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Figure 5 – (a) Dominant effect (climate, population, or interaction) responsible for the highest increase 

(or decrease) in exposure at the county-level, for three population groups (see Figure S5 for other 

population groups) and for exposure to Ae. aegypti VTR only (see Figure S4 for exposure to Ae. 

albopictus VTR); (b) Contribution to increase in total population exposure of each individual effect, 

aggregated at the country (CONUS) and regional scale, and (c) same for decrease in exposure (see 

Figures S6-S8 for results associated with other population groups). Results are presented for year 2080 

only, using the multi-model mean.  
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3.5. Avoided exposure 

 

The use of the scenario matrix also enables exploring the avoided exposure due to (i) shifts in climatic 

conditions (e.g. resulting from mitigation options) or to (ii) shifts in socioeconomic pathways (e.g. 

resulting from the implementation of different social policies). Aggregated at the national (CONUS) 

scale (Figure 6), a shift from a high to a low emission scenario (RCP8.5—RCP2.6 shift) leads to a 

projected decrease in population exposure to Ae. aegypti VTR by 20% (IQR=5.8) by 2080 (regardless of 

the population group accounted for), while SSP5—SSP3 and SSP5—SSP1 shifts lead to a higher 

projected decrease, respectively 52% and 26% (for the total population only). Although results show a 

dominant effect of demographic/socioeconomic scenarios on avoided exposure, climate mitigation 

options also play a substantial role in shaping future exposure, particularly in the Northeast and West 

regions, where a RCP8.5—RCP2.6 shift would lead to greater avoided exposure to Ae. aegypti VTR than 

a SSP5—SSP1 shift.  

Regarding exposure to Ae. albopictus VTR, shifts in SSPs would lead to avoided exposure of similar 

magnitude to that of avoided exposure to Ae. aegypti VTR, while the effect of a RCP8.5—RCP2.6 shift 

would be reversed. Indeed, a RCP8.5—RCP2.6 shift would not decrease, but rather increase, exposure 

to Ae. albopictus VTR (by 5% (7.7)), highlighting the contrasting influence of climate change scenarios 

on Aedes-borne VTR in the United States. Similar findings apply in the South where a RCP8.5—RCP2.6 

shift would increase exposure to Ae. albopictus VTR by as much as 31% (10). The West and Northeast 

are the only regions where a RCP8.5—RCP2.6 would decrease population exposure to Ae. albopictus 

VTR (by 29% (3.3) and 12% (11) respectively). 

Trends in avoided exposure for outdoor workers, children, and urban populations follow those of the 

total population. However, trends differ for the elderly and low-income populations. Avoided exposure 

of elderly due to a SSP5—SSP3 shift largely dominates the avoided exposure. Conversely, SSP5—SSP1 

shift lead to very little avoided exposure, in most cases inferior to the avoided exposure due to 

RCP8.5—RCP2.6 shifts (for Ae. aegypti only). This is explained by the low net difference in the number 

of elderly between these two scenarios. Finally, due to the large difference in the number of low-

income persons between SSP5 and SSP3, a SSP5—SSP3 shift would lead to increased exposure of 700% 

in all regions and for VTR by both Aedes mosquitoes. This highlights again the important contribution 

of socioeconomic development pathways to future population exposure to Aedes-borne VTR in the 

United-States. 
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Figure 6 – Avoided exposure to Aedes-borne VTR, in relative terms (%), due to shifts from RCP8.5 to 

RCP2.6 (assuming current socioeconomic/demographic conditions and multi-model mean), from SSP5 

to SSP1, and from SSP5 to SSP3 (assuming current climatic conditions). Results are shown for year 2080 

only and are aggregated at the country (CONUS) and regional level, for the six population groups and 

the two Aedes mosquitoes. Errors bars represent the multi-model interquartile ranges (IQRs). 

 

 

4. Conclusions 

 

We projected that population exposure to Aedes-borne VTR will increase during the 21st century across 

the United States, but with contrasting patterns depending on (i) the population group of concern, (ii) 

the species of Aedes, (iii) the emissions scenario (i.e., RCPs), and (iv) the socioeconomic pathway (i.e., 

SSPs). We demonstrated that the type of socioeconomic pathway plays a critical role in shaping future 

population vulnerability and exposure to Aedes-borne VTR, particularly when the pathway projects a 

decrease in certain vulnerable groups such as low-income populations. Our approach emphasizes the 

importance of including SSP-based population projections to ensure a more realistic portrayal of future 

Aedes-borne VTR under climate change scenarios. The differential exposure across the myriad SSP-RCP 

scenario combinations underscores the wide range of potential outcomes (and therefore the need to 

use scenarios to span future climatic and societal uncertainties), and provides insight into the 

substantial avoided exposure that certain social policies and mitigation efforts could trigger. One 

particularly unique aspect of the present study is its breakdown of population projections into 

potentially vulnerable subgroups. From this, we found that the trends in exposure of some vulnerable 

subgroups differ from that of the total population. For instance, (i) exposure of the urban population 

increases slightly faster than that of the total population due to the continuing urbanization, (ii) 

exposure of the elderly drastically increases under all SSP-RCP combinations due to the rapid ageing 
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of the US population, and (iii) the number of low-income communities exposed to Aedes-borne VTR 

rapidly drops with the decrease of the net low-income population depicted under some scenarios. 

While a comprehensive list of limitations is given in Ryan et al. (2019), the most important limitation 

of the projections of future Aedes-borne VTR is the assumption that it is only driven by climate change, 

when evidence suggests that land use change, urbanization, population growth, migration, and 

economic development play a significant role in shaping the future transmission of Aedes-borne 

viruses (Messina et al., 2016, Astrom et al., 2012, Alimi et al., 2015, Kraemer et al., 2019). This study is 

also associated with limitations related to the SSP-based projections of vulnerable population groups 

(see Text S1), which are highly uncertain. Thus, they are most valuable as means of placing bounds of 

uncertainty on possible future population outcomes.   

We view the SSP*RCP framework as a promising tool to explore the complex interactions among 

socioeconomic development, climate change, and the future spread of VBDs – as recently highlighted 

in Messina et al. (2019). The main advantages of this framework include (i) the SSPs are being 

increasingly quantified (on gridded scales) for a number of relevant variables such as population 

growth (Jones & O’Neill, 2016, Gao, 2017), GDP (Murakami & Yamagata, 2016, Gidden, In review), and 

urbanization (Gao & O'Neill, 2019, Li et al., 2019), (ii) the scenarios account for the wide range of 

uncertainties in both socioeconomic development type and emission scenarios, (iii) the scenario matrix 

can be used to explore the relative contribution of climate change and socioeconomic development to 

the future spread of VBDs, and (iv) the growing literature on the vulnerability of populations – and of 

the health sector – under the SSPs (Ebi, 2013, Sellers & Ebi, 2017, Rao et al., 2018, Zimm et al., 2018, 

Welborn, 2018, Striessnig & Loichinger, 2016) can inform about the future vulnerability of exposed 

populations.  
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