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ABSTRACT

Background:

In vivo transposon mutagenesis coupled with deep sequencing enables large-scale genome-wide
mutant screens for genes essential in different growth conditions. Six large scale studies have now
been performed with three yeast species (S. cerevisiae, S. pombe and C. albicans), each

mutagenized with two of three different heterologous transposons (AcDs, Hermes, and PiggyBac).

Results: We analyzed predictions of gene essentiality for each of the six studies and evaluated the
ability of the data to predict gene essentiality using a machine-learning approach. Important data
features included a sufficient number of independent insertions and the degree of random
insertion distribution. All transposons showed some bias in insertion site preference, both because
of jackpot events, specific insertion sequence preferences and preferences for short-range vs long
range insertions. For PiggyBac, a stringent target sequence limited the ability to predict
essentiality in genes with few or no target sequences. Furthermore, the machine learning
approach is robust for predicting gene function in less well-studied species by leveraging cross-
species orthologs. Finally, comparisons of isogenic diploid vs haploid S. cerevisiae isolates
identified several genes that are haplo-insufficient, while most essential genes, as expected, were

recessive.

Conclusions: We provide recommendations for the choice of transposons and the inference of
gene essentiality in genome-wide studies of eukaryotic microbes such as yeasts, including species

thathat have been less amenable to classical genetic studies. These include maximizing the
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number of unique insertions, avoiding transposons with stringent target sequences and a method

for cross-species transfer learning.

INTRODUCTION

Work with model yeasts such as Saccharomyces cerevisiae and S. pombe has pioneered the
combination of genetype/phenotype comparisons at a genomic scale. For these yeasts, with
genome sequences available for over 20 years[1, 2] and facile gene replacement protocols, have
relied heavily on comprehensive collections of deletion mutants([3, 4] for high throughput
dissection of specific genotypes as well as for genetic interactions with drugs (reviewed in Lehar et
al.[5]) and for gene-gene interactions through systematic analysis of double and triple mutant
analysis (e.g., Reguly et al.[6], Kuzmin et al.[7]). In animals and plants that are less amenable to
such directed molecular manipulations, the use of heterologous transposons in vivo has facilitated
genetic analysis, within the limitations imposed by the transposon excision/insertion process([8, 9].
With the advent of deep sequencing, such studies have also become more facile and have been

performed in the two model yeasts as well[10, 11].

In vivo transposon mutagenesis generally involves the introduction of a heterologous DNA
transposon, along with the genes (e.g., the relevant transposase) required to induce its active
transposition into a clonal isolate of a species of interest. Upon induction, the transposase excises
the transposon from its original location (excision site) and inserts it into a single new position in
the genome. Each cell harbors, at most, a single transposition mutation because the frequency of

transposon excision and reinsertion is quite low. The transposon is usually engineered for facile
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selection of excision and/or reinsertion events, allowing detection and enrichment of these rare

events.

In vivo transposon insertion provides several advantages, as it rapidly yields large numbers of
mutants in a single step and easily can be performed in parallel strains with different mutations or
genetic backgrounds. Because it does not require much prior knowledge, it can also be performed
in non-model species, where each experiment is likely to be highly informative. The only
transformation steps required are those used to engineer the starting strain. This bypassing the
problem of low transformation efficiency in many species. It also avoids the unintended genome
alterations (e.g., aneuploidies) that often accompany DNA transformation[12]. The sites of
transposon insertion throughout the genome can be identified en masse using very large
collections of independent insertion event clones, coupled with deep sequencing of the DNA
immediately adjacent to the new transposon locus. For example, a high throughput
genotype/phenotype analysis of 30 bacterial species grown under >170 different nutrient and
stress conditions recently assigned functions to thousands of genes including ~300-600 genes per

bacterium that are essential for viability[13].

Three different transposon systems have been used for in vivo mutagenesis in yeasts: AcDs from
Zea mays, Hermes from Musca domestica and PiggyBac, from Trichoplusia ni. AcDs has been used
primarily in plant species but was also engineered for increased efficiency in the model yeast S.
cerevisiae[14] and, later, in C. albicans[15]. AcDs does not display any insertion sequence
preference, although it has a higher frequency of insertions into intergenic regions than coding
regions and has a bias for reinsertion near the initial site of excision. Hermes has been used for

mutagenesis in S. pombe and S. cerevisiae[17, 18]; it prefers to insert at genomic positions with
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the target sequence TnnnnA. PiggyBac (PB) has been used in mammalian systems such as rat,
mouse[19] and also in S. pombe[17]. PB has a strong preference for insertion at TTAA sequences,

which are generally more frequent in A-T-rich intergenic regions than within coding sequences.

Transposon insertion within an ORF is generally assumed to cause a loss-of-function mutation.
Identifying the phenotypes associated with loss-of-function mutations in specific genes allows the
prediction of genetic functions. Cells in which the transposon inserted into a gene essential for
viability will fail to grow and thus be lost from the population. By contrast, cells with mutations in
non-essential genes are expected to be well-represented in the cell population. Insertion of a
transposon carrying a strong promoter into an ORF could activate expression inappropriately; can

be useful for the study of gain-of-function mutations.

In vivo transposon mutagenesis studies of yeasts include analysis of S. cerevisiae with Hermes (this
study) or with the mini-Ds derivative of the AcDs system[10], in S. pombe with Hermes[11] and
PB[20] and in C. albicans with AcDs[21] and with PB[22] (Fig. 1A). In earlier work, we applied a
machine learning (ML) approach to infer gene essentiality from the C. albicans AcDs data. Here,
we modified the ML approach to predict the likelihood of essentiality for the complete set of
predicted open reading frames these sixth in vivo transposon datasets. We compared the
strengths and challenges of the different transposons in each species, with the goal of reaching
insights concerning the number of insertion events required for accurate predictions, the
distribution of mutations, and the degree to which different transposons, with different sequence
dependencies, provided similar or different conclusions. The goal was to provide metrics that

assist in determining the advantages and disadvantages of different transposon systems so as to
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optimize the data produced in a given in vivo transposon system and to suggest approaches for

generating whole genome data in understudied yeast species.

RESULTS AND DISCUSSION

A comparative analysis of the transposon mutagenesis studies

We compared six in vivo transposon insertion mutagenesis experiments, produced using three
different heterologous transposons (AcDs, Hermes and PiggyBac) in three different species (S.
cerevisiae, S. pombe and C. albicans). Details of the datasets are provided in the methods section
and relevant parameters are highlighted in Table 1. The number of transposition events detected
in the different studies varied considerably, from over 500,000 unique insertion sites (hits) and 84
M total reads for the C. albicans AcDs (CaAcDs), to as few as 37,500 unique hits and 6.1 M reads in
the S. pombe PiggyBac (SpPB) data set (Table 1). The number of reads per hit also varied

considerably, from 41 to 170.

Overview of ML approach for gene essentiality prediction

We first mapped the hit and read frequency of the transposons in each of the three reference
genomes (Fig. 1C). Sites of transposon insertion were identified based upon targeted sequencing
of regions adjacent to the inserted transposon. Slightly different sequencing protocols were used
in the different studies, but all six essentially amplified Tn-adjacent sequences and mapped them.
Theoretically, essential genes have no hits and non-essential genes have many hits; however,

distinguishing essential and non-essential genes from the data is not entirely straight-forward
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(e.g., Fig. 1C, Gene X,). To address this ambiguity, we extended a previous approach for gene
essentiality prediction[21]. We first chose input features from transposon data that were likely to
be informative in the essential/nonessential decision: the number of unique insertion sites (hits)
per ORF, the degree to which those insertion sites were enriched in the population (reads), as well
as normalization factors that consider the insertion frequency as a function of chromosome

position.

Training sets were built using information from the two model species with gene essentiality data
available from classical genetic approaches (e.g., comprehensive ORF deletion analysis) (reviewed
in Giaever and Nislow[23] and Spirek et al.[24]) (Table S1 (training sets)). The specificity and
sensitivity of the approach was analyzed using the AUC (area under the receiver operating
characteristic curve (Fig. 1D). For C. albicans, which did not have extensive prior knowledge of
gene essentiality, we constructed a training set from a core set of genes whose orthologs were
known to be essential in both model yeasts. This approach is likely to be useful for other species

that lack sufficient prior knowledge of gene essentiality to construct a within-species training set.

We assessed the performance of each classifier by producing training sets using genes known or
inferred to be essential and non-essential, as described in the Methods. The classifiers were
trained and their performance, assessed using the AUC measure, was high across most examined
studies (>0.94). The one exception was the SpPB study, which had far fewer unique insertion sites
(Table 1) and had an AUC of 0.785. The highest AUC levels were seen with the AcDs in both C.
albicans and S. cerevisiae. Of note, these two studies also had the largest number of total hits and

reads. All the considered ML features for each ORF in every study and the predicted verdicts of
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essentiality are provided in Tables S2-S7. Below, we describe the main insights gained from this

comparison.

Insight #1: Optimize the number of independent insertion sites (hits) for highest quality

predictions of gene essentiality

The total number of unique insertion sites (hits) and the performance (AUC values) were high
highly correlated, and this correlation was statistically significant (Fig. 2a; Pearson’s r = 0.892; p-
value = 0.0169). By contrast, the total number of sequencing reads showed a weaker correlation
with the AUC that was not statistically significant (Fig, 2b; Pearson’s r = 0.636; p-value = 0.1741). If
we disregard the worst performing SpPB, the correlation of the AUCs with the total number of hits
rises dramatically to Pearson’s r = 0.995; p-value = 0.0003, and the correlation with the total
number of sequencing reads remains similarly weak: Pearson’s r = 0.652; p-value = 0.2327. Thus, it
a library with many independent hits will improve performance and simply increasing the number
of sequencing reads is not likely to be sufficient to obtain optimal results. Increasing the number
of independent hits requires collection of sufficient numbers of independent colonies soon after
transposase induction and the resulting transposon excision and reinsertion. An advantage of
Hermes is that most insertions occur during stationary phase, so transposase-inducing conditions
can be tolerated throughout the growth period. Experimental designs that optimize isolation of

independent events are critical.

Insight #2: Avoid libraries with high levels of jackpot events
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Jackpot events are the appearance of extraordinarily high numbers of reads in a very small
number of insertion sites. When the number of reads greatly exceeds the theoretical number of
cell divisions in the experiment, this is likely due to a transposition event happened prior to the
induction of transposon excision in the experiment. Jackpot events are a major pitfall in that much
sequencing capacity is wasted on detection of a single insertion site. Jackpot events with >1M
sequencing reads were present in 4 of the 6 data sets; SpPB and ScHermes had no major jackpot
events (no hits with >1000-fold more reads than the average read/hit) (Table 1). Both of these
libraries also had far fewer total sequencing reads than the other studies (6M and 18M vs 24-84M

for the other libraries).

Of note, within a data set, some individual experiments had jackpot events that were far more
than others (Table 1), which would be expected if jackpot events occur stochastically. Importantly,
jackpot events were not clearly associated with one of the three species or with the transposon

type. This suggests that jackpots arise from technical, rather than biological issues.

Avoiding jackpot events is important because they reduce data quality considerably: the higher
the number of reads at a few jackpot sites, the lower the number of informative hits and reads.
Avoiding the selection of cells in which a transposon was already mobilized is key to ensuring that
the number of hits and reads provide good genome coverage. Dividing the cultures into dozens of
small cultures and then re-pooling these sub-cultures after transposase induction can effectively
dilute out most jackpot events. Preparing several independent libraries and sampling a few
sequences in each may also be worthwhile. For example, if a tested library shows one sequence

twice in one hundred colonies, it is likely to be a >1M jackpot event.
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Insight #3. Consider which features are most important in the analysis of a given transposon

In decision tree based algorithms, such as Random Forest[25], every node is a condition of a split
of the data by a single feature. The splitting process continues until it reaches a stop condition
such as: all the features have been used, the obtained subset is very small or the training labels
are the same for the obtained subset. The goal is to reduce entropy (uncertainty) in the data.
Entropy is zero when all the labels in the obtained subset are the same; and is maximum when
half of the labels are the same in the obtained subset (in a binary classification). Each split of the
data by a given feature (node in the tree) reduces the entropy. The importance of a given feature
in the Random Forrest classifier is the calculated decrease in entropy contributed by that feature.

Here we describe the features of the classifiers, and discuss their relative importance.

For each ORF, we calculated predictive features including the number of hits, number of reads and
the length of each ORF, a neighborhood index, which normalizes for insertion bias due to genomic
position (e.g., proximity to the initial excision site in the genome) and a freedom index, which
reports the proportion of an ORF that is hit-free. The freedom index is especially useful for
identifying genes with essential domains, that are able to tolerate insertions outside of the
essential domain. The number of the transposon hits per transposon target sequences in an ORF
was an additional feature used in the analysis (Figure 3), where applicable (in PB and Hermes
studies). Furthermore, we calculated the number of hits and the number of reads normalized by
the length of each ORF. We compared the ‘feature importance’ for each library to ask whether
specific features were more important for the different classifiers and whether feature

importance was characteristic for a given transposon or yeast species.
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The number of hits per ORF played an important role in determining essentiality, with essential
genes having far fewer hits than non-essential ORFs (~7 times less, on average, across the 6
datasets), consistent with the strong correlation between number of hits and the AUC (Fig. 2A).
The number of reads per ORF played a lesser role in these classifications, also consistent with the
correlation above (Fig. 2B). Gene length also affected the probability of transposon insertion in a
gene, and thus was a crucial normalization parameter for the numbers of hits and reads for every

ORF.

The Neighborhood Index (NI) feature made important contributions in all of the classifications
(except SpPB, which had far less data). Importantly, the NI did not differ considerably between the
different transposons, consistent with the idea that chromatin accessibility, 3D chromosome
organization and other factors that may bias the insertion site frequency in a given organism affect

the frequency of insertion of different transposons in a similar manner.

The Freedom Index (FI) was a major contributor to both ScAcDs and CaAcDs predictions while
results with the PB and Hermes datasets were mixed (Fig. 3). This is consistent with the idea that
AcDs does not have a specific target sequence and thus inserts throughout ORFs, while PB and
Hermes have fewer target sequences within ORFs. Thus, the FI more important in AcDs

experiments because hits occur more randomly throughout an ORF.

The importance of the number of hits in the proximal regulatory sequences (100 bp upstream to
the start codon) to the essential/non-essential predictions was only minor, but is highly variable.

For example, the impact of ScHermes was nearly twice that of ScAcDs for this feature. As
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described further below, we posit that this difference is due to cryptic enhancer/promoter activity

in the miniDs transposon in S. cerevisiae that not seen with the Hermes transposon.

Insight #4: Consider the effect of transposon-specific target sequence specificity

Some transposons have preferred sites of insertion: Hermes prefers TnnnnA and PiggyBac inserts
primarily at TTAA sequences; AcDs does not have an insertion site preference. Theoretically, the
length of the insertion site sequence necessarily scales inversely with the number of potential
unique hit sites. However, it was not clear at what insertion sequence length the resolution of

studies of gene essentiality becomes limiting.

The feature importance of the number of hits per transposon target sequence in an ORF, which
should be a measure of library saturation, showed a varying degree of importance in the PB and
Hermes studies. Curiously, its importance wasn’t dependent on the type of the transposon or the
target sequence prevalence in the genome. This likely because target sequences are preferred
sites of insertion, yet are not exclusive or absolute. For example, PiggyBac in C. albicans had 1.6-
fold more unique insertion sites than the theoretical number of target sequences in the C. albicans
genome. By contrast, for both ScHermes and SpHermes, the number of target sequences available
far outnumbered the number of unique hits. The proportion of target sequences not hit ranged
from 8.9% for CaPB to 85% for SpHermes (Table 1) and the proportion of hits not in target
sequences ranged from 14% in SpPB to ~50% in CaPB as well as both Hermes data sets. Thus, we
surmise that the preference for target sequences is only a minor limitation for both of these

transposons, except when the total number of hits is very low as in SpPB.
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Another critical issue is the number of genes that lack any preferred target sequences within the
ORF; there are 228 and 185 ORFs without a single TTAA sequence in C. albicans and S. pombe,
respectively. These ORFS have a lower probability of acquiring insertions and, if the genes are
non-essential, they are much more likely to give false positive information (be predicted essential
for lack of insertions). Indeed, 155 ORFs without TTAA sequences were predicted essential in the
CaPB data and yet are predicted non-essential in the CaAcDs study. Similarly, 118 of the 185 ORFs
lacking TTAA sequences were predicted essential from the SpPBstudy, but were non-essential in
the SpHermes study. We assume that many of these genes are false positives, especially given that
127 of the 185 ORFs lacking TTAA, including 95 of the 118 aforementioned ORFs, were non-

essential in classical genetics studies of S. pombe.

Next, we asked if the number of target sequences within an ORF affected the CaPB classification
performance for that ORF. To address this, we compared the performance (AUC) to sets of ORFs
filtered to exclude ORFs with different numbers of target sequences (from 0 to 10) from the
training set used to train the classifier (Fig. 4). The AUC increased from ~0.94 for the entire
training set to >0.98 for the training set containing only genes with 10 or more target sites (~50%
of the genes in the training set). This suggests that studies using the PiggyBac transposon may

struggle to correctly infer gene essentiality for ORFs with low numbers of target sites.

Insight #5. Consider whether the transposon can activate as well as disrupt gene expression.

The prediction of essentiality was based upon the assumption that transposon insertion into an

ORF disrupted gene expression and produced loss-of-function allele. However, this is not
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necessarily the case for all genes. For example, if an insertion allele removes a regulatory domain
from a protein, the protein may become hyperactive, and thus the result would be a gain-of-
function allele. Additionally, some transposons may introduce enhancer and promoter activities
that could increase gene expression in some species. The miniDs transposon used in the ScAcDs
data is likely to contain such activities.[10] Consistent with this idea, the ScAcDs dataset contains
an average of 1.89 insertions within the first 100 bp of essential genes whereas the other datasets
including CaAcDs, which has a transposon modified from the miniDs, contain significantly fewer
(0.82 insertions in the first 100 bp of Ess genes). Additionally, many essential genes of S. cerevisiae
appeared to tolerate miniDs insertions, but not Hermes insertions, at sites in the 5" UTR that are
very close to the start codon. Thus, the miniDs transposon in S. cerevisiae may facilitate

inappropriate activation of gene expression when inserted upstream or within certain genes.

Cross-study analysis

Knowing the full set of essential and non-essential genes in eukaryotic microbes, including
pathogens of humans, animals and plants, will improve our understanding of common and
species-specific properties of these understudied organisms. Furthermore, once a transposon
library has been collected, it can be screened under many other growth conditions to reveal
genotype/phenotype relationships. In vivo transposon analysis of gene essentiality is a practical
and feasible approach, because the cost in time and resources for obtaining libraries is far lower
than that for producing engineered deletion mutants, especially given that the amount of baseline
information (other than the genome sequence) about the organisms may be minimal. The only
technical hurdle is to introduce the heterologous transposon of interest, either on a plasmid

(where feasible) or into a useful locus within the genome of the relevant organism.
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An additional challenge is that ML approaches require a high-quality training dataset (of gold-
standard essential and non-essential genes). For many non-model organisms, such training data is
too sparse to build a robust training set. For C. albicans, we circumvented the low numbers of
genes already known to be essential by relying upon genes that had been determined to be
essential from comprehensive classical genetic deletion studies in both model yeasts (S. cerevisiae
and S. pombe) and that had orthologs in C. albicans. Training on S. cerevisiae or S. pombe
orthologs with consistently essential orthologs yielded good performance predictions for C.
albicans (AUC: 0.940 to 0.993, Table 1). CaAcDs performance was lower when training only on the
66 genes known to be essential plus the set of presumed non-essential genes (those that had been

successfully deleted in C. albicans studies, AUC of ~0.92)[21].

Next, we considered the quality of the learning performance for each dataset, if we trained on
orthologs from one species and predicted essentiality of genes in a different organism (Figure 5).
The transfer learning performance of the classifications was of a comparable quality to the single
study classifiers for most AcDs and Hermes cases (Figure 5a and Figure 2). Furthermore, it
displayed a somewhat symmetrical property: in most cases, there were minor differences in
performance between train/test and test/train pairs (reducing the quality by ~ 0.5% to 5.7%) when
the tests were between or among AcDs and Hermes experiments. Conversely, when testing for
predictions from PB data that were trained on either AcDs or Hermes, the AUCs dropped more

dramatically (up to ~21.9%). Thus, PB data was less transferable than the Hermes and AcDs data.

The low PB transferability between SpPB and CaPB is likely due to the sparser target sequence

distribution relative to either Hermes or AcDs, which causes PB studies to produce false positives
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as noted above, and thus might contribute to reduced performance in cross-study analyses. The
lower performance of the classifiers in the original PB single studies (Table 1), also may have
contributed to the reduced ability to predict essentiality in pools of PB mutants using cross-species

models.

Reduced differences cross-study performance could also be due to differences between the
importance of different features in the classifiers for the different datasets. To test this possibility,
we correlated the vector of the relative feature importance for each study with the feature
importance in all the other studies (Figure 5b). The analysis distinguished 3 groups within the 6
studies, based on the correlation coefficient values for feature importance between members of
the group: CaAcDs and ScAcDs (Pearson’s r =0.902); Sp Hermes and CaPB (Pearson’s r = 0.898);
and SpPB and ScHermes (Pearson’s r = 0.929). Notably, the quality of the transfer learning
predictions appears to be independent of both the transposon type and the organism studied,
with the exception of the AcDs studies. We presume that this is due to the lack of a specific target

sequence for the AcDs transposon system.

Insight #6: As necessary, construct training sets using genes with orthologs in models where

essentiality is known and then validate the training set manually.

We suggest that an initial training set of orthologous genes known to be essential and non-
essential in related model organisms can be used to facilitate analysis of a transposon insertion
study in a non-model organism with sparse essentiality information. An important caveat is that
differences between gene function in different species can alter gene essentiality of a small

number of these orthologs; thus, it is important to visually inspect this orthologous training set


https://doi.org/10.1101/732552

381

bioRxiv preprint doi: https://doi.org/10.1101/732552; this version posted August 12, 2019. The copyright holder for this preprint (which was

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

before applying it. The goal is to remove any genes with insertion patterns that are highly
contradictory to the ‘essentiality label’ that the orthologs provided. For example, for C. albicans,
the entire orthologous training set was reviewed in an unprejudiced fashion by three independent
inspectors, who visually reviewed the insertion patterns in the CaAcDs data and manually labeled
each gene as essential, non-essential or ambiguous. When all three inspectors classified a gene as
non-essential (e.g., many insertions throughout an ORF within a genome region that had many
insertions outside of that ORF) and the orthologs were labeled ‘essential’ in the two model yeasts,

we removed that gene from the training set.

Once a training set has been established, and the features for the ORFs have been calculated, the
Random Forest classifier can be run in a cross-validation scheme and the AUC can be calculated
using the essentiality labels. This provides an efficient approach to obtain information about all of
the genes in a species that has been sequenced but not subjected to much molecular
manipulation. Clearly, the same approach can be used to compare the essentiality of the same
sets of genes grown in different conditions as well, potentially providing large amounts of
phenotypic data across an entire set of ORFs. If applied to a species that had not been the subject
of many genetic studies, such data would represent a treasure-trove of information about genes
that had not been previously studied and the phenotypes associated with loss-of-function of those

genes.

A Comparative Analysis of Gene Essentiality Predictions

An important issue is whether different transposon insertion studies in the same organism had

similar or different predictions from one another and from the known essentiality status of
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deletion mutants, which are by definition ‘loss-of-function’ null alleles. For S. cerevisiae, the
classifiers displayed a high degree of agreement on the final verdicts of gene essentiality (Figure
6a), while more discrepancies were evident for the C. albicans and S. pombe studies. Both
PiggyBac studies predicted a much higher number of essential genes than the AcDs or Hermes
studies (Figure 6b and 6¢c) as expected from the paucity of target sequences that are likely to give
false positive predictions discussed above. For example, the CaPB study had an average 5.84
target sites per kb in genes likely to be false positives vs. 10.62 target sites per kb in all the genes
(Mann Whitney U: p-value < 2.38*e’8). Importantly, when compared to the set of essential genes
for each species determined by deletion analysis, the transposon studies also did quite well, with
only 20 to 35% of the genes in disagreement. In some cases, such discrepancies were found to be
due to issues with the deletion collection isolates. For example, ~8% of the original S. cerevisiae
deletion collection carried aneuploidies or gene amplifications,[26] and ~10% of S. pombe deletion
strains retained a wild-type copy of the ORF that had been targeted for deletion. Extra copies of

the ‘deleted’ gene reduces the apparent number of essential genes.

Gene essentiality in haploid versus diploid strains of S. cerevisiae

S. cerevisiae is readily grown in both the diploid and haploid states, which allows identification of
the haplo-insufficient subset of genes among the set of essential genes. Based on gene knockout
studies, only 2 genes (NDC1, MLC1) were classified as haplo-insufficient,[27, 28] while all other
essential genes were haplo-proficient (i.e. heterozygous knockouts in diploids were viable). To
determine whether additional haplo-insufficient genes exist in S. cerevisiae, we collected
ScHermes insertions in diploid strain BY4743 and compared them to haploid strains BY4741 and

BY4742. Sc Hermes transposon mutagenesis libraries were used with the classifier that had been
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trained on the SpHermes haploid training set data, applying the same threshold for classification
(Figure 8). The classifier identified 155 genes as “essential in both haploid and diploid”, a number
far higher than expected. Upon closer analysis, 98 contained regions of poor mapping due to
duplications elsewhere in the genome, 50 were categorized as dubious in the Saccharomyces
Genome Database (yeastgenome.org), one (LEU2) had been deleted in the strains studied, and the
two known haploinsufficient genes (NDC1, MLC1) had been identified, providing support for this
approach. Upon visual inspection of data of the remaining four genes, one essential gene (BCY1)
appeared haploinsufficient, whereas another (RPC10) contained numerous insertions in its 5 UTR
in diploids but not haploids, suggesting that it might not be essential (Fig. 9). The other two ORFs
predicted to be haploinsufficient are very small (165-225 bp) and also are within regions of sparse
insertion density. Thus, we have lower confidence in the data for these two genes. Thus,
transposon mutagenesis of a diploid strain successfully revealed the two known haploinsufficient
genes and one new one (BCY1), which is known to be essential in the conditions employed in the

screen, but not essential in other culture conditions[29].

The classifier also identified 29 genes as “haploinsufficient” in diploids and not essential in
haploids. Of these, 20 could be dismissed based on their annotation as dubious or the presence of
duplicated (unmappable) segments. All of the remaining 9 genes were small (87-528 bp) and were
found in regions of sparse insertion density. These genes are annotated in SGD as non-essential

and are probably false positives.

These observations raise an important issue about data quality control. It is important to filter
dubious and uninformative ORFs from the data set (as was done in the analysis of CaAcDs[21]. This

includes genes with repeated domains or duplicate copies in the genome that prevent
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unambiguous mapping of short lllumina reads. Furthermore, predicting the essential/non-
essential status for short ORFs and especially those located in regions with sparse intergenic

insertions is more likely to be problematic.

Insight #7: Prediction quality increases considerably when uninformative data such as

mitochondrial genome sequences and duplicated genes that are difficult to map.

In summary, we suggest a number of metrics for the inference of gene essentiality using in vivo
transposon mutagenesis studies in yeasts, including those with little available genetic data.
Maximizing the total number of unique transposon insertions is the most critical factor in
achieving optimal performance of the classification. It can be attained by collecting many
independent insertion clones, striving to reduce the possible jackpot events in the study,
maximizing the depth of the coverage and by utilizing a transposon with a fairly permissive target
sequence or no preferred target sequence. Furthermore, while transposons with relatively
stringent target sequences have some advantages for screens that identify individual mutants, for
determining gene essentiality they are less robust, as the low number of potential target
sequences, and especially the lack of any target sequences, in certain ORFs will increase the
likelihood of falsely classifying non-essential genes as essential. Additionally, we think that
transposon mutagenesis is an ideal approach to gain large amounts of useful genotype/phenotype
data understudied organisms: the cross-species learning methodology allows inference of gene
essentiality based on conserved orthologs, especially when coupled with visual screening of the
data. Finally, in vivo transposon mutagenesis is an incredibly useful tool for high throughout

genomic studies, not only of gene essentiality per se, but also of genes required under specific
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selective conditions. We hope that the recommendations provided here will facilitate future work

to understand gene in a wide range of yeast species.
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MATERIALS AND METHODS

Data Acquisition

Experimental

Sc Hermes data was obtained as follows: The haploid and diploid strains of S. cerevisiae were
transformed with plasmid pSG36.[30] A single colony was suspended in 100 mL synthetic
complete (SC) medium lacking uracil and containing 2% galactose, divided into twenty 16 x 150
mm glass culture tubes, and shaken for 3 days at 30°C. This protocol yielded ~5 x 1076 cells
bearing transposon insertions per mL (~3% of all cells). To enrich for cells bearing transposon
insertions, the twenty cultures were pooled, centrifuged, and the cell pellet was resuspended in
600 mL SC medium containing 2% glucose, 0.1 mg/mL nourseothricin, and 1 mg/mL 5-fluoroorotic
acid, and then shaken overnight at 30°C. The cells were pelleted, resuspended in 600 mL of the
same medium, and cultured as before. Finally, 60 mL of these enriched cells were pelleted,
resuspended in 600 mL of the same medium, and cultured as before. These highly enriched cells
were pelleted, resuspended in 15% glycerol, and frozen in aliquots at -80°C. To extract genomic
DNA, 100 mg of thawed cell pellets were washed three times in 1 mL deionized water and
extracted using Quick-DNA Fungal/Bacterial Miniprep kit (Zymo Research). A total of 2.4 ug of
purified gDNA was fragmented by sonication in four separate tubes using a Diagenode Picoruptor.
The fragmented DNA was then end repaired, ligated to splinkerette adapters, size selected with
AMPure xp beads, and PCR amplified in separate reactions using transposon-specific and adapter-
specific primers as detailed previously.[31] Samples were then PCR amplified to attach Illumina P5
and P7 (indexed) adapters, purified with AMPure xp beads, mixed with phiX-174, loaded into
MiSeq instrument (lllumina) and 75 bp of each end was sequenced using primers specific for
Hermes right inverted repeat and P7. Detailed protocols and primer sequences are available upon

request. De-multiplexed reads were mapped to the S. cerevisiae S288C reference genome using
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Bowtie2, and any mapped reads with a quality score < 20 or a mismatch at nucleotide +1 were
removed. This process was repeated a total of 3 times in diploid strain BY4743, 2 times in haploid
strain BY4741, and 1 time in haploid strain BY4742. The diploid and haploid datasets were
combined prior to analyses. The S.cerevisiae Hermes data (mapped reads and counts) are

available at http://genome-euro.ucsc.edu/s/CunninghamlLab/Hermes%20Vs%20AcDs . FastQ files

are available from Sequence Read Archive (SRA) and the ArrayExpress Experiment Archive
(ArrayExpress), which are core repositories of the European Nucleotide Archive (ENA) at accession

number [XXXX] https://www.ebi.ac.uk/ena/about/data-repositories (to be updated when

accession number is issued).

Publicly available databases
The rest of the datasets analyzed here were obtained from previously published studies. ScAcDs
was published by Michel et al, 2017[10], from which both WT1 & WT2 were combined for the

analysis. The data was downloaded: https://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-

4885/samples/. SpPB was published by Li et al, 2011[20] and the data was obtained from the SRA

database: SRR089408. Sp Hermes was published by Guo et al, 2013[22] and the data was obtained
from the SRA database: SRR327340. CaAcDs was published by Segal et al, 2018[21] and the data
was obtained from the SRA database, where SRR7824843, SRR7824841 and SRR7824838 files,
were combined for the analysis. CaPB was published by Gao et al, 2018[22] and the data was
obtained from the SRA database, where all the following files were for the analysis: DMSO
(untreatment): SRR7704188, SRR7704193, SRR7704196; 5-FOA (untreatment: SRR7704189,

SRR7704194, SRR7704200; No drug screen: SRR7704195. All the SRR files were obtained using
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fastg-dump, with the following bash command: fastq-dump --gzip --skip-technical --readids --

dumpbase --split-files --clip <SRR*******

Data Processing

The .fastq files downloaded with fastq-dump, were processed using cutadapt to filter out reads
not containing partial transposon sequences. Reads with transposon sequences were trimmed to
remove the transposon sequences for alignment purposes, as follows: cutadapt --cores=8 -m 2 -g
<primer sequence> <input fastq filename> -o <output fastq filename> --discard-untrimmed --
overlap <overlap length>. In the analysis of the Sc Hermes study all the sequencing reads
contained the transposon and the reads start at the first genomic base, thus required no filtering.
In the analysis of the Sp PiggyBac we filtered the reads containing the transposons from the rest,
by identifying the ACGCAGACTATCTTTCTAGGG sequence, cutting it out and aligning only the
remaining part of the relevant reads. In the analysis of the Ca AcDs we filtered the reads
containing the transposons from the rest, by identifying the
GTATTTTACCGACCGTTACCGACCGTTTTCATCCCTA sequence, cutting it out and aligning only the
remaining part of the relevant reads, starting 37bp downstream (Segal et al, 2018[21]). In the
analysis of the Ca PiggyBac, we filtered the reads containing the transposons from the rest, by
identifying the TGCATGCGTCAATTTTACGCAGACTATCTTTCTA sequence, cutting it out and aligning
only the remaining part of the relevant reads, starting 3bp downstream. In the analysis of the Sc
AcDs study we used the published transposon hitmaps of WT1 and WT2. In the analysis of the Sp

Hermes study we used the published transposon hitmaps (Segal et al, 2018[21]).

Alignment of reads and mapping the transposon hits
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bowtie2 indices were created for each organism and gffutils databases were created for each
organism’s genetic features, using the latest versions of the reference genomes (fasta) and the
genomic feature files (gff), which were downloaded from the respective official sources for the
three organisms: S. cerevisiae from https://downloads.yeastgenome.org, S. pombe from

ftp://ftp.pombase.org/pombe/ and C. albicans http://www.candidagenome.org/download/.

Sequencing reads were aligned using bowtie2 with the default settings. The resulting sam files
were converted to bam using samtools. bam files were sorted using samtools and indexed via
pysam. Transposon hits and their corresponding reads were mapped to the respective genomes
and counted in each genomic feature. Transposon target sites were found in every genome using

Biopython and counted in each genetic feature.

Gene essentiality classification

Table 2 summarizes the features for machine learning classification that were engineered from the
mapped transposon hits, reads and the transposon target sequences in the genomes. Random
Forrest classification was performed, using Python’s scikit-learn library with the default
parameters, except the n_estimators parameter that was increased to 200, and the random_state
parameter was fixed at O, for reproducibility purposes. The results were validated using a 5-fold
cross-validation. Essentiality labels for the training set of each organism were obtained previously
(Shiftman et al, 2018) and are provided in Table S1.

Thresholds for the essentiality predictions in each classification were chosen as follows: Two
metrics were evaluated (Figure 8): 1) Minimum of the Euclidean distance between (0, 1) and the
receiver operating characteristic (ROC) curve. 2) Maximum of the vertical distance between the
line describing a random choice (a straight line from (0, 0) to (1, 1)) and the ROC curve. The first

method was chosen, and we verified that the second metric is reasonably close, to eliminate any
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possible artifacts. We predicted the essentiality of all the available genes for each organism based
on their respective features, and using the aforementioned method to choose the threshold for

each binary classification.

Figures were generated using Python’s matplotlib and seaborn libraries. The schematics were
drawn using Inkscape. Mann Whitney U p-values and Pearson’s correlation coefficients and p-

values were calculated using Python’s Scipy.
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Figure Legends

Figure 1. Overview of data acquisition and analysis: transposition events to gene essentiality.

a.

Three yeast species analyzed (Sp, S. pombe; Sc, S. cerevisiae; and Ca, C. albicans) by in vivo
transposition in this study and which transposons (PB, PiggyBac; AcDs and Hermes) were
used to mutagenize which species. Note that each species was analyzed with two different

transposon systems.
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Comparison of genome insertion sites for transposition events that initiate from an
extrachromosomal plasmid (left, red region of plasmid circle) or a specific chromosomal
locus (right, red bar on a given chromosome). Horizontal lines represent multiple copies of
the same genome, each of which underwent a single insertion event (green arrow) per
genome. While transposition is generally random, a bias for loci in close proximity to the
initial transposon insertion site demands normalization of the final data.

Mapped Tnseq analysis of the pool of transposition events yields the chromosomal
insertion sites (brown vertical lines) in the reference chromosomes relative to the ORFs
(purple regions). A close up of a small region of a single chromosome (olive horizontal line)
including 5 ORFs is illustrated.

A training set is constructed using known or inferred labels (non-essential, blue; essential,
red) together with extracted features calculated from the data and its position relative to
OREFs. Features are defined in Table 2.

The training set features, as well as features for all ORFs are used as input for Random
Forest classification (black rectangle); output is a prediction of essentiality (red or blue as
in d), for which an optimal threshold is determined and applied to designate all genes in

one of the two categories.

Figure 2. Contribution of unique hits and total number of reads to the quality of ML predictions for

gene essentiality/non-essentiality.

Performance of the classifier vs (a) the total number of unique insertion sites (hits) and (b) the

total number of sequencing reads, in each study (organism abbreviations as in Fig. 1a; Ac, AcDs; H,

Hermes; PB, PiggyBac).
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706  Figure 3. Feature importances in the different classiffiers.

707  Importance of each feature used in the Random Forest classifier of essentiality for each dataset.
3 . . . . .

)8  Features are described in Table 2; Neighborhood index generally normalizes for non-random
73)9 insertion frequencies across the genome; Freedom index reports on the largest proportion of an

A0  ORF that has no hits, which is a measure of domains that may be essential.[21]

I42  Figure 4. Analysis of the ability of the CaPB classifier to infer gene essentiality in genes with

]17§13 increasing number of target sequences.

4 When only ORFs with a specific number of target sites are considered (>= x-axis), AUC rises

37;15 accordingly (red), but the number of ORFs that can be analyzed necessarily decreases (numbers
6 above red dots). This demonstrates the importance of the prevalence of the transposon target
247  sequences in ORFs, for the quality of gene essentiality inference, using in-vivo transposon

?8[8 mutagenesis studies. X axis: Minimum number of target sequences per ORF needed for inclusion

329 inthe classification. Y-axis (red): CaPB classifier AUC.

31  Figure 5. Analysis of ROC AUC values for Random Forest classification trained on data from a

39
422  different organism and/or transposon in all possible combinations.

41
2223 a. For each ROC AUC value in the table, training was performed on 80% of the original

44

4824 training set used in the training species/transposon described in the rows. This training
46

27?5 data was then used to predict the essentiality of the remaining 20% of the training set in
49

526 the species/transposon described in the columns. The train/test split ratio was similar to
51

?]é? the 5-fold cross-validation performed in the single study analyses.

54
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728 b. For each study, the vector of the relative feature importance was correlated with the
7;29 feature importance in all the other studies. Pearson r correlation coefficient values are
3

730 presented.

5

7232 Figure 6: Comparison with known essentials genes.

17;?:3 a. Comparison of the essentiality verdicts in S. cerevisiae, based on the known essential genes
184 from the literature, ScAcDs and ScHermes classifiers.

]17%5 b. Comparison of the essentiality verdicts in S. pombe, based on the known essential genes
36 from the literature, SpPB and SpHermes classifiers.

21
A7 c. Comparison of the essentiality verdicts in C. albicans, based on the known essential Sp and
23

3 8 Sc orthologs from the literature, CaAcDs and CaPB classifiers.
26
2739 Classification thresholds differ slightly from the previously published analyses [21] based on

28

?%O threshold selection applied systematically to all 6 studies (described in detail in Methods).

31

J21
33

%2 Figure 7. Gene essentiality in haploid and diploid S. cerevisiae.

36
3?:7;43 Comparison of essential genes in haploid and diploid S. cerevisiae analyzed with Sc Hermes. RF

39
44 classifier was trained on the haploid ScHermes study and predicted gene essentiality in a diploid

41
2245 strain, using the same threshold for the final verdict. Mitochondrial genes were not considered.
44

4816

46

27;47 Figure 8. Threshold optimization.

49

5018  Two metrics were evaluated: 1) Minimum of the Euclidean distance between (0, 1) and the

51

??.9 receiver operating characteristic (ROC) curve. 2) Maximum of the vertical distance between the

54

5?0 line describing a random choice (a straight line from (0, 0) to (1, 1)) and the ROC curve.
5
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Figure 9. Suspected haploinsufficient genes in S. cerevisiae.

Four genes suspected to be haploinsufficient in S. cerevisiae: NDC1, MLC1, RPC10 and BCY1, as
they appear in the UCSD genome browser [32]. NDC1 and MLC1 were known to be
haploinsufficient. BCY1 appears to be a previously unknown haploinsufficient gene. RPC10 might

not be essential as it sustained hits in the 5" UTR in diploids but not haploids.

34
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Table 1. Statistics of the transposon data sets

bioRxiv preprint doi: https://doi.org/10.1101/732552; this version postédliGlgliiee, teo ag.oesstslgvighortidradl 6§ aRieidt deauenreing data

Ca AcDs Sc AcDs Sc Hermes Sp Hermes | Ca PiggyBac | Sp PiggyBac
Transposon target sequence - ThnnnA ThnnnA TTAA TTAA
Initial transposon insertion Genome Plasmid Plasmid Plasmid Genome Genome
Number of target sequences (103) - 1154.84 1302.41 120.27 111.37
Total number of unique hits (103) 588.97 514.89 444 .41 382.82 191.49 375
Target Sequences without a hit (103) - 924 .56 1110.2 10.69 79.09
Percent of target sequences without a hit - 80.06% 85.24% 8.89% 71.02%
Percent of hits in target sequences - 51.82% 50.21% 56.74% 86.06%
Total number of reads (10°) 84.16 471 18.22 23.92 32.58 6.14
Average number of reads per hit 143 91 41 62 170 164
Standard deviation reads per hit 9250 4357 137 5069 4584 481
Highest reads per hit (10%) 3254.83 2210.55 11.72 2355.61 1301.82 48.31
Highest reads per hit / average reads per hit 22761 24292 286 37994 7658 295
Number of over 106 reads per hit 10 2 0 2 1 0
Average number of hits per gene 29.11 44 .05 30.36 24.64 11.81 1.32
Number of genes with 0 hits 300 261 332 99 397 2580
Average number of target sequences per gene - 123.64 131.44 10.62 8.39
Number of genes with 0 target sequences - 0 0 228 186
ROC AUC 0.993 0.985 0972 0.962 0.94 0.785

*
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Table 2. Classification features

Feature
Hits
Reads
Neighborhood Index (NI)
Freedom Index (FI)
Hits 100 upstream
Hits per Target Seqs
Reads per Length
Hits per Length

Description
Number of transposon hits within the ORF
Number of reads associated with the transposon hits within the ORF
Number of transposon hits within the ORF, normalized by length of the ORF and the surrounding 10 kbp
Length of the largest hit-free region in the ORF, divided by the ORF’s length
Number of transposon hits within the upstream region of the ORF
Number of transposon hits divided by the number of transposon target sequences within an ORF
Number of transposon hits divided by the length of the ORF
Number of reads associated with the transposon hits divided by the length of the ORF
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Figure 1. Overview of data acquisition and analysis: transposition events to gene

essentiality.

A. Three yeast species analyzed (Sp, S. pombe; Sc, S. cerevisiae; and Ca, C. albicans)
by in vivo transposition in this study and which transposons (PB, PiggyBac; AcDs
and Hermes) were used to mutagenize which species. Note that each species was
analyzed with two different transposon systems.

B. Comparison of genome insertion sites for transposition events that initiate from
an extrachromosomal plasmid (left, red region of plasmid circle) or a specific
chromosomal locus (right, red bar on a given chromosome). Horizontal lines
represent multiple copies of the same genome, each of which underwent a single
insertion event (green arrow) per genome. While transposition is generally
random, a bias for loci in close proximity to the initial transposon insertion site
demands normalization of the final data.

C. Mapped Tnseq analysis of the pool of transposition events yields the
chromosomal insertion sites (brown vertical lines) in the reference chromosomes
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relative to the ORFs (purple regions). A close up of a small region of a single
chromosome (olive horizontal line) including 5 ORFs is illustrated.

D. A training set is constructed using known or inferred labels (non-essential, blue;
essential, red) together with extracted features calculated from the data and its
position relative to ORFs. Features are defined in Table 2.

E. The training set features, as well as features for all ORFs are used as input for
Random Forest classification (black rectangle); output is a prediction of
essentiality (red or blue as in d), for which an optimal threshold is determined
and applied to designate all genes in one of the two categories.
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Figure 2. Contribution of unique hits and total number of reads to the quality of ML
predictions for gene essentiality/non-essentiality.
e Performance of the classifier vs (a) the total number of unique insertion sites
(hits) and (b) the total number of sequencing reads, in each study (organism
abbreviations as in Fig. 1a; Ac, AcDs; H, Hermes; PB, PiggyBac).

a AcDs Ca AcDs
0 0
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Figure 3. Feature importances in the different classifiers.

e Importance of each feature used in the Random Forest classifier of essentiality
for each dataset. Features are described in Table XXX; Neighborhood index
generally normalizes for non-random insertion frequencies across the genome;
Freedom index reports on the largest proportion of an ORF that has no hits,
which is a measure of domains that may be essential.[21]

I Freedom Index

B Neighborhood Index
Hits

Reads

Hits 100 upstream
Hits per Target Segs
Hits per Length
Reads per Length
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Sc AcDs

Ca AcDs

i

I+


https://doi.org/10.1101/732552

Figure 4 pioRxiv preprint doi: https://doi.org/10.1101/732552; this version postddiGkyene, teoas.cerssdaamgHortiérigu imisigprmtduhiPBab of
not certified by peer review) is the author/funder. All rigiatga3gg@d}twge§d@wed without permission.

Figure 4. Analysis of the ability of the CaPB classifier to infer gene essentiality in
genes with increasing number of target sequences.

e When only ORFs with a specific number of target sites are considered (>= x-
axis), AUC rises accordingly (red), but the number of ORFs that can be
analyzed necessarily decreases (numbers above red dots). This demonstrates
the importance of the prevalence of the transposon target sequences in
OREFs, for the quality of gene essentiality inference, using in-vivo transposon
mutagenesis studies.

e X axis: Minimum number of target sequences per ORF needed for inclusion in
the classification.

e Y-axis (red): CaPB classifier AUC.

0.99 A

720

0.98 A
790

059 871 ®

0.97 A 1046

AUC

0.96 - ®

0.95 A ®

09441 e

0.93 4

T T T T T

0 1 2 3 4 5 6 7 8 9 10
Minimum Number of Target Sequences


https://doi.org/10.1101/732552

Figure 5  bioRxiv preprint doi: https://doi.org/10.1101/732552; this version postdd icllete, ieoagoess/eigngraritiérigu ieigigprmt pubidssastudy
not certified by peer review) is the author/funder. All rightsgeiferatioNe. doex allowed without permission.

Figure 5. Analysis of ROC AUC values for Random Forest classification trained on data
from a different organism and/or transposon in all possible combinations.

A. For each ROC AUC value in the table, training was performed on 80% of the
original training set used in the training species/transposon described in the
rows. This training data was then used to predict the essentiality of the
remaining 20% of the training set in the species/transposon described in the
columns. The train/test split ratio was similar to the 5-fold cross-validation
performed in the single study analyses.

B. For each study, the vector of the relative feature importance was correlated
with the feature importance in all the other studies. Pearson r correlation

coefficient values are presented.

a. Transfer learning AUCs
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Figure 6: Comparison with known essentials genes.

A. Comparison of the essentiality verdicts in S. cerevisiae, based on the known essential genes
from the literature, ScAcDs and ScHermes classifiers.

B. Comparison of the essentiality verdicts in S. pombe, based on the known essential genes from
the literature, SpPB and SpHermes classifiers.

C. Comparison of the essentiality verdicts in C. albicans, based on the known essential Sp and Sc
orthologs from the literature, CaAcDs and CaPB classifiers.

e Classification thresholds differ slightly from the previously published analyses[21]based on
threshold selection applied systematically to all 6 studies (described in detail in Methods).
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Figure 7. Gene essentiality in haploid and diploid S. cerevisiae.
e Comparison of essential genes in haploid and diploid S. cerevisiae analyzed with Sc Hermes.
RF classifier was trained on the haploid ScHermes study and predicted gene essentiality in a
diploid strain, using the same threshold for the final verdict. Mitochondrial genes were not
considered.

Sc Essential Genes in Diploid and Haploid

Haploid
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Figure 8. Threshold optimization.
e Two metrics were evaluated: 1) Minimum of the Euclidean distance between (0, 1) and the
receiver operating characteristic (ROC) curve. 2) Maximum of the vertical distance between
the line describing a random choice (a straight line from (0, 0) to (1, 1)) and the ROC curve.
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Figure 9. Suspected haploinsufficient genes in S. cerevisiae.

e Four genes suspected to be haploinsufficient inS. cerevisiae: NDC1, MLC1, RPC10 and BCY1, as
they appear in the genome.[32]NDC1 and MLC1 were known to be haploinsufficient. BCY1
appears to be a previously unknown haploinsufficient gene. RPC10 might not be essential as it
sustained hits in the 5" UTR in diploids but not haploids.
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