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 25 

ABSTRACT 26 

 27 

Background: 28 

In vivo transposon mutagenesis coupled with deep sequencing enables large-scale genome-wide 29 

mutant screens for genes essential in different growth conditions. Six large scale studies have now 30 

been performed with three yeast species (S. cerevisiae, S. pombe and C. albicans), each 31 

mutagenized with two of three different heterologous transposons (AcDs, Hermes, and PiggyBac). 32 

 33 

Results: We analyzed predictions of gene essentiality for each of the six studies and evaluated the 34 

ability of the data to predict gene essentiality using a machine-learning approach. Important data 35 

features included a sufficient number of independent insertions and the degree of random 36 

insertion distribution. All transposons showed some bias in insertion site preference, both because 37 

of jackpot events, specific insertion sequence preferences and preferences for short-range vs long 38 

range insertions. For PiggyBac, a stringent target sequence limited the ability to predict 39 

essentiality in genes with few or no target sequences. Furthermore, the machine learning 40 

approach is robust for predicting gene function in less well-studied species by leveraging cross-41 

species orthologs. Finally, comparisons of isogenic diploid vs haploid S. cerevisiae isolates 42 

identified several genes that are haplo-insufficient, while most essential genes, as expected, were 43 

recessive. 44 

 45 

Conclusions: We provide recommendations for the choice of transposons and the inference of 46 

gene essentiality in genome-wide studies of eukaryotic microbes such as yeasts, including species 47 

thathat have been less amenable to classical genetic studies. These include maximizing the 48 
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number of unique insertions, avoiding transposons with stringent target sequences and a method 49 

for cross-species transfer learning. 50 

 51 

INTRODUCTION 52 

 53 

Work with model yeasts such as Saccharomyces cerevisiae and S. pombe has pioneered the 54 

combination of genetype/phenotype comparisons at a genomic scale.   For these yeasts, with 55 

genome sequences available for over 20 years[1, 2] and facile gene replacement protocols, have 56 

relied heavily on comprehensive collections of deletion mutants[3, 4] for high throughput 57 

dissection of specific genotypes as well as for genetic interactions with drugs (reviewed in Lehár et 58 

al.[5]) and for gene-gene interactions through systematic analysis of double and triple mutant 59 

analysis (e.g., Reguly et al.[6], Kuzmin et al.[7]). In animals and plants that are less amenable to 60 

such directed molecular manipulations, the use of heterologous transposons in vivo has facilitated 61 

genetic analysis, within the limitations imposed by the transposon excision/insertion process[8, 9]. 62 

With the advent of deep sequencing, such studies have also become more facile and have been 63 

performed in the two model yeasts as well[10, 11].   64 

 65 

In vivo transposon mutagenesis generally involves the introduction of a heterologous DNA 66 

transposon, along with the genes (e.g., the relevant transposase) required to induce its active 67 

transposition into a clonal isolate of a species of interest. Upon induction, the transposase excises 68 

the transposon from its original location (excision site) and inserts it into a single new position in 69 

the genome. Each cell harbors, at most, a single transposition mutation because the frequency of 70 

transposon excision and reinsertion is quite low. The transposon is usually engineered for facile 71 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted August 12, 2019. ; https://doi.org/10.1101/732552doi: bioRxiv preprint 

https://doi.org/10.1101/732552


 

 

selection of excision and/or reinsertion events, allowing detection and enrichment of these rare 72 

events.   73 

  74 

In vivo transposon insertion provides several advantages, as it rapidly yields large numbers of 75 

mutants in a single step and easily can be performed in parallel strains with different mutations or 76 

genetic backgrounds.  Because it does not require much prior knowledge, it can also be performed 77 

in non-model species, where each experiment is likely to be highly informative.   The only 78 

transformation steps required are those used to engineer the starting strain. This bypassing the 79 

problem of low transformation efficiency in many species. It also avoids the unintended genome 80 

alterations  (e.g., aneuploidies) that often accompany DNA transformation[12]. The sites of 81 

transposon insertion throughout the genome can be identified en masse using very large 82 

collections of independent insertion event clones, coupled with deep sequencing of the DNA 83 

immediately adjacent to the new transposon locus. For example, a high throughput 84 

genotype/phenotype analysis of 30 bacterial species grown under >170 different nutrient and 85 

stress conditions recently assigned functions to thousands of genes including ~300-600 genes per 86 

bacterium that are essential for viability[13].  87 

 88 

Three different transposon systems have been used for in vivo mutagenesis in yeasts:  AcDs from 89 

Zea mays, Hermes from Musca domestica and PiggyBac, from Trichoplusia ni.  AcDs has been used 90 

primarily in plant species but was also engineered for increased efficiency in the model yeast S. 91 

cerevisiae[14] and, later, in C. albicans[15]. AcDs does not display any insertion sequence 92 

preference, although it has a higher frequency of insertions into intergenic regions than coding 93 

regions and has a bias for reinsertion near the initial site of excision.  Hermes has been used for 94 

mutagenesis in S. pombe and S. cerevisiae[17, 18]; it prefers to insert at genomic positions with 95 
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the target sequence TnnnnA. PiggyBac (PB) has been used in mammalian systems such as rat, 96 

mouse[19] and also in S. pombe[17]. PB has a strong preference for insertion at TTAA sequences, 97 

which are generally more frequent in A-T-rich intergenic regions than within coding sequences.  98 

 99 

Transposon insertion within an ORF is generally assumed to cause a loss-of-function mutation. 100 

Identifying the phenotypes associated with loss-of-function mutations in specific genes allows the 101 

prediction of genetic functions. Cells in which the transposon inserted into a gene essential for 102 

viability will fail to grow and thus be lost from the population. By contrast, cells with mutations in 103 

non-essential genes are expected to be well-represented in the cell population. Insertion of a 104 

transposon carrying a strong promoter into an ORF could activate expression inappropriately; can 105 

be useful for the study of gain-of-function mutations.  106 

 107 

In vivo transposon mutagenesis studies of yeasts include analysis of S. cerevisiae with Hermes (this 108 

study) or with the mini-Ds derivative of the AcDs system[10], in S. pombe with Hermes[11] and 109 

PB[20]  and in C. albicans with AcDs[21] and with PB[22] (Fig. 1A).  In earlier work, we applied a 110 

machine learning (ML) approach to infer gene essentiality from the C. albicans AcDs data. Here, 111 

we modified the ML approach to predict the likelihood of essentiality for the complete set of 112 

predicted open reading frames these sixth in vivo transposon datasets. We compared the 113 

strengths and challenges of the different transposons in each species, with the goal of reaching 114 

insights concerning the number of insertion events required for accurate predictions, the 115 

distribution of mutations, and the degree to which different transposons, with different sequence 116 

dependencies, provided similar or different conclusions. The goal was to provide metrics that 117 

assist in determining the advantages and disadvantages of different transposon systems so as to 118 
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optimize the data produced in a given in vivo transposon system and to suggest approaches for 119 

generating whole genome data in understudied yeast species.  120 

 121 

RESULTS AND DISCUSSION 122 

 123 

A comparative analysis of the transposon mutagenesis studies 124 

 125 

We compared six in vivo transposon insertion mutagenesis experiments, produced using three 126 

different heterologous transposons (AcDs, Hermes and PiggyBac) in three different species (S. 127 

cerevisiae, S. pombe and C. albicans). Details of the datasets are provided in the methods section 128 

and relevant parameters are highlighted in Table 1. The number of transposition events detected 129 

in the different studies varied considerably, from over 500,000 unique insertion sites (hits) and 84 130 

M total reads for the C. albicans AcDs (CaAcDs), to as few as 37,500 unique hits and 6.1 M reads in 131 

the S. pombe PiggyBac (SpPB) data set (Table 1). The number of reads per hit also varied 132 

considerably, from 41 to 170.   133 

 134 

Overview of ML approach for gene essentiality prediction 135 

 136 

We first mapped the hit and read frequency of the transposons in each of the three reference 137 

genomes (Fig. 1C). Sites of transposon insertion were identified based upon targeted sequencing 138 

of regions adjacent to the inserted transposon. Slightly different sequencing protocols were used 139 

in the different studies, but all six essentially amplified Tn-adjacent sequences and mapped them.  140 

Theoretically, essential genes have no hits and non-essential genes have many hits; however, 141 

distinguishing essential and non-essential genes from the data is not entirely straight-forward 142 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted August 12, 2019. ; https://doi.org/10.1101/732552doi: bioRxiv preprint 

https://doi.org/10.1101/732552


 

 

(e.g., Fig. 1C, Gene Xn).  To address this ambiguity, we extended a previous approach for gene 143 

essentiality prediction[21]. We first chose input features from transposon data that were likely to 144 

be informative in the essential/nonessential decision: the number of unique insertion sites (hits) 145 

per ORF, the degree to which those insertion sites were enriched in the population (reads), as well 146 

as normalization factors that consider the insertion frequency as a function of chromosome 147 

position.  148 

 149 

Training sets were built using information from the two model species with gene essentiality data 150 

available from classical genetic approaches (e.g., comprehensive ORF deletion analysis) (reviewed 151 

in Giaever and Nislow[23] and Spirek et al.[24]) (Table S1 (training sets)). The specificity and 152 

sensitivity of the approach was analyzed using the AUC (area under the receiver operating 153 

characteristic curve (Fig. 1D). For C. albicans, which did not have extensive prior knowledge of 154 

gene essentiality, we constructed a training set from a core set of genes whose orthologs were 155 

known to be essential in both model yeasts. This approach is likely to be useful for other species 156 

that lack sufficient prior knowledge of gene essentiality to construct a within-species training set.  157 

 158 

We assessed the performance of each classifier by producing training sets using genes known or 159 

inferred to be essential and non-essential, as described in the Methods. The classifiers were 160 

trained and their performance, assessed using the AUC measure, was high across most examined 161 

studies (>0.94). The one exception was the SpPB study, which had far fewer unique insertion sites 162 

(Table 1) and had an AUC of 0.785. The highest AUC levels were seen with the AcDs in both C. 163 

albicans and S. cerevisiae. Of note, these two studies also had the largest number of total hits and 164 

reads. All the considered ML features for each ORF in every study and the predicted verdicts of 165 
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essentiality are provided in Tables S2-S7. Below, we describe the main insights gained from this 166 

comparison. 167 

 168 

Insight #1:  Optimize the number of independent insertion sites (hits) for highest quality 169 

predictions of gene essentiality  170 

 171 

The total number of unique insertion sites (hits) and the performance (AUC values) were high 172 

highly correlated, and this correlation was statistically significant (Fig. 2a; Pearson’s r = 0.892; p-173 

value = 0.0169). By contrast, the total number of sequencing reads showed a weaker correlation 174 

with the AUC that was not statistically significant (Fig, 2b; Pearson’s r = 0.636; p-value = 0.1741). If 175 

we disregard the worst performing SpPB, the correlation of the AUCs with the total number of hits 176 

rises dramatically to Pearson’s r = 0.995; p-value = 0.0003, and the correlation with the total 177 

number of sequencing reads remains similarly weak: Pearson’s r = 0.652; p-value = 0.2327. Thus, it 178 

a library with many independent hits will improve performance and simply increasing the number 179 

of sequencing reads is not likely to be sufficient to obtain optimal results. Increasing the number 180 

of independent hits requires collection of sufficient numbers of independent colonies soon after 181 

transposase induction and the resulting transposon excision and reinsertion. An advantage of 182 

Hermes is that most insertions occur during stationary phase, so transposase-inducing conditions 183 

can be tolerated throughout the growth period. Experimental designs that optimize isolation of 184 

independent events are critical.   185 

 186 

Insight #2:  Avoid libraries with high levels of jackpot events 187 

 188 
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Jackpot events are the appearance of extraordinarily high numbers of reads in a very small 189 

number of insertion sites.  When the number of reads greatly exceeds the theoretical number of 190 

cell divisions in the experiment, this is likely due to a transposition event happened prior to the 191 

induction of transposon excision in the experiment. Jackpot events are a major pitfall in that much 192 

sequencing capacity is wasted on detection of a single insertion site. Jackpot events with >1M 193 

sequencing reads were present in 4 of the 6 data sets; SpPB and ScHermes had no major jackpot 194 

events (no hits with ≥1000-fold more reads than the average read/hit) (Table 1). Both of these 195 

libraries also had far fewer total sequencing reads than the other studies (6M and 18M vs 24-84M 196 

for the other libraries).   197 

 198 

Of note, within a data set, some individual experiments had jackpot events that were far more 199 

than others (Table 1), which would be expected if jackpot events occur stochastically. Importantly, 200 

jackpot events were not clearly associated with one of the three species or with the transposon 201 

type. This suggests that jackpots arise from technical, rather than biological issues.  202 

 203 

Avoiding jackpot events is important because they reduce data quality considerably: the higher 204 

the number of reads at a few jackpot sites, the lower the number of informative hits and reads. 205 

Avoiding the selection of cells in which a transposon was already mobilized is key to ensuring that 206 

the number of hits and reads provide good genome coverage.  Dividing the cultures into dozens of 207 

small cultures and then re-pooling these sub-cultures after transposase induction can effectively 208 

dilute out most jackpot events.  Preparing several independent libraries and sampling a few 209 

sequences in each may also be worthwhile.  For example, if a tested library shows one sequence 210 

twice in one hundred colonies, it is likely to be a >1M jackpot event.  211 

 212 
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Insight #3. Consider which features are most important in the analysis of a given transposon 213 

 214 

In decision tree based algorithms, such as Random Forest[25], every node is a condition of a split 215 

of the data by a single feature. The splitting process continues until it reaches a stop condition 216 

such as: all the features have been used, the obtained subset is very small or the training labels 217 

are the same for the obtained subset. The goal is to reduce entropy (uncertainty) in the data. 218 

Entropy is zero when all the labels in the obtained subset are the same; and is maximum when 219 

half of the labels are the same in the obtained subset (in a binary classification). Each split of the 220 

data by a given feature (node in the tree) reduces the entropy. The importance of a given feature 221 

in the Random Forrest classifier is the calculated decrease in entropy contributed by that feature. 222 

Here we describe the features of the classifiers, and discuss their relative importance. 223 

 224 

 225 

For each ORF, we calculated predictive features including the number of hits, number of reads and 226 

the length of each ORF, a neighborhood index, which normalizes for insertion bias due to genomic 227 

position (e.g., proximity to the initial excision site in the genome) and a freedom index, which 228 

reports the proportion of an ORF that is hit-free. The freedom index is especially useful for 229 

identifying genes with essential domains, that are able to tolerate insertions outside of the 230 

essential domain. The number of the transposon hits per transposon target sequences in an ORF 231 

was an additional feature used in the analysis (Figure 3), where applicable (in PB and Hermes 232 

studies). Furthermore, we calculated the number of hits and the number of reads normalized by 233 

the length of each ORF. We compared the ‘feature importance’ for each library to ask whether 234 

specific features were more important for the different classifiers and whether feature 235 

importance was characteristic for a given transposon or yeast species.  236 
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 237 

The number of hits per ORF played an important role in determining essentiality, with essential 238 

genes having far fewer hits than non-essential ORFs (~7 times less, on average, across the 6 239 

datasets), consistent with the strong correlation between number of hits and the AUC (Fig. 2A). 240 

The number of reads per ORF played a lesser role in these classifications, also consistent with the 241 

correlation above (Fig. 2B).  Gene length also affected the probability of transposon insertion in a 242 

gene, and thus was a crucial normalization parameter for the numbers of hits and reads for every 243 

ORF.  244 

 245 

The Neighborhood Index (NI) feature made important contributions in all of the classifications 246 

(except SpPB, which had far less data). Importantly, the NI did not differ considerably between the 247 

different transposons, consistent with the idea that chromatin accessibility, 3D chromosome 248 

organization and other factors that may bias the insertion site frequency in a given organism affect 249 

the frequency of insertion of different transposons in a similar manner.  250 

   251 

The Freedom Index (FI) was a major contributor to both ScAcDs and CaAcDs  predictions while 252 

results with the PB and Hermes datasets were mixed (Fig. 3).  This is consistent with the idea that 253 

AcDs does not have a specific target sequence and thus inserts throughout ORFs, while PB and 254 

Hermes have fewer target sequences within ORFs. Thus, the FI more important in AcDs 255 

experiments because hits occur more randomly throughout an ORF. 256 

 257 

The importance of the number of hits in the proximal regulatory sequences (100 bp upstream to 258 

the start codon) to the essential/non-essential predictions was only minor, but is highly variable.  259 

For example, the impact of ScHermes was nearly twice that of ScAcDs for this feature.  As 260 
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described further below, we posit that this difference is due to cryptic enhancer/promoter activity 261 

in the miniDs transposon in S. cerevisiae that not seen with the Hermes transposon. 262 

 263 

Insight #4: Consider the effect of transposon-specific target sequence specificity  264 

 265 

Some transposons have preferred sites of insertion: Hermes prefers TnnnnA and PiggyBac inserts 266 

primarily at TTAA sequences; AcDs does not have an insertion site preference. Theoretically, the 267 

length of the insertion site sequence necessarily scales inversely with the number of potential 268 

unique hit sites. However, it was not clear at what insertion sequence length the resolution of 269 

studies of gene essentiality becomes limiting.   270 

 271 

The feature importance of the number of hits per transposon target sequence in an ORF, which 272 

should be a measure of library saturation, showed a varying degree of importance in the PB and 273 

Hermes studies. Curiously, its importance wasn’t dependent on the type of the transposon or the 274 

target sequence prevalence in the genome. This likely because target sequences are preferred 275 

sites of insertion, yet are not exclusive or absolute. For example, PiggyBac in C. albicans had 1.6-276 

fold more unique insertion sites than the theoretical number of target sequences in the C. albicans 277 

genome. By contrast, for both ScHermes and SpHermes, the number of target sequences available 278 

far outnumbered the number of unique hits. The proportion of target sequences not hit ranged 279 

from 8.9% for CaPB to 85% for SpHermes (Table 1) and the proportion of hits not in target 280 

sequences ranged from 14% in SpPB to ~50% in CaPB as well as both Hermes data sets. Thus, we 281 

surmise that the preference for target sequences is only a minor limitation for both of these 282 

transposons, except when the total number of hits is very low as in SpPB.  283 

 284 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted August 12, 2019. ; https://doi.org/10.1101/732552doi: bioRxiv preprint 

https://doi.org/10.1101/732552


 

 

Another critical issue is the number of genes that lack any preferred target sequences within the 285 

ORF; there are 228 and 185 ORFs without a single TTAA sequence in C. albicans and S. pombe, 286 

respectively.  These ORFS have a lower probability of acquiring insertions and, if the genes are 287 

non-essential, they are much more likely to give false positive information (be predicted essential 288 

for lack of insertions).  Indeed, 155 ORFs without TTAA sequences were predicted essential in the 289 

CaPB data and yet are predicted non-essential in the CaAcDs study. Similarly, 118 of the 185 ORFs 290 

lacking TTAA sequences were predicted essential from the SpPBstudy, but were non-essential in 291 

the SpHermes study. We assume that many of these genes are false positives, especially given that 292 

127 of the 185 ORFs lacking TTAA, including 95 of the 118 aforementioned ORFs, were non-293 

essential in classical genetics studies of S. pombe. 294 

 295 

 296 

Next, we asked if the number of target sequences within an ORF affected the CaPB classification 297 

performance for that ORF. To address this, we compared the performance (AUC) to sets of ORFs 298 

filtered to exclude ORFs with different numbers of target sequences (from 0 to 10) from the 299 

training set used to train the classifier (Fig. 4).  The AUC increased from ~0.94 for the entire 300 

training set to >0.98 for the training set containing only genes with 10 or more target sites (~50% 301 

of the genes in the training set). This suggests that studies using the PiggyBac transposon may 302 

struggle to correctly infer gene essentiality for ORFs with low numbers of target sites. 303 

 304 

Insight #5. Consider whether the transposon can activate as well as disrupt gene expression.   305 

 306 

The prediction of essentiality was based upon the assumption that transposon insertion into an 307 

ORF disrupted gene expression and produced loss-of-function allele.  However, this is not 308 
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necessarily the case for all genes. For example, if an insertion allele removes a regulatory domain 309 

from a protein, the protein may become hyperactive, and thus the result would be a gain-of-310 

function allele.  Additionally, some transposons may introduce enhancer and promoter activities 311 

that could increase gene expression in some species.  The miniDs transposon used in the ScAcDs 312 

data is likely to contain such activities.[10] Consistent with this idea, the ScAcDs dataset contains 313 

an average of 1.89 insertions within the first 100 bp of essential genes whereas the other datasets 314 

including CaAcDs, which has a transposon modified from the miniDs, contain significantly fewer 315 

(0.82 insertions in the first 100 bp of Ess genes).  Additionally, many essential genes of S. cerevisiae 316 

appeared to tolerate miniDs insertions, but not Hermes insertions, at sites in the 5’ UTR that are 317 

very close to the start codon. Thus, the miniDs transposon in S. cerevisiae may facilitate 318 

inappropriate activation of gene expression when inserted upstream or within certain genes.   319 

 320 

Cross-study analysis 321 

 322 

Knowing the full set of essential and non-essential genes in eukaryotic microbes, including 323 

pathogens of humans, animals and plants, will improve our understanding of common and 324 

species-specific properties of these understudied organisms. Furthermore, once a transposon 325 

library has been collected, it can be screened under many other growth conditions to reveal 326 

genotype/phenotype relationships. In vivo transposon analysis of gene essentiality is a practical 327 

and feasible approach, because the cost in time and resources for obtaining libraries is far lower 328 

than that for producing engineered deletion mutants, especially given that the amount of baseline 329 

information (other than the genome sequence) about the organisms may be minimal.  The only 330 

technical hurdle is to introduce the heterologous transposon of interest, either on a plasmid 331 

(where feasible) or into a useful locus within the genome of the relevant organism. 332 
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 333 

An additional challenge is that ML approaches require a high-quality training dataset (of gold-334 

standard essential and non-essential genes). For many non-model organisms, such training data is 335 

too sparse to build a robust training set.  For C. albicans, we circumvented the low numbers of 336 

genes already known to be essential by relying upon genes that had been determined to be 337 

essential from comprehensive classical genetic deletion studies in both model yeasts (S. cerevisiae 338 

and S. pombe) and that had orthologs in C. albicans. Training on S. cerevisiae or S. pombe 339 

orthologs with consistently essential orthologs yielded good performance predictions for C. 340 

albicans (AUC: 0.940 to 0.993, Table 1). CaAcDs performance was lower when training only on the 341 

66 genes known to be essential plus the set of presumed non-essential genes (those that had been 342 

successfully deleted in C. albicans studies, AUC of ~0.92)[21]. 343 

 344 

Next, we considered the quality of the learning performance for each dataset, if we trained on 345 

orthologs from one species and predicted essentiality of genes in a different organism (Figure 5).  346 

The transfer learning performance of the classifications was of a comparable quality to the single 347 

study classifiers for most AcDs and Hermes cases (Figure 5a and Figure 2). Furthermore, it 348 

displayed a somewhat symmetrical property: in most cases, there were minor differences in 349 

performance between train/test and test/train pairs (reducing the quality by ~ 0.5% to 5.7%) when 350 

the tests were between or among AcDs and Hermes experiments.  Conversely, when testing for 351 

predictions from PB data that were trained on either AcDs or Hermes, the AUCs dropped more 352 

dramatically (up to ~21.9%). Thus, PB data was less transferable than the Hermes and AcDs data. 353 

 354 

The low PB transferability between SpPB and CaPB is likely due to the sparser target sequence 355 

distribution relative to either Hermes or AcDs, which causes PB studies to produce false positives 356 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted August 12, 2019. ; https://doi.org/10.1101/732552doi: bioRxiv preprint 

https://doi.org/10.1101/732552


 

 

as noted above, and thus might contribute to reduced performance in cross-study analyses. The 357 

lower performance of the classifiers in the original PB single studies (Table 1), also may have 358 

contributed to the reduced ability to predict essentiality in pools of PB mutants using cross-species 359 

models.  360 

 361 

Reduced differences cross-study performance could also be due to differences between the 362 

importance of different features in the classifiers for the different datasets.  To test this possibility, 363 

we correlated the vector of the relative feature importance for each study with the feature 364 

importance in all the other studies (Figure 5b). The analysis distinguished 3 groups within the 6 365 

studies, based on the correlation coefficient values for feature importance between members of 366 

the group: CaAcDs and ScAcDs (Pearson’s r = 0.902); Sp Hermes and CaPB (Pearson’s r = 0.898); 367 

and SpPB and ScHermes (Pearson’s r = 0.929). Notably, the quality of the transfer learning 368 

predictions appears to be independent of both the transposon type and the organism studied, 369 

with the exception of the AcDs studies. We presume that this is due to the lack of a specific target 370 

sequence for the AcDs transposon system. 371 

 372 

Insight #6: As necessary, construct training sets using genes with orthologs in models where 373 

essentiality is known and then validate the training set manually.    374 

 375 

We suggest that an initial training set of orthologous genes known to be essential and non-376 

essential in related model organisms can be used to facilitate analysis of a transposon insertion 377 

study in a non-model organism with sparse essentiality information. An important caveat is that 378 

differences between gene function in different species can alter gene essentiality of a small 379 

number of these orthologs; thus, it is important to visually inspect this orthologous training set 380 
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before applying it.  The goal is to remove any genes with insertion patterns that are highly 381 

contradictory to the ‘essentiality label’ that the orthologs provided.  For example, for C. albicans, 382 

the entire orthologous training set was reviewed in an unprejudiced fashion by three independent 383 

inspectors, who visually reviewed the insertion patterns in the CaAcDs data and manually labeled 384 

each gene as essential, non-essential or ambiguous. When all three inspectors classified a gene as 385 

non-essential (e.g., many insertions throughout an ORF within a genome region that had many 386 

insertions outside of that ORF) and the orthologs were labeled ‘essential’ in the two model yeasts, 387 

we removed that gene from the training set.  388 

 389 

Once a training set has been established, and the features for the ORFs have been calculated, the 390 

Random Forest classifier can be run in a cross-validation scheme and the AUC can be calculated 391 

using the essentiality labels. This provides an efficient approach to obtain information about all of 392 

the genes in a species that has been sequenced but not subjected to much molecular 393 

manipulation. Clearly, the same approach can be used to compare the essentiality of the same 394 

sets of genes grown in different conditions as well, potentially providing large amounts of 395 

phenotypic data across an entire set of ORFs. If applied to a species that had not been the subject 396 

of many genetic studies, such data would represent a treasure-trove of information about genes 397 

that had not been previously studied and the phenotypes associated with loss-of-function of those 398 

genes.    399 

 400 

A Comparative Analysis of Gene Essentiality Predictions  401 

 402 

An important issue is whether different transposon insertion studies in the same organism had 403 

similar or different predictions from one another and from the known essentiality status of 404 
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deletion mutants, which are by definition ‘loss-of-function’ null alleles. For S. cerevisiae, the 405 

classifiers displayed a high degree of agreement on the final verdicts of gene essentiality (Figure 406 

6a), while more discrepancies were evident for the C. albicans and S. pombe studies. Both 407 

PiggyBac studies predicted a much higher number of essential genes than the AcDs or Hermes 408 

studies (Figure 6b and 6c) as expected from the paucity of target sequences that are likely to give 409 

false positive predictions discussed above. For example, the CaPB study had an average 5.84 410 

target sites per kb in genes likely to be false positives vs. 10.62 target sites per kb in all the genes 411 

(Mann Whitney U: p-value < 2.38*e-78). Importantly, when compared to the set of essential genes 412 

for each species determined by deletion analysis, the transposon studies also did quite well, with 413 

only 20 to 35% of the genes in disagreement.  In some cases, such discrepancies were found to be 414 

due to issues with the deletion collection isolates. For example, ~8% of the original S. cerevisiae 415 

deletion collection carried aneuploidies or gene amplifications,[26] and ~10% of S. pombe deletion 416 

strains retained a wild-type copy of the ORF that had been targeted for deletion. Extra copies of 417 

the ‘deleted’ gene reduces the apparent number of essential genes.   418 

 419 

Gene essentiality in haploid versus diploid strains of S. cerevisiae  420 

 421 

S. cerevisiae is readily grown in both the diploid and haploid states, which allows identification of 422 

the haplo-insufficient subset of genes among the set of essential genes.  Based on gene knockout 423 

studies, only 2 genes (NDC1, MLC1) were classified as haplo-insufficient,[27, 28] while all other 424 

essential genes were haplo-proficient (i.e. heterozygous knockouts in diploids were viable). To 425 

determine whether additional haplo-insufficient genes exist in S. cerevisiae, we collected 426 

ScHermes insertions in diploid strain BY4743 and compared them to haploid strains BY4741 and 427 

BY4742.  Sc Hermes transposon mutagenesis libraries were used with the classifier that had been 428 
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trained on the SpHermes haploid training set data, applying the same threshold for classification 429 

(Figure 8). The classifier identified 155 genes as “essential in both haploid and diploid”, a number 430 

far higher than expected.  Upon closer analysis, 98 contained regions of poor mapping due to 431 

duplications elsewhere in the genome, 50 were categorized as dubious in the Saccharomyces 432 

Genome Database (yeastgenome.org), one (LEU2) had been deleted in the strains studied, and the 433 

two known haploinsufficient genes (NDC1, MLC1) had been identified, providing support for this 434 

approach.  Upon visual inspection of data of the remaining four genes, one essential gene (BCY1) 435 

appeared haploinsufficient, whereas another (RPC10) contained numerous insertions in its 5’ UTR 436 

in diploids but not haploids, suggesting that it might not be essential (Fig. 9).  The other two ORFs 437 

predicted to be haploinsufficient are very small (165-225 bp) and also are within regions of sparse 438 

insertion density. Thus, we have lower confidence in the data for these two genes.  Thus, 439 

transposon mutagenesis of a diploid strain successfully revealed the two known haploinsufficient 440 

genes and one new one (BCY1), which is known to be essential in the conditions employed in the 441 

screen, but not essential in other culture conditions[29]. 442 

 443 

The classifier also identified 29 genes as “haploinsufficient” in diploids and not essential in 444 

haploids.  Of these, 20 could be dismissed based on their annotation as dubious or the presence of 445 

duplicated (unmappable) segments.  All of the remaining 9 genes were small (87-528 bp) and were 446 

found in regions of sparse insertion density.  These genes are annotated in SGD as non-essential 447 

and are probably false positives. 448 

 449 

These observations raise an important issue about data quality control. It is important to filter 450 

dubious and uninformative ORFs from the data set (as was done in the analysis of CaAcDs[21]. This 451 

includes genes with repeated domains or duplicate copies in the genome that prevent 452 
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unambiguous mapping of short Illumina reads. Furthermore, predicting the essential/non-453 

essential status for short ORFs and especially those located in regions with sparse intergenic 454 

insertions is more likely to be problematic. 455 

 456 

Insight #7:  Prediction quality increases considerably when uninformative data such as 457 

mitochondrial genome sequences and duplicated genes that are difficult to map.   458 

 459 

In summary, we suggest a number of metrics for the inference of gene essentiality using in vivo 460 

transposon mutagenesis studies in yeasts, including those with little available genetic data. 461 

Maximizing the total number of unique transposon insertions is the most critical factor in 462 

achieving optimal performance of the classification. It can be attained by collecting many 463 

independent insertion clones, striving to reduce the possible jackpot events in the study, 464 

maximizing the depth of the coverage and by utilizing a transposon with a fairly permissive target 465 

sequence or no preferred target sequence. Furthermore, while transposons with relatively 466 

stringent target sequences have some advantages for screens that identify individual mutants, for 467 

determining gene essentiality they are less robust, as the low number of potential target 468 

sequences, and especially the lack of any target sequences, in certain ORFs will increase the 469 

likelihood of falsely classifying non-essential genes as essential. Additionally, we think that 470 

transposon mutagenesis is an ideal approach to gain large amounts of useful genotype/phenotype 471 

data understudied organisms:  the cross-species learning methodology allows inference of gene 472 

essentiality based on conserved orthologs, especially when coupled with visual screening of the 473 

data. Finally, in vivo transposon mutagenesis is an incredibly useful tool for high throughout 474 

genomic studies, not only of gene essentiality per se, but also of genes required under specific 475 
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selective conditions.  We hope that the recommendations provided here will facilitate future work 476 

to understand gene in a wide range of yeast species. 477  1 
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MATERIALS AND METHODS 478 

Data Acquisition 479 

Experimental 480 

Sc Hermes data was obtained as follows: The haploid and diploid strains of S. cerevisiae were 481 

transformed with plasmid pSG36.[30] A single colony was suspended in 100 mL synthetic 482 

complete (SC) medium lacking uracil and containing 2% galactose, divided into twenty 16 x 150 483 

mm glass culture tubes, and shaken for 3 days at 30°C. This protocol yielded ~5 x 10^6 cells 484 

bearing transposon insertions per mL (~3% of all cells). To enrich for cells bearing transposon 485 

insertions, the twenty cultures were pooled, centrifuged, and the cell pellet was resuspended in 486 

600 mL SC medium containing 2% glucose, 0.1 mg/mL nourseothricin, and 1 mg/mL 5-fluoroorotic 487 

acid, and then shaken overnight at 30°C. The cells were pelleted, resuspended in 600 mL of the 488 

same medium, and cultured as before. Finally, 60 mL of these enriched cells were pelleted, 489 

resuspended in 600 mL of the same medium, and cultured as before. These highly enriched cells 490 

were pelleted, resuspended in 15% glycerol, and frozen in aliquots at -80°C. To extract genomic 491 

DNA, 100 mg of thawed cell pellets were washed three times in 1 mL deionized water and 492 

extracted using Quick-DNA Fungal/Bacterial Miniprep kit (Zymo Research). A total of 2.4 µg of 493 

purified gDNA was fragmented by sonication in four separate tubes using a Diagenode Picoruptor. 494 

The fragmented DNA was then end repaired, ligated to splinkerette adapters, size selected with 495 

AMPure xp beads, and PCR amplified in separate reactions using transposon-specific and adapter-496 

specific primers as detailed previously.[31] Samples were then PCR amplified to attach Illumina P5 497 

and P7 (indexed) adapters, purified with AMPure xp beads, mixed with phiX-174, loaded into 498 

MiSeq instrument (Illumina) and 75 bp of each end was sequenced using primers specific for 499 

Hermes right inverted repeat and P7. Detailed protocols and primer sequences are available upon 500 

request. De-multiplexed reads were mapped to the S. cerevisiae S288C reference genome using 501 
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Bowtie2, and any mapped reads with a quality score < 20 or a mismatch at nucleotide +1 were 502 

removed. This process was repeated a total of 3 times in diploid strain BY4743, 2 times in haploid 503 

strain BY4741, and 1 time in haploid strain BY4742.  The diploid and haploid datasets were 504 

combined prior to analyses.  The S.cerevisiae Hermes data (mapped reads and counts) are 505 

available at http://genome-euro.ucsc.edu/s/CunninghamLab/Hermes%20Vs%20AcDs .  FastQ files 506 

are available from Sequence Read Archive (SRA) and the ArrayExpress Experiment Archive 507 

(ArrayExpress), which are core repositories of the European Nucleotide Archive (ENA) at accession 508 

number [XXXX] https://www.ebi.ac.uk/ena/about/data-repositories (to be updated when 509 

accession number is issued). 510 

 511 

 512 

 513 

Publicly available databases 514 

The rest of the datasets analyzed here were obtained from previously published studies. ScAcDs 515 

was published by Michel et al, 2017[10], from which both WT1 & WT2 were combined for the 516 

analysis. The data was downloaded: https://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-517 

4885/samples/. SpPB was published by Li et al, 2011[20] and the data was obtained from the SRA 518 

database: SRR089408. Sp Hermes was published by Guo et al, 2013[22] and the data was obtained 519 

from the SRA database: SRR327340. CaAcDs was published by Segal et al, 2018[21] and the data 520 

was obtained from the SRA database, where SRR7824843, SRR7824841 and SRR7824838 files, 521 

were combined for the analysis. CaPB was published by Gao et al, 2018[22] and the data was 522 

obtained from the SRA database, where all the following files were for the analysis: DMSO 523 

(untreatment): SRR7704188, SRR7704193, SRR7704196; 5-FOA (untreatment: SRR7704189, 524 

SRR7704194, SRR7704200; No drug screen: SRR7704195. All the SRR files were obtained using 525 
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fastq-dump, with the following bash command: fastq-dump --gzip --skip-technical --readids --526 

dumpbase --split-files --clip <SRR*******> 527 

 528 

Data Processing 529 

The .fastq files downloaded with fastq-dump, were processed using cutadapt to filter out reads 530 

not containing partial transposon sequences. Reads with transposon sequences were trimmed to 531 

remove the transposon sequences for alignment purposes, as follows: cutadapt --cores=8 -m 2 -g 532 

<primer sequence> <input fastq filename> -o <output fastq filename> --discard-untrimmed --533 

overlap <overlap length>. In the analysis of the Sc Hermes study all the sequencing reads 534 

contained the transposon and the reads start at the first genomic base, thus required no filtering. 535 

In the analysis of the Sp PiggyBac we filtered the reads containing the transposons from the rest, 536 

by identifying the ACGCAGACTATCTTTCTAGGG sequence, cutting it out and aligning only the 537 

remaining part of the relevant reads. In the analysis of the Ca AcDs we filtered the reads 538 

containing the transposons from the rest, by identifying the 539 

GTATTTTACCGACCGTTACCGACCGTTTTCATCCCTA sequence, cutting it out and aligning only the 540 

remaining part of the relevant reads, starting 37bp downstream (Segal et al, 2018[21]). In the 541 

analysis of the Ca PiggyBac, we filtered the reads containing the transposons from the rest, by 542 

identifying the TGCATGCGTCAATTTTACGCAGACTATCTTTCTA sequence, cutting it out and aligning 543 

only the remaining part of the relevant reads, starting 3bp downstream. In the analysis of the Sc 544 

AcDs study we used the published transposon hitmaps of WT1 and WT2. In the analysis of the Sp 545 

Hermes study we used the published transposon hitmaps (Segal et al, 2018[21]). 546 

 547 

Alignment of reads and mapping the transposon hits 548 
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bowtie2 indices were created for each organism and gffutils databases were created for each 549 

organism’s genetic features, using the latest versions of the reference genomes (fasta) and the 550 

genomic feature files (gff), which were downloaded from the respective official sources for the 551 

three organisms: S. cerevisiae from https://downloads.yeastgenome.org, S. pombe from 552 

ftp://ftp.pombase.org/pombe/ and C. albicans  http://www.candidagenome.org/download/. 553 

Sequencing reads were aligned using bowtie2 with the default settings. The resulting sam files 554 

were converted to bam using samtools. bam files were sorted using samtools and indexed via 555 

pysam. Transposon hits and their corresponding reads were mapped to the respective genomes 556 

and counted in each genomic feature. Transposon target sites were found in every genome using 557 

Biopython and counted in each genetic feature.  558 

 559 

Gene essentiality classification 560 

Table 2 summarizes the features for machine learning classification that were engineered from the 561 

mapped transposon hits, reads and the transposon target sequences in the genomes.  Random 562 

Forrest classification was performed, using Python’s scikit-learn library with the default 563 

parameters, except the n_estimators parameter that was increased to 200, and the random_state 564 

parameter was fixed at 0, for reproducibility purposes. The results were validated using a 5-fold 565 

cross-validation. Essentiality labels for the training set of each organism were obtained previously 566 

(Shiftman et al, 2018) and are provided in Table S1. 567 

Thresholds for the essentiality predictions in each classification were chosen as follows: Two 568 

metrics were evaluated (Figure 8): 1) Minimum of the Euclidean distance between (0, 1) and the 569 

receiver operating characteristic (ROC) curve. 2) Maximum of the vertical distance between the 570 

line describing a random choice (a straight line from (0, 0) to (1, 1)) and the ROC curve. The first 571 

method was chosen, and we verified that the second metric is reasonably close, to eliminate any 572 
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possible artifacts. We predicted the essentiality of all the available genes for each organism based 573 

on their respective features, and using the aforementioned method to choose the threshold for 574 

each binary classification. 575 

 576 

Figures were generated using Python’s matplotlib and seaborn libraries. The schematics were 577 

drawn using Inkscape. Mann Whitney U p-values and Pearson’s correlation coefficients and p-578 

values were calculated using Python’s Scipy. 579 
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 673 

 674 

Figure Legends 675 

 676 

Figure 1. Overview of data acquisition and analysis: transposition events to gene essentiality. 677 

a. Three yeast species analyzed (Sp, S. pombe; Sc, S. cerevisiae; and Ca, C. albicans) by in vivo 678 

transposition in this study and which transposons (PB, PiggyBac; AcDs and Hermes) were 679 

used to mutagenize which species. Note that each species was analyzed with two different 680 

transposon systems. 681 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted August 12, 2019. ; https://doi.org/10.1101/732552doi: bioRxiv preprint 

https://doi.org/10.1101/732552


 

 31 

b. Comparison of genome insertion sites for transposition events that initiate from an 682 

extrachromosomal plasmid (left, red region of plasmid circle) or a specific chromosomal 683 

locus (right, red bar on a given chromosome). Horizontal lines represent multiple copies of 684 

the same genome, each of which underwent a single insertion event (green arrow) per 685 

genome.  While transposition is generally random, a bias for loci in close proximity to the 686 

initial transposon insertion site demands normalization of the final data. 687 

c. Mapped Tnseq analysis of the pool of transposition events yields the chromosomal 688 

insertion sites (brown vertical lines) in the reference chromosomes relative to the ORFs 689 

(purple regions). A close up of a small region of a single chromosome (olive horizontal line) 690 

including 5 ORFs is illustrated.  691 

d. A training set is constructed using known or inferred labels (non-essential, blue; essential, 692 

red) together with extracted features calculated from the data and its position relative to 693 

ORFs. Features are defined in Table 2. 694 

e. The training set features, as well as features for all ORFs are used as input for Random 695 

Forest classification (black rectangle); output is a prediction of essentiality (red or blue as 696 

in d), for which an optimal threshold is determined and applied to designate all genes in 697 

one of the two categories. 698 

 699 

Figure 2. Contribution of unique hits and total number of reads to the quality of ML predictions for 700 

gene essentiality/non-essentiality. 701 

Performance of the classifier vs (a) the total number of unique insertion sites (hits) and (b) the 702 

total number of sequencing reads, in each study (organism abbreviations as in Fig. 1a; Ac, AcDs; H, 703 

Hermes; PB, PiggyBac).  704 
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Figure 3. Feature importances in the different classiffiers. 706 

Importance of each feature used in the Random Forest classifier of essentiality for each dataset.  707 

Features are described in Table 2;  Neighborhood index generally normalizes for non-random 708 

insertion frequencies across the genome; Freedom index reports on the largest proportion of an 709 

ORF that has no hits, which is a measure of domains that may be essential.[21]   710 

 711 

Figure 4. Analysis of the ability of the CaPB classifier to infer gene essentiality in genes with 712 

increasing number of target sequences. 713 

When only ORFs with a specific number of target sites are considered (>= x-axis), AUC rises 714 

accordingly (red), but the number of ORFs that can be analyzed necessarily decreases (numbers 715 

above red dots). This demonstrates the importance of the prevalence of the transposon target 716 

sequences in ORFs, for the quality of gene essentiality inference, using in-vivo transposon 717 

mutagenesis studies. X axis: Minimum number of target sequences per ORF needed for inclusion 718 

in the classification.  Y-axis (red): CaPB classifier AUC.  719 

 720 

Figure 5. Analysis of ROC AUC values for Random Forest classification trained on data from a 721 

different organism and/or transposon in all possible combinations.  722 

a. For each ROC AUC value in the table, training was performed on 80% of the original 723 

training set used in the training species/transposon described in the rows. This training 724 

data was then used to predict the essentiality of the remaining 20% of the training set in 725 

the species/transposon described in the columns. The train/test split ratio was similar to 726 

the 5-fold cross-validation performed in the single study analyses. 727 
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b. For each study, the vector of the relative feature importance was correlated with the 728 

feature importance in all the other studies. Pearson r correlation coefficient values are 729 

presented. 730 

 731 

Figure 6: Comparison with known essentials genes. 732 

a. Comparison of the essentiality verdicts in S. cerevisiae, based on the known essential genes 733 

from the literature, ScAcDs and ScHermes classifiers. 734 

b. Comparison of the essentiality verdicts in S. pombe, based on the known essential genes 735 

from the literature, SpPB and SpHermes classifiers. 736 

c. Comparison of the essentiality verdicts in C. albicans, based on the known essential Sp and 737 

Sc orthologs from the literature, CaAcDs and CaPB classifiers. 738 

Classification thresholds differ slightly from the previously published analyses [21] based on 739 

threshold selection applied systematically to all 6 studies (described in detail in Methods). 740 

 741 

Figure 7. Gene essentiality in haploid and diploid S. cerevisiae. 742 

Comparison of essential genes in haploid and diploid S. cerevisiae analyzed with Sc Hermes. RF 743 

classifier was trained on the haploid ScHermes study and predicted gene essentiality in a diploid 744 

strain, using the same threshold for the final verdict. Mitochondrial genes were not considered.  745 

 746 

Figure 8. Threshold optimization. 747 

Two metrics were evaluated: 1) Minimum of the Euclidean distance between (0, 1) and the 748 

receiver operating characteristic (ROC) curve. 2) Maximum of the vertical distance between the 749 

line describing a random choice (a straight line from (0, 0) to (1, 1)) and the ROC curve.  750 

 751 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted August 12, 2019. ; https://doi.org/10.1101/732552doi: bioRxiv preprint 

https://doi.org/10.1101/732552


 

 34 

Figure 9. Suspected haploinsufficient genes in S. cerevisiae. 752 

Four genes suspected to be haploinsufficient in S. cerevisiae: NDC1, MLC1, RPC10 and BCY1, as 753 

they appear in the UCSD genome browser [32]. NDC1 and MLC1 were known to be 754 

haploinsufficient. BCY1 appears to be a previously unknown haploinsufficient gene. RPC10 might 755 

not be essential as it sustained hits in the 5’ UTR in diploids but not haploids. 756 
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Table 1.  Statistics of the transposon data sets 
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Table 2. Classification features 

 

 

 

Feature Description

Hits Number of transposon hits within the ORF

Reads Number of reads associated with the transposon hits within the ORF

Neighborhood Index (NI) Number of transposon hits within the ORF, normalized by length of the ORF and the surrounding 10 kbp

Freedom Index (FI) Length of the largest hit-free region in the ORF, divided by the ORF’s length

Hits 100 upstream Number of transposon hits within the upstream region of the ORF

Hits per Target Seqs Number of transposon hits divided by the number of transposon target sequences within an ORF

Reads per Length Number of transposon hits divided by the length of the ORF

Hits per Length Number of reads associated with the transposon hits divided by the length of the ORF
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Figure 1. Overview of data acquisition and analysis: transposition events to gene 
essentiality. 
A. Three yeast species analyzed (Sp, S. pombe; Sc, S. cerevisiae; and Ca, C. albicans) 

by in vivo transposition in this study and which transposons (PB, PiggyBac; AcDs 
and Hermes) were used to mutagenize which species. Note that each species was 
analyzed with two different transposon systems. 

B. Comparison of genome insertion sites for transposition events that initiate from 
an extrachromosomal plasmid (left, red region of plasmid circle) or a specific 
chromosomal locus (right, red bar on a given chromosome). Horizontal lines 
represent multiple copies of the same genome, each of which underwent a single 
insertion event (green arrow) per genome. While transposition is generally 
random, a bias for loci in close proximity to the initial transposon insertion site 
demands normalization of the final data. 

C. Mapped Tnseq analysis of the pool of transposition events yields the 
chromosomal insertion sites (brown vertical lines) in the reference chromosomes 
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relative to the ORFs (purple regions). A close up of a small region of a single 
chromosome (olive horizontal line) including 5 ORFs is illustrated.  

D. A training set is constructed using known or inferred labels (non-essential, blue; 
essential, red) together with extracted features calculated from the data and its 
position relative to ORFs. Features are defined in Table 2. 

E. The training set features, as well as features for all ORFs are used as input for 
Random Forest classification (black rectangle); output is a prediction of 
essentiality (red or blue as in d), for which an optimal threshold is determined 
and applied to designate all genes in one of the two categories. 
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Figure 2. Contribution of unique hits and total number of reads to the quality of ML 

predictions for gene essentiality/non-essentiality. 

● Performance of the classifier vs (a) the total number of unique insertion sites 

(hits) and (b) the total number of sequencing reads, in each study (organism 

abbreviations as in Fig. 1a; Ac, AcDs; H, Hermes; PB, PiggyBac).  
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Figure 3. Feature importances in the different classifiers. 
● Importance of each feature used in the Random Forest classifier of essentiality 

for each dataset. Features are described in Table XXX; Neighborhood index 
generally normalizes for non-random insertion frequencies across the genome; 
Freedom index reports on the largest proportion of an ORF that has no hits, 
which is a measure of domains that may be essential.[21] 
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Figure 4. Analysis of the ability of the CaPB classifier to infer gene essentiality in 
genes with increasing number of target sequences. 

● When only ORFs with a specific number of target sites are considered (>= x-
axis), AUC rises accordingly (red), but the number of ORFs that can be 
analyzed necessarily decreases (numbers above red dots). This demonstrates 
the importance of the prevalence of the transposon target sequences in 
ORFs, for the quality of gene essentiality inference, using in-vivo transposon 
mutagenesis studies.  

● X axis: Minimum number of target sequences per ORF needed for inclusion in 
the classification. 

● Y-axis (red): CaPB classifier AUC.  
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Figure 5. Analysis of ROC AUC values for Random Forest classification trained on data 

from a different organism and/or transposon in all possible combinations.  

A. For each ROC AUC value in the table, training was performed on 80% of the 

original training set used in the training species/transposon described in the 

rows. This training data was then used to predict the essentiality of the 

remaining 20% of the training set in the species/transposon described in the 

columns. The train/test split ratio was similar to the 5-fold cross-validation 

performed in the single study analyses. 

B. For each study, the vector of the relative feature importance was correlated 

with the feature importance in all the other studies. Pearson r correlation 

coefficient values are presented. 

 

a. Transfer learning AUCs 

 

 

b. Correlation of feature importance vectors 
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Figure 6: Comparison with known essentials genes. 

A. Comparison of the essentiality verdicts in S. cerevisiae, based on the known essential genes 

from the literature, ScAcDs and ScHermes classifiers. 

B. Comparison of the essentiality verdicts in S. pombe, based on the known essential genes from 

the literature, SpPB and SpHermes classifiers. 

C. Comparison of the essentiality verdicts in C. albicans, based on the known essential Sp and Sc 

orthologs from the literature, CaAcDs and CaPB classifiers. 

● Classification thresholds differ slightly from the previously published analyses[21]based on 

threshold selection applied systematically to all 6 studies (described in detail in Methods). 
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Figure 7. Gene essentiality in haploid and diploid S. cerevisiae. 

● Comparison of essential genes in haploid and diploid S. cerevisiae analyzed with Sc Hermes. 

RF classifier was trained on the haploid ScHermes study and predicted gene essentiality in a 

diploid strain, using the same threshold for the final verdict. Mitochondrial genes were not 

considered.  
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Figure 8. Threshold optimization. 

● Two metrics were evaluated: 1) Minimum of the Euclidean distance between (0, 1) and the 

receiver operating characteristic (ROC) curve. 2) Maximum of the vertical distance between 

the line describing a random choice (a straight line from (0, 0) to (1, 1)) and the ROC curve.  
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Figure 9. Suspected haploinsufficient genes in S. cerevisiae. 
● Four genes suspected to be haploinsufficient inS. cerevisiae: NDC1, MLC1, RPC10 and BCY1, as 

they appear in the genome.[32]NDC1 and MLC1 were known to be haploinsufficient. BCY1 
appears to be a previously unknown haploinsufficient gene. RPC10 might not be essential as it 
sustained hits in the 5’ UTR in diploids but not haploids. 
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