from Lopez et al. (EARM v2.1) [7]. The original EARM was simplified to reduce 107 

complexity and lower the number of parameters, but still retains the key features of the 108 

network for apoptosis execution. Specifically, we reduced the molecular complexity of 109 

mitochondrial outer membrane permeabilization (MOMP) down to a representative set of Bcl-2 110 

proteins that capture the behavior of activators, inhibitors, effectors, and sensitizers. We also 111 

eliminated intermediate states for Cytochrome c and Smac to streamline effector caspase 112 

activation, and we added an explicit FADD molecule, an adapter protein in the death-inducing 113 

signaling complex (DISC), to achieve a more realistic representation of signal initiation. Overall, 114 

EARM v2.1 is comprised of 16 chemical species at non-zero initial concentrations, 50 total 115 

chemical species, 62 reactions, and 62 kinetic parameters. The modified model was recalibrated 116 

to recapitulate the time-dependent concentration trajectories of truncated Bid, Smac release 117 

from the mitochondria, and cleaved PARP analogous to the approach reported previously [42] 118 

(Figure S1). The modified EARM, and all derivative models, were encoded in PySB. All 119 

simulations were run using the mass action kinetics formalism as a system of ordinary 120 

differential equations (ODEs) using the VODE integrator in SciPy within the PySB modeling 121 

framework. All data results, representative models, and software are distributed with open-122 

source licensing and can be found in the GitHub repository https://github.com/LoLab-VU/BIND.  123 

Expected value estimation 124 

The expected value for a quantifiable outcome is, by definition, the integral of an objective 125 

function that represents that outcome over the normalized distribution of parameters. This is 126 

analogous to the estimation of Bayesian evidence where a likelihood function is likewise 127 

integrated over a normalized distribution. We can thus use existing, established, Bayesian 128 
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evidence estimation methods and software to estimate expected values by simply substituting 129 

the objective function for the likelihood function in the integral calculation. The remainder of 130 

this section and the next provide an overview of the evidence estimation methods and tools 131 

that we have repurposed for expected value calculations.  132 

Bayesian evidence is the normalizing term in a Bayesian calculation and typically provides a 133 

measure for model comparison with regard to their fit to experimental data. It is expressed as: 134 

𝑃(𝐷|𝑀) = ∫𝐿(𝐷|𝜃,𝑀) 𝑃(𝜃|𝑀) 𝑑𝜃                                                                   (1) 135 

Where 𝑀 is the model under consideration, 𝐷 is the experimental data, 𝜃 is a specific set of 136 

parameter values, 𝐿(𝐷|𝜃,𝑀) is the likelihood function describing the fit of the data to the 137 

model under those parameter values, and 𝑃(𝜃|𝑀) is the prior distribution of parameters. An 138 

efficient method for evidence calculation is nested sampling. This method simplifies the 139 

evidence calculation by introducing a prior mass element 𝑑𝑋 = 𝑃(𝜃|𝑀)𝑑𝜃 that is estimated by 140 

(𝑋𝑖−𝑖 − 𝑋𝑖) where 𝑋𝑖 = 𝑒
−𝑖/𝑁, 𝑖 is the current iteration of the algorithm, and 𝑁 is the total 141 

number of live points. The evidence is then written as  142 

𝑍 = ∫𝐿

1

0

𝑑𝑋 ≈∑𝐿𝑖(𝑋𝑖−1 − 𝑋𝑖)

𝑖=1

                                                                       (2) 143 

Initialization of the algorithm is carried out by randomly selecting an initial population of 144 

parameter sets (points in parameter space) from the prior distribution, scoring each one with 145 

the likelihood function, and ranking them from 𝐿ℎ𝑖𝑔ℎ to 𝐿𝑙𝑜𝑤. At each iteration of the algorithm 146 

a new set of parameter values is selected and scored. If that score is higher than 𝐿𝑙𝑜𝑤, then it is 147 

added to the population, at the appropriate rank, and 𝐿𝑙𝑜𝑤 is removed from the population and 148 

added to the evidence sum (2).  149 

Nested sampling software 150 

All expected value estimates in this work are calculated with MultiNest, a nested sampling-151 

based algorithm designed for efficient evidence calculation on highly multimodel posterior 152 

distributions [44, 45]. MultiNest works by clustering the live points (population of parameter 153 

sets) and enclosing them in ellipsoids at each iteration. The enclosed space then constitutes a 154 

reduced space of admissible parameter sets. This lowers the probability of sampling from low 155 

likelihood areas and evaluating points that will only be discarded. The evidence estimate is 156 

accompanied by an estimate of the evidence error. The algorithm terminates when the 157 

presumed contribution of the highest likelihood member of the current set of live points, 158 

𝐿ℎ𝑖𝑔ℎ𝑋𝑖 is below a threshold. Here, we use a threshold of 0.0001 and a population size and 159 

16,000 unless otherwise noted. The population size of 16,000 was found to be an acceptable 160 

compromise between precision and computational austerity for the model sizes and in silico 161 

experiments performed in this study. See [44, 45], for more details on the MultiNest algorithm. 162 

We use MultiNest with the Python wrapper PyMultiNest [46], which facilitates the integration 163 

with PySB into the parameter sampling pipeline.  164 

Multimodel exploration analysis 165 
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We carried out an analysis analogous to knockout experiments to investigate the contribution 166 

of different network components to the overall dynamics of the apoptosis execution network.  167 

We broke down the EARM network into six subnetworks and compared their likelihood of 168 

achieving apoptosis across increasing concentrations of the regulator XIAP. A standard proxy for 169 

apoptosis execution is cleavage of the protein PARP. We therefore define the proportion of 170 

cleaved PARP, relative to total PARP, as a metric for effective apoptosis execution. We defined 171 

the objective function that represents the amount of cleaved PARP as: 172 

𝑂𝑏𝑗𝑚𝑢𝑙𝑡𝑖𝑚𝑜𝑑𝑒𝑙 =
𝑐𝑃𝐴𝑅𝑃

𝑡𝑃𝐴𝑅𝑃
                                                                            (3)  173 

where 𝑐𝑃𝐴𝑅𝑃 is the amount of PARP that has been cleaved and 𝑡𝑃𝐴𝑅𝑃 is the total amount of 174 

PARP in the system. When this objective function is substituted into equation (1) in place of the 175 

likelihood function, we obtain the expected value, the average over the chosen prior parameter 176 

range, for the proportion of PARP that has been cleaved at the end of the in silico experimental 177 

simulation. We compare PARP cleavage for different subnetworks and regulatory conditions 178 

only in qualitative terms and as a relative measure of the expected outcome.  179 

Pathway flux analysis 180 

We also explored the effect of molecular regulators of Type I vs Type II execution relative to the 181 

apoptosis signal flux through the network, as we have done in previous work [49]. Briefly, signal 182 

flux is defined as the chemical reaction flux in units of molecules per unit time, that traverses 183 

through a given pathway. In the apoptosis network there are two potential pathways that can 184 

lead to Caspase-3 activation and subsequently PARP cleavage. In the direct caspase pathway 185 

initiator caspases, represented here as “Caspase-8”, directly cleave and activate the effector 186 

caspases, represented here as “Caspase-3”. By contrast, in the mitochondrial pathway, effector 187 

caspases are activated via the apoptosome, and are dependent on MOMP. Therefore, the 188 

dominant pathway responsible for Caspase-3 activation defines the route of the signal. To 189 

estimate the flux through one of these pathways, we define the objective function as: 190 

𝑂𝑏𝑗𝑝𝑎𝑡ℎ𝑤𝑎𝑦 =∑
∑ 𝐶3𝑝𝑎𝑡ℎ𝑤𝑎𝑦
𝑡
0

∑ 𝐶3𝑡𝑜𝑡𝑎𝑙
𝑡
0

𝑇

𝑡=0

× (𝑐𝑃𝑎𝑟𝑝𝑡 − 𝑐𝑃𝑎𝑟𝑝𝑡−1)                                 (4) 191 

where 𝑡 represents time in seconds, ∑ 𝐶3𝑝𝑎𝑡ℎ𝑤𝑎𝑦
𝑡
0  is the amount of Caspase-3 activated via the 192 

target pathway up to time t, ∑ 𝐶3𝑡𝑜𝑡𝑎𝑙
𝑡
0  is the total Caspase-3 activated up to time t, 193 

and ∑ 𝐶3𝑐𝑎𝑠𝑝𝑎𝑠𝑒
𝑡
0 /∑ 𝐶3𝑡𝑜𝑡𝑎𝑙

𝑡
0  is the proportion of activated Caspase-3 that was produced via 194 

the target pathway up to time 𝑡. (𝑐𝑃𝑎𝑟𝑝𝑡 − 𝑐𝑃𝑎𝑟𝑝𝑡−1) is the total PARP that has been cleaved, 195 

and activated, by Caspase-3 from time 𝑡 − 1 to time 𝑡.Thus, at any given time t we can estimate 196 

the amount of Caspase-3 that has been activated through a specific pathway. Multiplication of 197 

these two terms returns an estimate for the amount of PARP cleaved via the specific pathway 198 

at time t. Summing over T then returns an estimate for the total apoptosis signal flowing 199 

through the target pathway. Like the PARP cleavage objective function, the signal flux objective 200 

substituted into equation (1) produces an estimate of the average flux over a defined prior 201 

distribution. We estimated this quantity over increasing concentrations of the molecular 202 

regulator XIAP, but also at high and low levels of the DISC components FADD and Caspase-8. 203 
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The total signal flux was estimated by summing the flux estimate for both the direct caspase 204 

and mitochondrial pathways.  205 

Parameter ranges and initial conditions 206 

The prior distribution takes the form of a set of parameter ranges, one for each reaction rate 207 

parameter. The ranges used here span four orders of magnitude around generic reaction rates 208 

deemed plausible [4] and are specific to the type of reaction taking place. The ranges of 209 

reaction rate parameters, in Log10 space, are 1st order forward: [-4.0, 0.0], 2nd order forward: [-210 

8.0, -4.0], 1st order reverse: [-4.0, 0.0], catalysis: [-1.0, 3.0]. These ranges were also used in the 211 

calibration of the base model. Where possible, initial conditions were either collected from the 212 

literature [50, 51] or taken from a previous model of extrinsic apoptosis [7, 52]. Because the 213 

baseline model was designed to concur with Type II apoptotic data (see above), literature 214 

derived initial conditions were based on Type II Jurkat or Hela cell lines (Table S1).  215 

Expected value ratios 216 

Evidence estimates are often used to select between two competing models by calculating the 217 

Bayes factor (i.e. the ratio of their evidence values). This provides a measure of confidence for 218 

choosing one model over another. We can likewise use the ratios of expected values to gain 219 

additional insights into the dynamical relationship between network components. To facilitate 220 

construction of expected value ratios (EVR) with a continuous and symmetric range, we define 221 

them as: 222 

𝐸𝑉𝑅 =  

{
 

 −
𝑍2
𝑍1
+ 1  𝑖𝑓 𝑍1 < 𝑍2

𝑍1
𝑍2
− 1  𝑖𝑓 𝑍1 > 𝑍2

 223 

where 𝑍1 and 𝑍2 are the expected value estimates for two networks under comparison.  224 

Computational resources 225 

Because of the high computational workload necessary for this analysis, a wide range of 226 

computational resources were used. The bulk of the work was done on the ACCRE cluster at 227 

Vanderbilt University which has more than 600 compute nodes running Intel Xeon processors 228 

and a Linux OS. As many as 300 evidence estimates were run in parallel on this system. 229 

Additional resources included two local servers, also running Intel processors and a Linux OS, as 230 

well as a small local four node cluster running Linux and AMD Ryzen 1700 processors. A 231 

detailed breakdown of CPU time can be found in the results section. In all, expected value 232 

estimates for 14 different networks/initial conditions were made across the range of XIAP 233 

concentrations. We estimate all 14 runs would take ~9 days each on a typical university server 234 

with 32 cores/64 threads. 235 

Results 236 

Overview: A Bayesian-inspired approach to explore mechanistic hypotheses. 237 

Our overarching goal is to understand the mechanisms and dynamics of biochemical networks 238 

responsible for cellular commitment to fate, given incomplete or unavailable data. We take a 239 

probabilistic approach, similar to those used in Bayesian evidence-based model selection and 240 
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multimodel inference, to compare model subnetworks and pathways with respect to apoptotic 241 

signal execution under various in silico experimental conditions and enable the generation of 242 

hypotheses regarding the underlying mechanisms of signal processing. Using this approach, 243 

we’ve employed two distinct but complimentary strategies. 244 

The first is Multimodel Exploration Analysis (Figure 1, left path), wherein the network model is 245 

deconstructed into biologically relevant subnetworks and the probability of each subnetwork 246 

achieving apoptosis, under various regulatory conditions, is estimated via the calculation of an 247 

expected value for a quantifiable proxy of apoptosis. This differs from traditional model 248 

selection and multimodel inference applications where models are typically ranked based on 249 

their fit to experimental data and high-ranking models may be averaged to obtain a composite 250 

model [47, 48, 53, 54, 55, 56]. Here, we already have a model that captures key features of 251 

programmed cell death execution. Instead, we use the differences in expected values for a 252 

quantity that is representative of apoptosis to construct a composite picture of mechanistic 253 

evidence for apoptosis execution. To achieve this, we first tailor the objective function to 254 

represent signal execution strength, as measured by cleaved PARP concentration at the end of 255 

the simulation. The expected value derived from this objective function therefore describes the 256 

likelihood that the signal is effectively transmitted through a given network. It should be noted 257 

that Bayesian evidence, and by extension our expected value calculation, inherently 258 

incorporates model complexity as the objectives are integrated over normalized prior 259 

distributions [44, 53, 57]. As we will see, comparison of changes in signal strength through 260 

relevant subnetworks allows inferences to be made on the effect of the perturbed network 261 

regulator as well as various network components on the overall dynamics of the system. We 262 

focus primarily on understanding how Bayesian evidence for the caspase pathway compares to 263 

that of the complete network as these are most relevant for the analysis of Type I/II execution 264 

modes. This analysis will inform on how network components contribute to overall signal 265 

execution and provide mechanistic insights about the sensitivity of PARP cleavage to 266 

subnetwork components.  267 

The second strategy is Pathway Flux Analysis (Figure 1, right path), where we retain the 268 

complete network structure but instead tailor the objective functions to measure biochemical 269 

reaction flux through either the direct caspase or mitochondrial pathways. We primarily 270 

consider the influence of the apoptosis inhibitor XIAP on regulatory dynamics and phenotypic 271 

fate but also consider the regulatory effect of the death inducing signaling complex (DISC) and 272 

the anti-apoptotic protein Bcl-2, all of which have been found to be relevant to Type I vs Type II 273 

execution in different cell types [13, 14]. This analysis will inform on how molecular regulators 274 

modulate biochemical flux through the network and their influence on apoptosis completion as 275 

measured by PARP cleavage. 276 

Decomposition of the extrinsic apoptosis network and reductive analysis of the effects of 277 

XIAP 278 

To investigate the effect of network substructures on apoptosis signaling, we build a composite 279 

description of system dynamics by observing variations in signal throughput, represented by 280 

expected values of PARP cleavage, between subnetworks (Figure 2A-F) relative to changes in 281 

regulatory conditions. We consider relative changes in expected PARP cleavage as the number 282 

of XIAP molecules is increased where a higher value indicates a stronger average signal over the 283 
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prior range of parameter values. XIAP was varied from 0 to 200,000 molecules per cell in 284 

increments of 250 to explore how changes in XIAP affect the likelihood of apoptosis execution. 285 

For subnetworks that include the mitochondrial pathway, Bcl-2 (an anti-apoptotic protein) was 286 

eliminated, to explore Type I vs Type II activity independent of inhibitors that could confound 287 

signal throughput, and more closely simulate a cell that is “primed” for death [57]. All other 288 

initial values were fixed at the levels shown in supplementary Table S1. In the absence of XIAP 289 

all six subnetworks have PARP cleavage estimates greater than 0.98, (Figure 2 A: 0.993, B: 290 

0.998, C: 0.992, D: 0.981, E: 0.998, F: 0.981, Table S2) indicating a robust apoptotic signal for 291 

each across the allowed range of parameters. The log-expected value version of Figure 2G along 292 

with estimated errors generated by MultiNest are displayed in Figure S2.  293 

The results in Jost et al. [14] imply that the cellular level of XIAP determines the preferred 294 

apoptosis pathway with higher levels specific to Type II cells and lower levels specific to Type I. 295 

To hypothesize a possible mechanistic explanation for this behavior we compared the expected 296 

PARP cleavage, over increasing concentrations of XIAP, for the direct caspase activation 297 

network against both the complete network and the isolated mitochondrial pathway network 298 

(Figures 2A and G green; 2E and G orange; 2F G blue respectively). This mimics reported 299 

experimental strategies to study Type I/II phenotypes and allows us to gauge the effect of XIAP 300 

on networks with and without a mitochondrial component [13, 35].  301 

As XIAP levels increase we see differential effects on all subnetworks in the form of diverging 302 

expected value estimates, indicating differences in the efficacy of XIAP induced apoptotic 303 

inhibition. PARP cleavage values for the isolated caspase pathway (Figure 2G green) diverge 304 

from the complete network (Figure 2G orange) and mitochondrial pathway (Figure 2 blue) 305 

showing a steeper initial decline that diminishes as XIAP continues to increase. PARP cleavage 306 

values for the caspase pathway falls to 0.5 at an XIAP level of roughly 32,000. However, the 307 

complete network and mitochondrial pathways require XIAP levels nearly threefold higher with 308 

PARP cleavage reaching 0.5 at around 92,000 and 95,000 respectively.  309 

Because the direct caspase activation pathway (Figures 2G green) is representative of the Type I 310 

phenotype, the disproportionate drop in its expected PARP cleavage as XIAP concentration 311 

increases is consistent with experimental evidence showing XIAP-induced transition from a 312 

Type I to a Type II execution mode [14]. The complete network, containing the full 313 

mitochondrial subnetwork, and mitochondrial only pathway are also affected by XIAP but 314 

exhibit resistance to its anti-apoptotic effects, a difference that is most prominent at moderate 315 

levels of the inhibitor. This suggests a dependence on mitochondrial amplification for effective 316 

apoptosis as XIAP increases from low to moderate levels. At higher levels of XIAP the PARP 317 

cleavage for the caspase pathway level off and the gaps between it and the two mitochondrial 318 

containing networks narrow. The disproportionate effect of XIAP inhibition of apoptosis on the 319 

caspase pathway suggests that the mechanism for XIAP induced transition to a Type II pathway 320 

can be attributed to differential inhibition of the apoptotic signal through the isolated caspase 321 

pathway vs a network with mitochondrial involvement. 322 

The next two highest trends in expected values after that of the direct caspase network belong 323 

to the networks representing direct caspase activation plus mitochondrial activation and 324 

mitochondrial activation alone (Figures 2G purple and 2G brown). For most of the range with 325 
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XIAP below 100,000 these two networks have largely overlapping PARP cleavage trajectories, 326 

despite the fact that the former has twice as many paths carrying the apoptotic signal. Near an 327 

XIAP level of 100,000 the two trends diverge as the decrease in PARP cleavage for the 328 

mitochondrial activation only network accelerates. This could be explained by XIAP 329 

overwhelming the apoptosome at these higher levels. The apoptosome is an apoptosis inducing 330 

complex (via Caspase-3 cleavage) consisting of Cytochrome c, APAF-1, and Caspase-9, and is an 331 

inhibitory target of XIAP. As XIAP increases past 125,000 the mitochondrial activation only PARP 332 

cleavage values fall below even the solo direct caspase values, possibly due to the two-pronged 333 

inhibitory action of XIAP at both the apoptosome and Caspase-3. An interesting observation 334 

here is that the addition of the direct caspase pathway to the mitochondrial activation pathway 335 

does not appear to increase the likelihood of achieving apoptosis for lower values of XIAP. 336 

PARP cleavage values for the network representing direct caspase activation plus mitochondrial 337 

inhibition of XIAP are in red in Figure 2G. Below an XIAP level of 100,000 these values are 338 

consistently above the PARP cleavage values for the network representing direct caspase plus 339 

mitochondrial activation. Note that while direct caspase activation does not appear to increase 340 

the likelihood of achieving apoptosis when added to the mitochondrial activation pathway 341 

(Figure 2G purple) the amplification of the direct caspase activation via mitochondrial inhibition 342 

of XIAP leads to a higher likelihood than solo activation through the mitochondria. This suggests 343 

the possibility that the primary mechanism for mitochondrial apoptotic signal amplification, 344 

under some conditions, may be inhibition of XIAP, with direct signal transduction a secondary 345 

mechanism. Above an XIAP level of 100,000, the direct caspase with XIAP inhibition PARP 346 

cleavage values drop to levels roughly in line with the values for direct caspase activation plus 347 

mitochondrial activation, possibly due to the fact that Smac, the mitochondrial export that 348 

inhibits XIAP, is also set to 100,000 molecules per cell. Both, however, remain more likely to 349 

attain apoptosis than direct caspase activation alone. 350 

The two subnetworks with the highest expected values for apoptotic signal execution are the 351 

complete network and the isolated mitochondrial pathway (Figures 2E orange and 2F blue). As 352 

previously mentioned, both of these networks contain the full mitochondrial pathway implying 353 

that this pathway supports resistance to XIAP inhibition of apoptosis. Between XIAP levels of 0 354 

to 100,000 the two trends track very closely, with the mitochondrial only pathway showing a 355 

slight but consistent advantage for apoptosis execution. The average difference between an 356 

XIAP level of 20,000 and 80,000 is roughly 0.014, meaning we expect the average PARP 357 

cleavage to favor the mitochondrial only pathway by about 1.4 percentage points, which may 358 

seem unremarkable. Context matters however, and the context here is that the complete 359 

network has potentially twice the bandwidth for the apoptotic signal, namely the addition of 360 

the more direct caspase pathway. Together, this raises the possibility that under some 361 

conditions the caspase pathway is not a pathway but a sink for the apoptotic signal. In such a 362 

scenario, the signal through the caspase pathway would get lost as Caspase-3 is degraded by 363 

XIAP. Not until the signal through the mitochondrial pathway begins inhibiting XIAP could the 364 

signal proceed. Around the 100,000 level of XIAP the PARP cleavage trend for the mitochondrial 365 

pathway crosses below that for the complete network. This could be due to the parity with 366 

Smac, components of the apoptosome, or a combination of the two. 367 

 368 
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Apoptosis signal strength dictates the signal route through the network 369 

The results in Scaffidi et al. [13] indicate a strong phenotypic dependence on the strength of the 370 

apoptosis signal. Here we examine hypotheses made in that work and the interplay between 371 

the DISC and XIAP regulatory axes. We again increase XIAP from 0 to 200,000 molecules in 372 

increments of 250, but this time at a low number of DISC complexes by lowering the initial 373 

values of both the scaffold protein FADD and the initiator Caspase-8, from 130,000 to 100 374 

molecules per cell. In addition to the Multimodel Exploration Analysis approach used in the 375 

previous section, we also use the Pathway Flux Analysis approach using the signal flux objective 376 

function (see Methods). In this way we attain a holistic view of network dynamics that 377 

incorporates both network structure and signal flux crosstalk from all possible pathways. 378 

Additional analysis of caspase and mitochondrial pathway signal flux over a range of values for 379 

both XIAP and Bcl-2 is displayed in Figure S3 and interpreted in Text S1.  380 

Figure 3A displays the PARP cleavage expected values along with their low DISC counterparts. 381 

Two things are immediately apparent. PARP cleavage for the caspase pathway with a low 382 

number of DISC molecular components is lower across the entire range of XIAP concentrations. 383 

The complete network, on the other hand, shows almost no difference under low DISC 384 

conditions at lower values of XIAP. This supports the hypothesis that mitochondrial 385 

involvement is necessary to overcome weak DISC formation and that weak signal initiation 386 

constitutes a Type II trait [13].  387 

Figures 3B and 3C show expected values for signal flux through the caspase pathway and 388 

complete network, for high and low numbers of DISC components, respectively. At higher DISC 389 

values, signal flux through the caspase pathway is consistently higher than the flux through the 390 

mitochondrial pathway. At lower DISC values the signal flux through the mitochondrial pathway 391 

exceeds the flux through the caspase pathway. These results shed interesting mechanistic 392 

observations in the context of a previously proposed hypothesis stating that mitochondrial 393 

activation is downstream of Caspase-8 activation in Type I cells and upstream in Type II cells. If 394 

a weaker initial apoptosis cue does indeed push the signal through the mitochondrial pathway 395 

the initial activation of Caspase-8 would be weak and the amplifying activity of the 396 

mitochondria would ramp up the signal before Caspase-8 could directly activate Caspase-3. On 397 

the other hand, strong initial activation that pushes the signal through the caspase pathway 398 

would activate both Caspase-8 and Caspase-3 before MOMP becomes fully active. Also notable 399 

is the nearly identical trajectories of the total signal flux through the low and high DISC models. 400 

The average difference over the range of XIAP was only 0.011 (Table S3). This is consistent with 401 

observations that both Type I and Type II cells respond equally well to receptor mediated 402 

apoptosis [13]. 403 

Overall these results set up three mechanistic explanations for apoptosis execution. On one 404 

end, strong signal initiation and low XIAP results in the independence of apoptosis from the 405 

mitochondrial pathway. This behavior is consistent with Type I cells like the SKW6.4 cell lines 406 

[13]. Under this scenario our results imply that the majority of the signal flux is carried through 407 

the caspase pathway and we hypothesize that control of apoptosis is dominated by that 408 

pathway. On the other end of the spectrum weak signal initiation and moderate to high levels 409 

of XIAP result in a dependence on the mitochondrial pathway. Such behavior is consistent with 410 

Type II cells like Jurkat [13]. In this case our results strongly indicate that the majority of signal 411 
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flux is carried through the mitochondrial pathway and we hypothesize that apoptosis execution 412 

is dominated by that pathway. In between these two extremes is the case with strong signal 413 

initiation, and moderate to high levels of XIAP levels with apoptotic dependence on 414 

mitochondrial activity. Such a scenario that is consistent with MCF-7 cell that are known to have 415 

traits of both phenotypes [13]. In this case, we found that the majority of the apoptotic signal is 416 

carried through the caspase pathway despite the dependence on the mitochondria and we 417 

hypothesize that the mitochondrial pathway acts to allow the apoptotic signal through the 418 

caspase pathway.  419 

Expected value ratios and XIAP influence on Type I/II apoptosis phenotype 420 

Model selection methods typically calculate the evidence ratios, or Bayes factors, to choose a 421 

preferred model and estimate the confidence of that choice [59, 60].When comparing changes 422 

in likelihood of an outcome as regulatory conditions are altered we can similarly use ratios of 423 

expected values to provide additional information about evolving network dynamics under 424 

regulatory perturbations. To characterize the effect of XIAP on the choice of Type I or II 425 

apoptotic phenotype we calculated the expected value ratios (Figure 4A), for each value of XIAP 426 

between the caspase pathway and both the complete network and mitochondrial pathway. In 427 

these calculations, the denominator represents the caspase pathway so that higher values favor 428 

a need for mitochondrial involvement. An interesting feature of both the complete and 429 

mitochondrial expected value ratios is the peak and reversal at a moderate level XIAP (Figure 430 

4B). This reflects the initially successful inhibition of the caspase pathway that decelerates 431 

relatively quickly as XIAP increases, and a steadier rate of increased inhibition on networks that 432 

incorporate the mitochondrial pathway. The ratios peak between 45,000 and 50,000 molecules 433 

of XIAP (more than double the value of its target molecule Caspase-3 at 21,000) and represent 434 

the optimal level of XIAP for the requirement of the mitochondrial pathway and attainment of a 435 

Type II execution. Given the near monotonic decline of the expected values for both pathways, 436 

representing increasing suppression of apoptosis, the peak and decline in the expected value 437 

ratios could represent a shift toward complete apoptotic resistance. Our results therefore 438 

complement the observations in Aldridge et al. where a similar outcome was observed 439 

experimentally [52]. 440 

A common technique to study apoptosis is to knockdown Bid, overexpress Bcl-2, or otherwise 441 

shut down MOMP induced apoptosis through mitochondrial regulation. This strategy was used 442 

in Jost et al. [14] to study the role of XIAP in apoptosis and in the work of Aldridge et al. to 443 

explore Type I vs Type II execution in different cell lines [60]. Taking a similar approach, we set 444 

Bcl-2 levels to 328,000 molecules per cell, in line with experimental findings [47], to suppress 445 

MOMP activity and recalculated the PARP cleavage expected values and their ratios (Figures 4C 446 

and 4D, Table S5). Under these conditions PARP cleavage for the mitochondrial pathway drop 447 

well below that of the direct caspase pathway, which is reflected in the expected value ratios 448 

trend as a shift into negative territory and indicate that the caspase pathway is favored. PARP 449 

cleavage for the complete network under MOMP inhibition is shifted closer to that for the 450 

caspase pathway at higher concentrations of XIAP but is still higher throughout the full range of 451 

XIAP. The peak in the associated expected value ratios is flattened as the level of XIAP increases 452 

from low levels, suggesting that increasing XIAP is less likely to induce a transition to a Type II 453 

phenotype in a system with an already hampered mitochondrial pathway. We note that 454 
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complete inhibition of MOMP would result in uninformative mitochondrial pathway results. 455 

PARP cleavage expected values for the complete network would be indistinguishable from 456 

those for the direct caspase pathway and the complete/caspase ratios would simply flatline. 457 

However, our analysis shows that isolation of active biologically relevant subnetworks and 458 

direct comparison under changing molecular regulatory conditions, using trends in expected 459 

values, enables the extraction of information regarding pathway interactions and differential 460 

network dynamics. 461 

Precision vs computational cost 462 

Increasing the precision of the expected value estimates and tightening their trendlines, is 463 

accomplished by increasing the number of live points in the nested sampling algorithm. The 464 

trade-off is an increase in the number of evaluations required to reach the termination of the 465 

algorithm and an accompanying increase in total computation time. Figures 5A and 5B display 466 

the required number of evaluations for the direct caspase and complete network at population 467 

sizes of 500, 1000, 2000, 4000, 8000, and 16,000, when run with the PARP cleavage objective 468 

function. For both models the number of evaluations roughly doubles for every doubling in 469 

population size. Figures 5C and 5D are the average estimated errors calculated by the MultiNest 470 

algorithm over each population size for the direct caspase and complete networks respectively. 471 

As expected, error estimates fall roughly as 𝑛−1/2 [61], signifying clear diminishing returns as 472 

the number of live points is increased. The average CPU process times, as estimated by 473 

Python’s time.clock() method, are given in Figures 5E and 5F for the direct caspase and 474 

complete networks respectively. Despite the greater number of required evaluations for the 475 

direct caspase network the average clock times for the complete network is significantly higher. 476 

At a population of 16,000 the caspase network had an average clock time of 11,964 seconds 477 

compared to 76,981 for the complete network. Data for figure 5 can be found in Table S6. 478 

Ultimately, the choice of population size for the methods we have laid out here will depend on 479 

the networks to be compared, the objective function, and how well the trends in the expected 480 

values must be resolved in order to make inferences about network dynamics. For example, at 481 

a population size of 500 the trend in the PARP cleavage expected values for the direct caspase 482 

pathway is clearly discernable from that for the mitochondrial pathway and the complete 483 

network, but the latter two are largely overlapping (Figure S4A). At higher population levels, 484 

however, two distinct mitochondrial and complete PARP cleavage trends become apparent 485 

(Figure S4K). If expected value ratio trends are desired then the choice of population size must 486 

take into consideration the amplification of the noise from both expected value estimates (see 487 

Figures S4(B, D, F, H, J, L) for complete/caspase PARP cleavage expected value trends). 488 

Discussion 489 

Characterizing information flow in biological networks, the interactions between various 490 

pathways or network components, and shifts in phenotype upon regulatory perturbations is a 491 

standing challenge in molecular biology. Although comparative analysis of signal flow within a 492 

network is possible with current computational methods, the dependence of physicochemical 493 

models on unknown parameters makes the computational examination of each network 494 

component highly dependent on costly experimentation.  495 
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To take advantage of the enormous amount of existing knowledge encoded in these 496 

physicochemical networks without the dependence on explicit parameter values we take a 497 

probabilistic approach to the exploration of changes in network dynamics. By integrating an 498 

objective function that represents a simulated outcome over parameter distributions derived 499 

from existing data we obtain the likelihood of attaining that outcome given the available 500 

information about the signaling pathways. The qualitative exploration of network behavior for 501 

various in silico experimental setups and regulatory conditions is then attainable without 502 

explicit knowledge of the parameter values. We demonstrate the utility of the method when 503 

applied to the regulation of extrinsic apoptosis. Networks that incorporate an active 504 

mitochondrial pathway displayed a higher resistance to apoptotic inhibition from increasing 505 

levels of XIAP, consistent with experimental evidence that XIAP induces a Type II phenotype 506 

[14]. Also in line with experimental evidence [13] are the results that suggest low/high signal 507 

initiation is consistent with Type II/I phenotype respectively and that both types achieve 508 

apoptosis equally well. 509 

A potential limitation of this probabilistic approach to the study network dynamics is the 510 

computational cost. A number of factors affect the run time of the algorithm including the size 511 

of the model, the objective function, and the desired precision. Fortunately, reducing the 512 

resolution (the number of in silico experiments for which an expected value is estimated) and 513 

the precision (the population size) can drastically reduce the cost and in many cases the 514 

method will still be viable. One aspect of the method that is severely restrictive is the number 515 

of model components that can be varied in the same run since the computational cost 516 

increases exponentially with each additional variable. Reasonable parameter distributions must 517 

also be chosen, preferably based on existing data. Here we were able to use generic but 518 

biologically plausible ranges with uniform distributions to produce results that were 519 

qualitatively consistent with previous experimental results. These in silico generated qualitative 520 

results allow us to make mechanistic hypotheses from existing data over a period of weeks 521 

rather than the months or years that would be required to attain this information with 522 

experimental approaches. Our results therefore support probabilistic approaches as a suitable 523 

complement to experimentation and a shift from purely deterministic models with a single 524 

optimum parameter set to a probabilistic understanding of mechanistic models of cellular 525 

processes.  526 

Conclusions 527 

In this paper we have developed a probabilistic approach to the qualitative analysis of the 528 

network dynamics of physicochemical models. It is designed to incorporate all available 529 

knowledge of the reaction topology, and the parameters on that topology, and calculate the 530 

likelihood of achieving an outcome of interest. Inferences on network dynamics are then made 531 

by repeating this calculation under changing regulatory conditions and various in silico 532 

experiments. We tested the method against a model of the extrinsic apoptosis system and 533 

produced qualitative results that were consistent with several lines of experimental research. 534 

To our knowledge this is the first attempt at a probabilistic analysis of network dynamics for 535 

physicochemical models and we believe this method will prove valuable for the large-scale 536 

exploration of those dynamics, particularly when parameter knowledge and data are scarce. 537 
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Figures Legends: 728 

Figure 1. General workflow for the analysis of network dynamics using trends in expected values. The target 729 
network is first deconstructed into subnetworks that effectively represent in silico knockouts. A model for each 730 
subnetwork and each incremental set of regulatory conditions is then created and passed to an algorithm for 731 
estimation of the expected value for an aspect of signal transduction. The expected value is calculated via 732 
integration of a user-defined objective function that quantifies that aspect of signal transduction over a range of 733 
parameter values (the prior). The trends in the expected values over changing regulatory conditions are then 734 
compared to make qualitative inferences regarding network dynamics. In a complimentary method, the full model 735 
is retained but the objective function is targeted to different pathways. Inferences on network dynamics can again 736 
be made via comparison of the trends in the expected values. 737 

 738 

Figure 2. Extrinsic apoptosis subnetworks and the likelihood of  achieving apoptosis. (A) The direct caspase 739 
subnetwork. (B) The direct caspase + mitochondrial activation subnetwork. (C) The direct caspase + mitochondrial 740 
inhibition of XIAP subnetwork network. (D) The mitochondrial activation subnetwork. (E) The complete network. 741 
(F) the mitochondrial subnetwork. (G) Trends in expected values for each of the networks in (A)-(F) over a range of 742 
values for the apoptosis inhibitor XIAP and for an objective function that computes the proportion of PARP 743 
cleavage (a proxy for cell death) at the end of the in silico experimental simulation. 744 

 745 

Figure 3. Expected values for PARP cleavage and pathway flux at low and high DISC component values. (A) 746 
Expected values for PARP cleavage for the caspase pathway and complete network under both low and high DISC 747 
conditions (100 and 130,000 molecules per cell of FADD and Caspase-8 respectively) over a range of XIAP values. 748 
(B) Expected values for signal flux through both pathways as well as the total signal flux under high DISC 749 
conditions. (C) Expected values for signal flux through both pathways as well as the total signal flux under low DISC 750 
conditions. 751 

 752 

Figure 4. Trends in expected value ratios under increasing levels of the apoptotic inhibitor XIAP for an inhibited 753 
and uninhibited mitochondrial pathway. (A) Expected value trends for the caspase pathway (green), 754 
mitochondrial pathway (blue), and complete network (orange) with no MOMP inhibition. (B) Trends for the 755 
mitochondria/caspase (blue) and the complete/caspase (orange) expected value ratios from the trends in (A). (C) 756 
Expected value trends for the caspase pathway (green), mitochondrial pathway (blue), and complete network 757 
(orange) with MOMP inhibitory protein BCL-2 at 328,000 mol. per cell. (D) Trends for the mitochondria/caspase 758 
(blue) and the complete/caspase (orange) evidence ratios from the trends in (C). 759 

 760 

Figure 5. Precision vs. computational cost. (A) and (B) Average number of evaluations before termination of the 761 
MultiNest algorithm over a range of population sizes for the caspase pathway and complete network respectively. 762 
(C) and (D) Average of error estimates from MultiNest for each population size and the caspase and complete 763 
networks. (E) and (F) Average estimated CPU clock time over each population size for the caspase and complete 764 
networks respectively. *MultiNest was unable to estimate the error at XIAP = 0. 765 

 766 
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Box 1. Extrinsic apoptosis execution.  768 

Extrinsic apoptosis is a receptor mediated process for programmed cell death. The Type I/II phenotypes for the 769 
extrinsic apoptosis system were first described by Scaffidi et al. [13]. In that work they examined several cell lines 770 
and classified them into those that required the mitochondrial pathway to achieve apoptosis (Type II) and those 771 
that don’t (Type I). They made several interesting conclusions. They found that Type II cells had relatively weak 772 
DISC formation, that both phenotypes responded equally well to receptor mediated cell death, that there was a 773 
delay in caspase activation in Type II cells, and that caspase activation happened upstream of mitochondrial 774 
activation in Type I cells and downstream in Type II. More recently, XIAP has also been put forth as a critical 775 
regulator in the choice of apoptotic phenotype. In Jost et al. [14] they examined hepatocytes (Type II cells) and 776 
lymphocytes (Type I cells) under different conditions to examine the role XIAP plays in Type I/II determination. 777 
They made several observations upon Fas ligand or Fas-antibody induced apoptosis such as higher levels of XIAP in 778 
Type II cells and higher caspase effector activity in XIAP/Bid deficient mice versus apoptosis resistant Bid-only 779 
knockouts. In all, they concluded that XIAP is the key regulator that determines the choice of pathway. 780 

Extrinsic apoptosis is initiated when a death inducing member of the tumor necrosis factor (TNF) superfamily of 781 
receptors (FasR, TNFR1, etc.) is bound by its respective ligand (FasL, TNF-α, etc.), setting off a sequence 782 
biochemical events that result in the orderly deconstruction of the cell [15]. The first stage of this sequence is the 783 
assembly of the DISC at the cell membrane ① and the subsequent activation of Caspase-8. Upon ligand binding 784 
and oligomerization of a receptor such as FasR or TRAIL, an adapter protein, like FADD (Fas-associated protein with 785 
death domain), is recruited to the receptors cytoplasmic tail [16, 17, 18]. FADD, in turn, recruits Caspase-8 via their 786 
respective death effector domains (DEDs), thus completing DISC formation [17, 18]. Other DISC components could 787 
also be included here, such as the regulator cFlip [19]. Once recruited, proximal Procaspase-8 monomers dimerize, 788 
inducing their autoproteolytic activity and producing active Caspase-8 [20, 21, 22]. 789 

After Caspase-8 activation the apoptotic signal can progress down two distinct pathways that both lead to the 790 
activation of Caspase-3 and the ensuing proteolysis of downstream targets. One pathway consists of a caspase 791 
cascade in which active Caspase-8 directly cleaves and activates Caspase-3 ② [23], while another, more complex 792 
pathway is routed through the mitochondria. In the mitochondrial pathway Caspase-8 cleaves the pro-apoptotic 793 
Bcl-2 family protein Bid in the cytosol, which then migrates to the mitochondria ③ where it initiates 794 
mitochondrial outer membrane permeabilization (MOMP) and the release of pro-apoptotic factors that lead to 795 
Caspase-3 activation [24, 25]. 796 

MOMP has its own set of regulators that govern the strength of apoptotic signaling through the mitochondria ④. 797 
After Caspase-8 activated Bid, (tBid), migrates to the mitochondria it activates proteins in the outer mitochondrial 798 
membrane, such as Bax, that subsequently self-aggregate into membrane pores and allow exportation of 799 
Cytochrome-c and Smac/DIABLO to the cytosol [26]. Bid and Bax are examples of pro-apoptotic proteins from the 800 
Bcl-2 family, all of which share BH domain homology [27]. Other members of this family act as MOMP regulators; 801 
the anti-apoptotic Bcl-2, for example, binds and inhibits both Bid and Bax while the pro-apoptotic Bad similarly 802 
binds and inhibits its target, Bcl-2 [28, 29, 30, 31]. Many other pro- and anti-apoptotic members of the Bcl-2 family 803 
have been discovered and together regulate MOMP [32]. 804 

Regardless of which pathway is chosen, the intermediate results are Caspase-3 activation and subsequent cleavage 805 
of PARP ⑧, a proxy for cell death in the analyses here [33, 34]. XIAP (X-linked inhibitor of apoptosis protein) is an 806 
inhibitor of Caspase-3 and has been proposed to be a key regulator in determining the Type I/II apoptotic 807 
phenotype of a cell [35]. XIAP sequesters Caspase-3 but also contains a ubiquitin ligase domain that directly targets 808 
Caspase-3 for degradation. The inhibitor also sequesters and inhibits the Caspase-3 activating Caspase-9 residing 809 
within the apoptosome complex [36, 37, 38]. Apoptosome formation is initiated by Cytochrome-c exported from 810 
the mitochondria during MOMP ⑤. Cytochrome-c induces the protein APAF-1 to oligomerize and subsequently 811 
recruit and activate Caspase-9, thus forming the complex [39]. Another MOMP export, the protein Smac/DIABLO 812 
⑥, binds and inhibits XIAP, working in tandem with Cytochrome-c to oppose XIAP and carry out the apoptosis 813 
inducing activity of the Type II pathway [40]. Finally, Procaspase/Caspase-6 constitutes a feed forward loop 814 
between Caspase-3 and Caspase-8 ⑦ [41]. 815 
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Figures: 817 

Figure 1. 818 

 819 
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Figure 2. 820 
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Figure 3. 822 
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Figure 4. 828 
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Figure 5. 835 
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Box 1. 839 

 840 

Box 1: Schematic of apoptotic signal flow through Type I and II pathways. 

 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 4, 2020. ; https://doi.org/10.1101/732396doi: bioRxiv preprint 

https://doi.org/10.1101/732396
http://creativecommons.org/licenses/by-nc-nd/4.0/

