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Abstract 26 

 27 

Soil health and sustainability is essential for ecosystem functioning and human well-being. Soil 28 

structure, the complex arrangement of soil into aggregates and pore spaces, is a key feature of 29 

soils under the influence of soil life. Soil biota, and among them filamentous saprobic fungi, 30 

have well-documented effects on soil aggregation. However, it is unclear what fungal properties, 31 

or traits, contribute to the overall positive effect on soil aggregation. So far, we lack a systematic 32 

investigation of a broad suite of fungal species for their trait expression and the relation of these 33 

traits to their soil aggregation capability.  34 

Here, we apply a trait-based approach to a set of 15 traits measured under standardized 35 

conditions on 31 fungal strains including Ascomycota, Basidiomycota and Mucoromycota, all 36 

isolated from the same soil. 37 

We found a spectrum of soil aggregate formation capability ranging from neutral to positive and 38 

large differences in trait expression among strains. We identified biomass density (positive 39 

effects), leucine aminopeptidase activity (negative effects) and phylogeny as important 40 

modulators of fungal aggregate formation capability. Our results point to a typical suite of traits 41 

characterizing fungi that are good soil aggregators; this could inform screening for fungi to be 42 

used in biotechnological applications, and illustrates the power of employing a trait-based 43 

approach to unravel biological mechanisms of soil aggregation, which could now be extended to 44 

other organism groups.     45 

 46 

  47 
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1. Introduction 48 

Soil is our most vital resource, with soil and its biodiversity contributing to many ecosystem 49 

processes (Bardgett and van der Putten, 2014), and to human nutrition, health and wellbeing 50 

(Wall et al., 2015). Soil has been described as the most complex biomaterial on Earth (Young 51 

and Crawford, 2004) with soil structure as one of its most important features. Soil structure 52 

represents the three-dimensional arrangement of soil particles into aggregates and associated 53 

pore spaces and is also a crucial parameter for sustainable management of soils (Bronick and 54 

Lal, 2005); therefore, it is of great interest to unravel how soil biota contribute to the process of 55 

soil aggregation. 56 

 57 

Many soil biota influence soil aggregation (Lehmann et al., 2017b), and among them are the 58 

filamentous fungi. These fungi have a particularly well-documented impact on soil structure 59 

especially at the macroaggregate (>250µm) scale, as highlighted in a meta-analysis (Lehmann 60 

et al., 2017b). Soil aggregating capability of fungi is hypothesized to be due to a range of 61 

physical, morphological, chemical and biotic traits (Six et al., 2004; Bronick and Lal, 2005; 62 

Lehmann et al., 2017a). While foraging and growing through soil, fungi are thought to entangle 63 

and enmesh soil particles and aggregates due to their filamentous growth form (Tisdall and 64 

Oades, 1982). Fungi also exude extracellular biopolymers which can act as cements and 65 

surface sealants for soil aggregates (Chenu, 1989; Caesar-TonThat and Cochran, 2000; 66 

Daynes et al., 2012), and enzymes degrading organic matter (Baldrian et al., 2011), which may 67 

serve as aggregate-disintegrating agents. Among the molecules they release are also 68 

hydrophobins, which can modify wettability of aggregates, likely serving a stabilizing function 69 

(Zheng et al., 2016). While growing through soil, fungi also interact with other members of the 70 

soil community, for example they can be grazed upon by Collembola, which can also influence 71 

soil aggregation ability (e.g. (Siddiky et al., 2012a; Siddiky et al., 2012b)). 72 

  73 

Fungi likely differ in many of these traits, and thus also in their soil aggregation capability. In 74 

fact, exploring a global dataset of fungal contributions to soil aggregation, Lehmann et al. 75 

(Lehmann et al., 2017b) revealed a wide range in soil aggregation effectiveness for the 117 76 

species for which experimental data were available. However, in this analysis it remained 77 

unclear which fungal traits underpin the observed effects on soil aggregation, simply because 78 

the relevant trait data are unavailable. 79 

  80 
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What is needed are studies that systematically compare fungal traits in a set of species and that 81 

relate these to soil aggregate ability. So far, only a limited number of such studies are available 82 

(Table S1). These studies have mainly focused on fungal biomass and some chemical traits, 83 

using specific fungal groups, such as arbuscular or ectomycorrhizal fungi. Much less is known 84 

for soil saprobic fungi. In all these studies a limited set of fungi (typically in the range of 3 to 9 85 

species) was examined for their traits (no more than 3 traits). In cases where larger suites of 86 

fungi (up to 85 fungal strains/ mutants) were investigated for their soil aggregation ability no 87 

traits were measured (Table S1). This lack of data currently prevents us from arriving at more 88 

broadly generalizable conclusions. 89 

 90 

A way forward to address this issue is by applying a trait-based approach, especially for 91 

saprobic fungi (Lehmann and Rillig, 2015). As opposed to arbuscular mycorrhizal fungi, for 92 

which most work in this context has been done (Rillig et al., 2015), there are also clear traits for 93 

disaggregation ability in this group: aspects of enzymatic ability. In a trait-based approach, using 94 

a reasonably large suite of isolates, organismal traits can be related to specific functions. Such 95 

approaches generally convert species into points in ‘trait-space’, thus overcoming limitations 96 

associated with examining a few, idiosyncratically selected strains, and thus allowing for more 97 

generalizable inferences (Crowther et al., 2014; Aguilar-Trigueros et al., 2015). 98 

 99 

Here, we investigated a set of 31 filamentous fungal strains, all saprobic fungi isolated from the 100 

same soil and then compared under identical conditions in the laboratory. The 31 strains are 101 

distributed among the Ascomycota, Basidiomycota and Mucoromycota (Spatafora et al., 2016), 102 

and we screened each for the expression of a suite of 15 traits. With these data, we wished to 103 

determine (i) which morphological, chemical and biotic traits are most important for soil 104 

aggregation and (ii) what characterizes an efficient or poor soil aggregator. 105 
 106 

2. Materials and Methods 107 

2.1. Soil and fungal strains 108 

 109 

Soil samples and fungal strains were obtained from Mallnow Lebus, a dry grassland in a natural 110 

reserve (Brandenburg, Germany, 52° 27.778’ N, 14° 29.349’ E) characterized by a sandy loam 111 

soil texture. The collected soil samples were either used for establishing fungal cultures or were 112 
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air-dried and stored until further use in experiments. The isolation of the 31 fungal strains was 113 

previously described in Andrade-Linares et al. (Andrade-Linares et al., 2016). Briefly, washed 114 

and diluted soil was used for the isolation procedure to minimize spore abundance and to 115 

increase the probability of capturing fungi derived from hyphae attached to soil particles (Gams 116 

and Domsch, 1967; Thorn et al., 1996). Afterwards soil suspensions were incubated on a 117 

variety of media with applications of different antibiotics suitable for cultivation of Ascomycota, 118 

Basidiomycota and Mucoromycota while suppressing bacterial growth. Isolates were grown on 119 

PDA at room temperature (22°C). Our final set of fungal strains comprised 20 Ascomycota, four 120 

Basidiomycota and seven Mucoromycota strains (Fig.1, Table S2). The corresponding 121 

phylogenetic tree was calculated following the procedure by Andrade-Linares et al. (2016). 122 

Briefly, ITS regions were sequenced using the primers ITS1F and ITS4. Sequences were 123 

matched in GenBank and aligned via Muscle v. 3.8.31 (Edgar, 2004). For reconstruction of 124 

phylogenetic relationships across the 31 fungal strains, a Bayesian maximum likelihood 125 

approach was applied using BEAST v. 1.7.2 (Drummond and Rambaut, 2007). A general time 126 

reversible substitution model was run with gamma-distributed substitution rates. Further a 127 

Bayesian chain with 20 million generations was implemented. The phylogenetic tree was rooted 128 

by the isolate Chytridium olla (GenBank accession number: FJ822974) which was used as an 129 

outgroup. Generated trees were sampled every 2000 generations from which the first 1000 130 

were discarded as the burn-in (see e.g. Nascimento et al., 2017). The summary tree represents 131 

the maximum clade credibility tree with median clade heights. 132 

 133 

2.2. Soil aggregate formation 134 

 135 

The soil aggregate formation assay used here aimed to test for de novo aggregate formation by 136 

fungi. This technique was modified from Tisdall et al. (2012). Here, we filled 6 cm petri dishes 137 

with a 5 mm layer of agar (1.5%, Panreac AppliChem, Darmstadt, Germany) to provide 138 

moisture, and this layer was covered with 10.0 g of soil. The soil was gently poured onto the 139 

agar to avoid any artificial compaction. Prior to this, the soil (from the field site from which the 140 

fungi were originally isolated) was sieved to a fraction < 1mm and autoclaved two times in a dry 141 

cycle. The soil was then allowed to equilibrate for two days on the agar before inoculation. 142 

During this time, the soil was rewetted by capillary action. This way, we provided a moist but not 143 

waterlogged environment for the fungal strains. The fungal strains used for inoculation were 144 

cultured on PDA and incubated with sterilized poppy (Papaver somniferum) seeds as carrier 145 

material. Colonized poppy seeds were transferred to soil - with two seeds per species added 146 
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per soil plate. For the controls, non-colonized poppy seeds incubated on PDA were transferred 147 

to the soil plates. Finally, plates were sealed and stored at room temperature (22°C, the 148 

culturing temperature of our fungal strains) in the dark for six weeks until harvest. The 149 

experiment consisted of ten replicates for 31 fungal strains and a control, resulting in 320 150 

experimental units.  151 

We visually confirmed for every strain (on two replicates) that hyphae were not just growing on 152 

the surface of the soil, but that that mycelium was present inside the soil. At harvest, the plates 153 

were opened and dried at 60°C overnight. Subsequently, the soil was carefully extracted from 154 

the Petri dishes, passed through a 1 mm sieve to extract all aggregates larger than 1 mm, which 155 

were formed during the experiment. To do so, we vertically moved the sieve two times to allow 156 

separation while avoiding abrasion of soil aggregates. Additionally, we tapped against the sieve 157 

frame. By this, we increased the likelihood of passing aggregates and particles <1mm captured 158 

by hyphae through the mesh. The weight of the soil fraction >1mm was used for the calculation 159 

of the soil aggregate formation for our 31 fungal strains and the corresponding controls following 160 

the equation: % SAF = (aggregates >1mm / 10.0) *100. 161 

This approach offers the opportunity to test soil aggregate formation for an a priori size fraction 162 

(here 1mm). However, this design does not capture any dynamics for the <1mm soil fraction. 163 

Hence any impact of the 31 fungal strains on e.g. microaggregate formation could not be 164 

evaluated here. 165 

 166 

2.3. Trait measurements 167 

 168 

To build a trait database, we investigated 15 different traits capturing morphological, chemical 169 

and biotic features of our 31 fungal strains (Lehmann and Rillig, 2015; Lehmann et al., 2017a).  170 

The traits were chosen to characterize different aspects of the fungal mycelium and its products 171 

by which the fungus interacts with its environment. Additionally, the traits had to be measurable 172 

for all 31 strains, using methods that worked for all of them. The trait data were either obtained 173 

from dedicated new experiments or collected from previously published studies (Lehmann et al., 174 

2018; Zheng et al., 2018) using the set of 31 fungal strains; data origin is given in the text. 175 

With the exception of hyphal length, all traits were measured under standardized in vitro 176 

conditions which were suitable for all our fungal strains. It was not feasible to realize trait 177 

measurements in soil since it is an opaque and highly heterogeneous substrate. Instead we 178 

used potato dextrose agar, a widely used standard growth medium for fungi. By this, we ensure 179 
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a consistent environmental setting for trait measurements (Aguilar-Trigueros et al., 2015; 180 

Lehmann and Rillig, 2015). 181 

Morphological traits. We measured hyphal length in soil (in m g-1 soil); for this we used soil 182 

samples from the soil aggregate formation assay; hence we had ten replicates for each fungal 183 

strain and the control. For extracting hyphae and measuring hyphal length, 4.0 g of the 184 

experimental soil were used, and hyphae counted at 200x magnification (Tennant, 1975; 185 

Jakobsen et al., 1992). The hyphal length found in the controls was set as the background; that 186 

is, dead hyphae that were present in the soil after autoclaving. 187 

In order to measure colony radial growth rate (in µm h-1), the 31 fungal strains were cultivated 188 

on full strength PDA - a rich medium generally preventing growth limitations in our fungal 189 

strains. For each fungal strain five replicates were used. For the set-up, a pre-sterilized poppy 190 

seed colonized by a fungal strain was placed in the center of a PDA plate which was then 191 

incubated for four weeks in the dark at room temperature (22°C). At day 0, 3, 5, 7, 14, 21 and 192 

28, all plates were scanned from the back with an Epson Perfection V700 Photo Scanner (300 193 

dpi, 16-bit, color). The pictures were analyzed in ImageJ (Schneider et al., 2012) (1.51j8) by 194 

measuring the radius in four directions (0°, 90°, 180° and 270°) with the poppy seed as center 195 

point to the colony rim. The four values were averaged. For each replicate, the mean colony 196 

radius was plotted over time to identify the linear growth phase. The slope of the linear growth 197 

phase represents the colony radial growth rate and was estimated by linear regression 198 

standardized by the length of the linear growth phase.  199 

The data for colony biomass density (in µg mm-2) were obtained in an experiment in which 200 

fungal colonies were grown on PDA covered with sterilized cellophane, allowing easy extraction 201 

of fungal biomass. For each fungal strain, six replicates were set up using colonized poppy 202 

seeds, as above. When fungi reached half of their linear growth phase, colony area was 203 

measured, then biomass was harvested, dried at 45 °C and weighed. Finally, the biomass was 204 

standardized by the colony area (Reeslev and Kjoller, 1995). 205 

Furthermore, we included data on hyphal branching angle, hyphal internodal length, hyphal 206 

diameter, mycelial complexity (box counting dimension, describing the degree of detail of a 207 

pattern), and mycelium heterogeneity (lacunarity, i.e. the gappiness or ‘rotational and 208 

translational invariance’ in a pattern (Karperien, 1999-2013)) and hyphal surface area which 209 

were collected by Lehmann et al. (2018). For further information on experimental set-up and 210 

measurements see supplementary material. 211 

Chemical traits. We measured hydrophobicity of the fungal surface for fungal material using the 212 

same approach as applied for biomass density measurements, with six replicates per fungal 213 
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strain. This allowed us to use medium-free fungal material. Half of an individual colony was 214 

used for the hydrophobicity test, which was done using alcohol percentage tests. This is a rapid 215 

and simple way of quantifying hydrophobicity (Chau et al., 2010). Briefly, a series of ethanol 216 

droplets (8 µl) with a concentration gradient were placed on the fungal surface to find the 217 

maximum concentration at which the droplet can retain its shape for longer than 5 seconds 218 

(Zheng et al., 2014).  219 

Additionally, we included here the enzymatic activity data for laccase, cellobiohydrolase, leucine 220 

aminopeptidase and acid phosphatase, previously measured by Zheng et al. (Zheng et al., 221 

2018). For further information, see supplementary material. 222 

Biological trait. The palatability of the 31 fungal strains was tested in a feeding experiment with 223 

the collembolan Folsomia candida. We measured palatability as a proxy for assessing likely 224 

persistence of hyphae in the environment, as a way to assess possible interaction with other soil 225 

biota. Fungal mycelium was grown on glass fiber filter papers (696, VWR European Cat. No. 226 

516-0877) cut into 1 cm² pieces of which four were placed in Petri dishes filled with plaster of 227 

Paris and charcoal (3:1 mixture). There were 31 fungal treatments and a non-fungal control 228 

(glass fiber filters only), each with eight replicates resulting in 256 experimental units. The 229 

experiment started with the addition of ten individuals of Collembola of the same age and 230 

developmental stage; the animals were previously starved for seven days. After three days of 231 

incubation in the dark at room temperature (22°C), experimental units were checked for 232 

numbers of alive Collembola and subsequently were frozen at -20°C to stop any activity. Finally, 233 

the number of fecal pellets per dish were measured and standardized by number of surviving 234 

Collembola (fecal pellets *no. of individuals-1). 235 

 236 

2.4. Statistics 237 

 238 

First, for investigating soil aggregate formation (SAF) capability of the 31 fungal strains, we 239 

tested fungal performances against the corresponding control samples using a generalized least 240 

square model (gls with n= 10* 32= 320) in the ‘nlme’ package (Pinheiro et al., 2018); we 241 

accounted for heteroscedasticity by implementing different variances per stratum for fungal 242 

strains by using the varIdent function (Zuur et al., 2009). To test for differences in SAF 243 

performance of different phyla we used analysis of variance (n =31) with subsequent pairwise 244 

comparisons via TukeyHSD() function. For all models, we tested for normality and homogeneity 245 

of model residuals. 246 
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Second, we applied principal components analysis to investigate the 15-dimensional trait space 247 

and the distribution of fungal strains therein. For this, we used the prcomp() function in the basic 248 

‘stats’ package; we used z-transformed data. To reduce the dimensionality of our dataset we 249 

tested for PC axis significance via the function testdim() (Dray, 2008) in the package ’ade4’ 250 

(Chessel et al., 2004; Dray and Dufour, 2007; Dray et al., 2007). We found that the first two 251 

axes were significant and hence used these for the PCA biplot. We added species occurrence 252 

probability information to the biplot by applying the kernel density estimation following the 253 

approach of Diaz et al. (Diaz et al., 2016). For this, we used the kde() function in the package 254 

“ks” (Duong, 2018) and implemented an unconstrained bandwidth selector via the function Hpi() 255 

for our first two PC axes. We estimated contour probabilities for 0.5, 0.95 and 0.99 quantiles 256 

with the function contourLevels(). Additionally, we tested for collinearity between our 15 trait 257 

variables by using Pearson’s rho. A threshold of |rho| >0.7 was defined as an indicator of 258 

collinearity (Dormann et al., 2013). 259 

Third, we applied a permutation-based random forest algorithm (Hapfelmeier and Ulm, 2013) to 260 

identify informative trait variables which are important for soil aggregate formation (SAF). 261 

Random forest (Breiman, 2001) is one of the machine learning algorithms with highest accuracy 262 

(Douglas et al., 2011; Crisci et al., 2012), and is capable of detecting nonlinear relationships 263 

even among higher order interactions in a nonparametric manner (Ryo and Rillig, 2017; Ryo et 264 

al., 2018), while being robust to multicollinearity (Nicodemus et al., 2010). SAF was regressed 265 

with all the trait variables, and the model performance was evaluated in terms of explanatory 266 

power (i.e. variability explained, R²expl) and predictability using out-of-bag cross validation 267 

(Breiman, 1996) (R²pred). The relative importance of the trait variables was quantified with a 268 

mean squared error measure, indicating how much each of the trait variables contributes to the 269 

model predictability (Breiman, 2001). In addition, statistical significance of each trait variable (p 270 

= 0.05) was tested via a permutation approach with 2000 iterations (Hapfelmeier and Ulm, 271 

2013). The two parameters of the random forest algorithm (see(Breiman, 2001)) were tuned as 272 

follows: the number of trees in the model (ntree) was set to 100 as it made the model stable 273 

(Breiman, 2001); the number of predictors for the randomized split technique (mtry) was set to 4 274 

(the square root of the number of predictors (Diaz-Uriarte and de Andres, 2006)). 275 

We added the phylogeny of our 31 fungal strains as a numeric predictor variable to the random 276 

forest analysis. To do this, we calculated phylogenetic pairwise distances and fed these into 277 

PCoA via the cmdscale() function in the ‘stats’ package. We calculated the cumulative sum of 278 

the proportion of variance explained by PCo axes based on the eigenvalues and extracted the 279 

first five axes, together explaining up to 80% of phylogenetic variance (Diniz-Filho et al., 1998). 280 
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After identifying the most relevant predictors, we used partial dependence plots to visualize the 281 

response-predictor relationships obtained from the random forest procedure (Hastie et al., 282 

2009). For this, we used the plotPartialDependence() function of the package ‘mlr’ (Bischl et al., 283 

2016). 284 

Fourth, we tested for phylogenetic signals in our 15 trait variables (Table S3) using Moran’s I 285 

statistic - a measure of phylogenetic autocorrelation, implemented in the package ‘phylosignal’ 286 

(Keck et al., 2016).  287 

Fifth, we ran linear regressions on SAF and the three most important predictors identified by the 288 

random forest approach and further evaluated the relationships by quantile regression with the 289 

package ‘quantreg’ (https://github.com/cran/quantreg). Analyzing response-predictor 290 

relationships at their maxima rather than at their means allows for more meaningful inferences 291 

especially for wedge-shaped data distributions (Cade et al., 1999; Cade and Noon, 2003); in 292 

these cases, unmeasured limiting factors could obscure underlying patterns. Model residuals 293 

were tested for homogeneity and normal distribution. If necessary, data were log-transformed. 294 

Sixth, we visually explored soil aggregate formation strategies exemplified by the four best and 295 

poorest performing strains via radar charts applying the eponymous function in the package 296 

’fmsb’ (Nakazawa, 2018). 297 

We conducted all analyses in R (R Development Core Team, 2014) (v. 3.4.1) and generated 298 

plots, if not stated otherwise, with the graphic package ‘ggplot2’ (Wickham, 2009). 299 

 300 

3. Results and Discussion 301 

3.1. Soil aggregate formation 302 

 303 

We here measured soil aggregate formation (SAF) capability on a broad set of fungal strains 304 

comprising the phyla Ascomycota, Basidiomycota and Mucoromycota, revealing an overall 305 

significantly positive effect of fungi on soil aggregation: the saprobic fungi increased SAF of the 306 

tested sandy soil by 79% (confidence interval: 61 to 99%; Fig S1) compared to the non-307 

inoculated controls. The control samples reached a SAF of 3.5% (standard deviation: 0.6) while, 308 

for the fungal treatments, we found a spectrum of SAF with means ranging from 3.7 to 10.3% 309 

with the Mucoromycota strain Umbelopsis isabellina and the Ascomycota strain Cadophora sp. 310 

at the lower and upper end, respectively (Fig. 2A). Only two strains, namely Umbelopsis 311 
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isabellina and Mortierella sp.3, had a SAF performance not significantly different from the non-312 

inoculated controls.  313 

 314 

Our results support the general finding that filamentous soil fungi improve soil aggregation, as 315 

was shown in experiments (Martin and Anderson, 1943; Gilmour et al., 1948; Martin et al., 1958; 316 

Zheng et al., 2014) and a global data synthesis (Lehmann et al., 2017b). However, here we 317 

used for the first time a set of 31 fungal strains comprising three major fungal phyla which were 318 

all isolated from the same soil and tested in their home soil.  This set was screened using a 319 

method suitable for the large number of target species. Additionally, we used a straightforward 320 

assay for testing specifically a soil aggregation process component - namely aggregate 321 

formation.  322 

Our choice of methods also has limitations. Using this approach, we only focused on one a 323 

apriori size limit for newly formed aggregates, thus not capturing any dynamics in smaller sizes 324 

classes. Furthermore, the small amount of soil used in our design did not allow us to measure 325 

aggregate size distributions. As discussed previously (Aguilar-Trigueros et al., 2015). We here 326 

evaluated fungal contribution to soil aggregation in isolation, not taking into account how such 327 

effects might be modified by other soil organisms. However, such species interactions can be 328 

clearly important; for example, a recent meta-analysis revealed that soil biota combinations (e.g. 329 

bacteria-fungi mixtures) result in significantly increased soil aggregation (Lehmann et al., 330 

2017b). Hence future studies should also consider species combinations when evaluating soil 331 

biota contributions to soil aggregation. 332 

 333 

In our experiment, each of the three tested fungal phyla contained strains that were effective 334 

and poorly performing; however, overall, the four most efficient aggregate formers were 335 

members of the Ascomycota while three of the poorest aggregate formers belonged to the 336 

Mucoromycota (Fig. 2B). For our tested suite of fungi, we found that the Ascomycota, in 337 

general, had significantly higher SAF than the Mucoromycota. These findings correspond with 338 

previous reports (Lynch and Elliott, 1983; Tisdall et al., 2012; Lehmann et al., 2017b) and 339 

suggest that phylogeny is a strong factor determining SAF capability. However, it still remains 340 

unclear which fungal traits contribute to these phylum-specific differences and overall variability 341 

in SAF capability. Thus, in the next step, we used a trait database comprising morphological, 342 

chemical and biotic traits to explore their importance for SAF. 343 

 344 

3.2. Trait collection 345 
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 346 

We included 15 fungal traits (measured on the level of a fungal individual or ‘colony’) and found 347 

strong variability in their expression across the 31 fungal strains (Fig. 3). In terms of 348 

morphological features, we found in our experiments that the measured branching angles 349 

ranged from 26 to 86° for Mucoromycota with widest and Basidiomycota with narrowest angles, 350 

while for hyphal diameter, the highest and lowest values (2.7 to 6.5 µm) were both found in the 351 

Mucoromycota. Basidiomycota had the highest internodal length (453 µm) while in 352 

Mucoromycota distances as short as 40 µm between two branches were detected. The 353 

mycelium complexity measurements revealed trait values between 1.2 (Basidiomycota) and 1.6 354 

(Mucoromycota), where a value of 1 represents a single, unbranched hypha and a value of 2 a 355 

complex, space-filling structure. Mycelium heterogeneity varied between 0.4 and 0.7 for Basidio- 356 

and Ascomycota, respectively, with higher values indicating increasing structural gappiness. For 357 

hyphal length in soil, we found 7 to 20 m hyphae per g soil for Ascomycota and Basidiomycota, 358 

respectively, with 4.6 m g-1 of hyphal background. The largest hyphal surface area was found in 359 

Mucoromycota with 3.4 µm² while the smallest was detected for an Ascomycota strain with 0.8 360 

µm². For biomass density, values ranged between 0.02 and 0.2 mg cm-2 for Basidiomycota and 361 

Ascomycota, respectively. Among the Mucoromycota the strain with the highest colony radial 362 

extension rate with 373 µm h-1 was found while the slowest extending strain was a member of 363 

the Ascomycota. 364 

Next, the exploration of the chemical traits revealed that across all phyla, hydrophilic mycelia 365 

could be found while Basidiomycota showed the strongest detectable mycelial hydrophobicity 366 

(60% ethanol molarity). The enzyme profiling revealed that cellobiohydrolase was not produced 367 

by Mortierellales, an order of the Mucoromycota, while the highest activity was found in the 368 

Ascomycota (0.13 U mg-1). In contrast, laccase and acid phosphatase activities were lowest in 369 

Ascomycota and highest in Basidiomycota (laccase: 0.01 to 10.4 U mg-1; acid phosphatase: 370 

0.01 to 1.8 U mg-1). The production of leucine aminopeptidase was highest in Mucoromycota 371 

and lowest in Ascomycota (0.09 to 7.1 U mg-1).  372 

We measured palatability as a biotic trait and found that the most and least attractive strains 373 

belonged to the Ascomycota (5 to 123 fecal pellets per individual collembolan). 374 

  375 

Here, we established a collection of soft traits measured under standardized conditions with 376 

reproducible methods which are applicable for a broad range of fungal strains with high intra- 377 

and interspecific variability in morphological, chemical and biotic features. Our values are within 378 
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the range of previously reported fungal traits (e.g. Trinci, 1969; Ho, 1978; Obert et al., 1990; 379 

Baldrian et al., 2011; Eichlerova et al., 2015). 380 

However, it is important to note that these findings result from trait data measured on a 381 

homogenous, standardized growth substrate not accounting for the heterogeneous nature of 382 

soil with its inherent structure and also physical, chemical and biotic factors influencing the 383 

fungal trait expression. It is well known that fungal mycelia are versatile, dynamic and modular 384 

constructs; they not only modify their environment during foraging but also react to it (Ritz and 385 

Young, 2004). As demonstrated using the model organism Rhizoctonia solani, nutrient 386 

distribution and soil bulk density can alter e.g. hyphal growth patterns and thus mycelium 387 

density (Harris et al., 2003; Boswell et al., 2007). Future studies would need to take into account 388 

the soil heterogeneity. 389 
 390 

3.3. Fungal trait space 391 

 392 

We investigated the resulting 15-dimensional trait space and the fungal strain probability 393 

occurrence therein (Fig. 4A). We constructed the trait space by ordination (principal components 394 

analysis) and hence converted individual strains into unique trait combinations whose 395 

coordinates are determined by their trait expression (Crowther et al., 2014; Aguilar-Trigueros et 396 

al., 2015). We found that 42% of the variability in the fungal traits was accounted for in the first 397 

two PC axes which were the only significant axes (Table S4). Due to indication of strong trait 398 

correlations, we tested our data for collinearity. We detected only one case of collinearity 399 

(|pearson’s rho|>0.7) for mycelium complexity and hyphal surface area (Fig. S2).  400 

 401 

Evaluating the species occurrence, we found that Ascomycota strains were distributed in the 402 

lower half of the PC plane whereas the Mucoromycota were localized in the upper left quadrant 403 

mainly characterized by hyphal branching angle, colony radial growth rate and leucine 404 

aminopeptidase activity. In the upper right quadrant, the Basidiomycota grouped driven by 405 

hyphal internodial length and lacunarity. There was a clear separation of the phyla detectable 406 

for PC axis 1 with Ascomycota flanked by Mucoromycota and Basidiomycota but only a 407 

marginal separation between Ascomycota and Mucoromycota on PC axis 2 (Fig. S3). In 408 

general, the trait space revealed a high versatility in our fungal set with no clear syndromes. 409 

However, on the phylum level a clear separation between the three phyla was evident (Fig. S3).  410 

 411 
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In the next step, we investigated the importance of the collected fungal traits on SAF using the 412 

random forest approach. Considering the strong impact of phylum on SAF and phylogenetic 413 

separation in the trait space, we included phylogenetic pairwise distances as an additional 414 

variable (potentially also capturing not explicitly measured variables) in the following analyses.  415 

 416 

3.4. Fungal trait contributions to soil aggregate formation  417 

 418 

The random forest algorithm (explanatory power: 36% and predictability: 13%), identified three 419 

significant trait variables: colony biomass density, leucine aminopeptidase activity and 420 

phylogeny (relative importance: 48%, 25% and 13%, explanatory power of each: 17.3%, 9%, 421 

4.7%; Fig. 4B). 422 

 423 

To visualize the modeled relationship between SAF and the important variables we used partial 424 

dependence plots. After taking into account the effects of all predictors except for the variable of 425 

interest (colony biomass density, leucine aminopeptidase activity or phylogeny, respectively), 426 

partial dependence plots depict the relationships between the predictor and the response 427 

variable (SAF). We found that SAF increased with increasing colony biomass density (Fig. 4C) 428 

but decreased with increasing leucine aminopeptidase activity (Fig. 4D).  Across the phylogeny, 429 

from Mucoromycota to Ascomycota, we found a positive relationship with SAF (Fig. 4E). These 430 

findings were supported by linear and quantile regression analyses (Fig. 4F to 4H, Table S5). 431 

Here, we found that the relationship between SAF and colony biomass density was best 432 

represented by mean regression. For the relationships between SAF and leucine 433 

aminopeptidase activity as well as SAF and phylogeny, the 0.95 and 0.05 quantile, respectively, 434 

showed the highest fit.  435 

 436 

Our analyses revealed that fungal strains belonging to the Ascomycota that have high biomass 437 

density and low leucine aminopeptidase activity have the highest probability to form aggregates 438 

compared to other strains. Furthermore, we found that a colony biomass density above 0.08 mg 439 

cm-2 and a leucine aminopeptidase activity less than 1.8 U g-1 do not further improve SAF (Fig. 440 

4C and 4D). 441 

Our findings further support the assumption that phylogeny influences aggregate forming 442 

capability of fungi (Fig. 3B and Fig. 4H). We interpret this to mean that traits (including 443 

unmeasured traits) expressed by strains of this phylum contribute to this beneficial impact on 444 

soil aggregation. Considering all possible traits and their expression, the four most efficient 445 
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aggregate former were all Ascomycota with low leucine aminopeptidase activity and dense 446 

mycelia.  447 

A densely growing fungus likely can more intensively cross-link and enmesh particles with its 448 

hyphae, and thus perhaps is more effective at contributing to the formation of macroaggregates; 449 

however, so far there has not been direct evidence of this. Interestingly, the total amount of 450 

hyphae produced was not an important explanatory variable (Fig. 2; HLs = hyphal length in soil) 451 

suggesting that a critical local density is much more important than total hyphal production. This 452 

also explains results from previous experiments, where total hyphal length or biomass did not 453 

predict soil aggregation effects (e.g. Piotrowski et al., 2004). Fungi with high biomass density 454 

had low radial colony extension rate (Fig. S2); thus it can be expected that their positive effect 455 

on SAF is highly localized not reaching beyond their area of mycelial influence.  456 

Fungi with low leucine aminopeptidase activity are inefficient in hydrolyzing peptides and thus 457 

degrading organic matter components, which may be functioning as glues and cementing 458 

agents in aggregates (Chenu, 1989; Caesar-TonThat and Cochran, 2000; Daynes et al., 2012). 459 

Fungi with either one of these traits are more likely able to bring soil particles and aggregates 460 

together via their hyphae; lacking the enzyme to degrade organic matter holding together 461 

aggregates also contributes to this effect.  462 

This holds true especially in soils with high sand content as-used in our assay. In such soils, 463 

fungi are an essential factor in soil aggregation mainly via physical and chemical interactions of 464 

hyphae with sand particles forming and stabilizing the otherwise unstable substrate (Sutton and 465 

Sheppard, 1976; Forster and Nicolson, 1981). We here chose the soil from which our fungi were 466 

originally cultured. However, soil type as a major variable affecting fungi and their soil 467 

aggregation capability has to be the main target of future studies. 468 
 469 
After identifying the most important fungal traits for SAF, we focused on those fungi that are 470 

present at the lower and upper end of the SAF spectrum. The most efficient strains were all 471 

members of the Ascomycota (Cadophora sp., Pleosporales sp., Alternaria sp., Fusarium sp.) 472 

while the group of the poor performer comprised mainly Mucoromycota but also one 473 

ascomycete (Umbelopsis isabellina, Mortierella sp. (no. 3), Mucor fragilis, Truncatella angustata 474 

(Fig.1 and Fig.3). As expected, the efficient soil aggregate forming strains had high biomass 475 

density but low leucine aminopeptidase activity (Fig. 5). The opposite was true for the poor 476 

performers. In addition to these two clear features, the efficient strains tended to have lower 477 

colony radial growth rates, hyphal surface area and surface hydrophobicity, but had larger 478 
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hyphal diameters and more heterogeneously structured mycelia as the four poorest soil 479 

aggregators.  480 

 481 

4. Conclusions 482 

 483 

Our results yield new insights into fungal traits important for soil aggregation, and thus also shed 484 

light on mechanisms of soil aggregation. Clearly, future work should focus on hyphal density as 485 

a key trait. In an applied context of restoration and agriculture, our trait information can be 486 

incorporated in management practices affecting the fungal environment in soil to favor the 487 

development of more dense fungal mycelia by e.g. carbon input or through a screen for isolates 488 

exhibiting desired traits under the soil conditions in which they will be used. 489 

 490 

Even though we here focused on saprobic soil fungi, some aspects may also be generalizable 491 

to other fungal groups. For example, future work should test if hyphal density is also a better 492 

predictor for soil aggregation ability than hyphal biomass production in arbuscular mycorrhizal 493 

fungi. On the other hand, it will also be important to extend the dataset of fungal traits and soil 494 

aggregation beyond soil saprobes, since the relative importance of traits and trait combinations 495 

could vary; for example, since arbuscular mycorrhizal fungi have limited enzymatic abilities 496 

(Tisserant et al., 2013), this trait would play no role in that particular group. In the end, our study 497 

demonstrates the power of employing a trait-based approach to tackle biological mechanisms of 498 

soil aggregation; this can now also be extended to organism groups other than fungi. 499 

 500 
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Figure legends 703 

 704 
Fig.1. Overview of fungal strains. Phylogenetic tree (maximum clade-credibility tree) of the 31 saprobic 705 
fungal strains comprising members of the phyla Ascomycota, Basidiomycota and Mucoromycota. 706 
Following the order of the tree, images of four week old colonies grown on PDA are assigned to the tree. 707 
Further information about phylogeny and accession numbers of the 31 fungal strains are available in 708 
Table S2. Strains performing best and poorest are marked; blue symbols represent good and red 709 
symbols poor aggregators. 710 
 711 
Fig. 2. Soil aggregate formation capability. (a) Tukey boxplots of the soil aggregate formation (SAF 712 
with n= 10 *31 in %) capability of the 31 fungal strains. The dashed line represents the average SAF of 713 
the controls (n=10, mean= 3.5, SD=0.59) (b) Soil aggregate formation capability depicted on phylum level 714 
(pairwise comparisons: Ascomycota - Basidiomycota: p= 0.47, Ascomycota - Mucoromycota: p= 0.03, 715 
Basidiomycota - Mucoromycota: p= 0.66; n=31). 716 
 717 
Fig. 3. Trait distributions. Tukey boxplots of the 15 trait variables comprising morphological, chemical 718 
and biotic fungal features. Here, we present data on branching angle (BA with n= 5 in °), hyphal diameter 719 
(D with n= 5 in µm), internodal length (IL with n= 5 in µm), boxcounting dimension (Db with n= 8, unitless), 720 
lacunarity (L with n= 8, unitless), hyphal length in soil (HLs with n= 10 in m/g), hyphal surface area (HSA 721 
with n= 8 in µm²), biomass density (Den with n= 6 in mg*cm-²), radial colony extension rate (Kr with n= 5 722 
in µm*h-1), hydrophobicity of fungal surfaces (HPB with n= 6 in % of ethanol molarity), cellobiohydrolase 723 
(Cel), laccase (Lac), leucine aminopeptidase (Leu) and acid phosphatase (Pho) activity (each with n= 5 in 724 
unit* g-1 dry mass) and palatability (PT with n= 8 in no. of fecal pellets per collembolan individual). The 725 
boxplots represent 25th and 75th percentile, median and outlying points. Information about phylum 726 
affiliation is colour-coded (black: Mucoromycota, grey: Basidiomycota, white: Ascomycota). The grey 727 
dashed line for the trait hyphal length in soil represents mean of corresponding trait controls. 728 
 729 
Fig. 4. Outcomes of principal components analysis, random forest analysis and relationships 730 
between soil aggregate formation (SAF) and important trait variables. Analyses were conducted on 731 
trait mean data (n= 31). (A) Projection of the ordinated 31 fungal strains onto 15 trait variables comprising 732 
morphological, chemical and biotic characteristics into two dimensional trait space represented by 733 
principal component axis 1 and 2 (explaining 23 and 19% of variance, respectively). The trait variables 734 
are branching angle (BA), hyphal diameter (D), internodal length (IL), boxcounting dimension (Db), 735 
lacunarity (L), hyphal length in soil (HLs), hyphal surface area (HSA), biomass density (Den), radial 736 
colony extension rate (Kr), hydrophobicity of fungal surfaces (HPB), cellobiohydrolase (Cel), laccase 737 
(Lac), leucine aminopeptidase (Leu) and acid phosphatase (Pho) activity and palatability (PT). Arrows 738 
indicate direction and weight of trait vectors. Colour gradient represents probability of species occurrence 739 
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(white = low, red = high) in the trait space, with the contour lines denoting the 0.50, 0.95 and 0.99 740 
quantiles of kernel density estimation (see materials and methods section). (B) Overall importance of trait 741 
variables for soil aggregate formation capability with R²expl = 0.36, R²pred = 0.13 and three statistically 742 
significant predictor variables. Asterisks denote significance level: *** < 0.0001, ** 0.001, * 0.01, . 0.5. 743 
Pairwise phylogenetic distance was included as PCo- axes (see materials and methods section). (C-E) 744 
Partial dependence plots for the three most important and significant trait variables identified by random 745 
forest approach. The x-axis labels are identical with panels F, G and H, respectively. 746 
(F-H) Relationships between SAF and the three most important trait variables. Corresponding regression 747 
statistics can be found in Table S5. Phylum affiliation of fungal strains is colour-coded (black: 748 
Mucoromycota, grey: Basidiomycota, white: Ascomycota). Red and blue lines represent linear and 749 
quantile regression lines, respectively. The line type depicts significance of regression lines with solid < 750 
0.05 and dashed > 0.05. 751 
 752 
Fig. 5. Radar plot depicting trait expressions for the four best and four poorest soil aggregate forming 753 
fungal strains.  754 
  755 
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 756 
Fig. 1. 757 
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Fig. 2. 760 
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Fig. 3. 762 
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Fig.4. 765 
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Fig.5. 768 
 769 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 12, 2019. ; https://doi.org/10.1101/732628doi: bioRxiv preprint 

https://doi.org/10.1101/732628
http://creativecommons.org/licenses/by-nc-nd/4.0/

	Abstract
	1. Introduction
	2. Materials and Methods
	3. Results and Discussion
	Figure legends

