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Abstract 16 

Gene expression deconvolution is a powerful tool for exploring the microenvironment of 17 
complex tissues comprised of multiple cell groups using transcriptomic data. Characterizing 18 
cell activities for a particular condition has been regarded as a primary mission against diseases. 19 
For example, cancer immunology aims to clarify the role of the immune system in the 20 
progression and development of cancer through analyzing the immune cell components of 21 
tumors. To that end, many deconvolution methods have been proposed for inferring cell 22 
subpopulations within tissues. Nevertheless, two problems limit the practicality of current 23 
approaches. First, all approaches use external purified data to preselect cell type-specific genes 24 
that contribute to deconvolution. However, some types of cells cannot be found in purified 25 
profiles and the genes specifically over- or under-expressed in them cannot be identified. This 26 
is particularly a problem in cancer studies. Hence, a preselection strategy that is independent 27 
from deconvolution is inappropriate. The second problem is that existing approaches do not 28 
recover the expression profiles of unknown cells present in bulk tissues, which results in biased 29 
estimation of unknown cell proportions. Furthermore, it causes the shift-invariant property of 30 
deconvolution to fail, which then affects the estimation performance. To address these two 31 
problems, we propose a novel deconvolution approach, BayICE, which employs hierarchical 32 
Bayesian modeling with stochastic search variable selection. We develop a comprehensive 33 
Markov chain Monte Carlo procedure through Gibbs sampling to estimate cell proportions, 34 
gene expression profiles, and signature genes. Simulation and validation studies illustrate that 35 
BayICE outperforms existing deconvolution approaches in estimating cell proportions. 36 
Subsequently, we demonstrate an application of BayICE in the RNA sequencing of patients 37 
with non-small cell lung cancer. The model is implemented in the R package “BayICE” and 38 
the algorithm is available for download. 39 
 40 
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1 Introduction 41 

Exploring the cellular components of heterogeneous tissues from their gene expression profiles 42 
is an essential work for revealing molecular mechanisms across different cell types. For 43 
instance, increasing evidence suggests that levels of tumor-infiltrating immune cells are 44 
associated with tumor progression, response to therapy, and patient survival (Dieu-Nosjean, et 45 
al., 2014; Fridman, et al., 2012; Fridman, et al., 2017). Thus, powerful technologies for single-46 
cell isolation, such as laser microdissection and flow cytometry, have been employed to 47 
quantify the numbers of malignant and normal cells in tissue (Hu, et al., 2016). However, these 48 
physical approaches to isolating cells of interest at the gene expression level are costly and 49 
time-consuming, resulting in drastically reduced biological-content yields. In contrast to 50 
single-cell technologies, RNA-seq and microarrays yield bulk gene expression from hundreds 51 
of thousands of cells. In heterogeneous tissues, where more than one cell type is present, the 52 
expression profile from bulk RNA-seq or microarrays is from cell mixtures; thus, to correctly 53 
interpret these data, gene expression deconvolution approaches are required to recover cell 54 
type-specific expression and the distinct cellular proportions within complex tissues. 55 

In the study of gene expression deconvolution, numerous computational and statistical 56 
approaches have been proposed to characterize cell subpopulations within tissues (Anghel, et 57 
al., 2015; Becht, et al., 2016; Gong, et al., 2011; Li, et al., 2016; Newman, et al., 2015; 58 
Ogundijo and Wang, 2017; Racle, et al., 2017; Xie, et al., 2018; Zhong, et al., 2013). 59 
Expression data from a heterogeneous tissue can be modeled as a linear combination of the 60 
distinct expression profiles of the cells present in that tissue, weighted by the corresponding 61 
cell fractions. These approaches can be grouped into one of three categories depending on 62 
whether they use a prior database of cell type-specific expression profiles in the deconvolution 63 
procedure: reference-free, reference-based, and semi-reference-based methods. Reference-free 64 
approaches aim to directly perform expression deconvolution without cell type-specific 65 
references, and their most significant feature is that they estimate the relative cellular 66 
proportions and simultaneously disentangle their expression profiles. For instance, many 67 
studies have been leveraged on non-negative matrix factorization to decompose mixed gene 68 
expression matrices into cell fractions and their corresponding expression profiles (Gaujoux 69 
and Seoighe, 2012; Prassas, et al., 2012). Although reference-free models are valuable in the 70 
exploration of an uncharacterized cell population, such as tumor subclones (Xie, et al., 2018), 71 
relating the cellular components they identify to specific cell types of interest is difficult. Hence, 72 
the results of reference-free approaches are unable to clarify the association between a 73 
particular cell type and disease progression.  74 

By contrast, reference-based methods incorporate external expression profiles of pure 75 
cell samples for deconvolution. For example, the analytical tool CIBERSORT successfully 76 
borrows cell type-specific information to predict the immune cell components in blood tissues 77 
and tumors through ν-support vector regression (ν − SVR) (Charoentong, et al., 2017; Newman, 78 
et al., 2015). A fundamental assumption about reference-based models is that all types of cells 79 
present in the target tissues are included in the reference set, and the cellular proportions should 80 
sum up to one. Unfortunately, the pure expression profile of malignant cells, a key component 81 
in tumors, is a great challenge because of the high genetic heterogeneity of tumors. Hence, 82 
reference-based models can only derive the relative cell proportions concerning the reference 83 
set rather than the exact proportions concerning the microenvironment. Therefore, the relative 84 
cell proportions are not comparable across samples. To overcome this problem, TIMER adopts 85 
a series of deconvolution procedures to adjust the relative cell proportions with tumor purity, 86 
which is the content of malignant cells in a tumor (Li, et al., 2016). 87 
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The abovementioned limitation forms the main incentive for developing semi-88 
reference-based deconvolution approaches. In 2017, Racle et al. proposed a framework for 89 
estimating the proportion of immune and cancer cells (EPIC) for RNA-seq data (Racle, et al., 90 
2017). EPIC applies least-squares regression with a non-negativity constraint to the 91 
deconvolution problem, and requires that the sum of all cell proportions in each tissue must be 92 
less than or equal to one. When the sum is not equal to one, one minus the sum of the estimated 93 
cell proportions represents the fraction of uncharacterized cells in a tissue that is not accounted 94 
for by the reference set; this number is interpreted as the malignant cell proportion in a bulk 95 
tumor. 96 

Although semi-reference-based models demonstrate the advantages of incorporating 97 
cell-specific information and simultaneously extracting the uncharacterized cell types present 98 
in tissues, two problems behind these models should be addressed to complete the framework 99 
of gene expression deconvolution. First, signature gene selection is critical to the performance 100 
of gene expression deconvolution. In some studies, the incorporation of a preselected signature 101 
gene set has successfully improved the accuracy of immune cell deconvolution (Chen, et al., 102 
2017; Newman, et al., 2015; Racle, et al., 2017; Wu, et al., 2018). However, the gene activities 103 
of a particular cell type usually vary across different tissue microenvironments. Hence, the use 104 
of a preselected gene set might cause the loss of data-dependent information and lead to less 105 
deconvolution power. The second problem concerns the natural characteristics of 106 
deconvolution. In a reasonable strategy for deconvolution, shifts in the mean level of reference 107 
samples and tumor samples should not change the estimation of cell proportions. We refer to 108 
this as the shift-invariant property for deconvolution. However, the constrained model 109 
implemented for EPIC does not maintain the shift-invariant property in deconvolution, and the 110 
estimation of cellular components is unstable because the sequencing depth changes across 111 
experiments. More specifically, the uncharacterized cell fractions estimated using the 112 
constrained least-squares approach are biased toward zero, which will be demonstrated in our 113 
results. 114 

Therefore, to address the aforementioned problems, we propose a new model based on 115 
a hierarchical Bayesian framework for intracellular component exploration. It is called BayICE 116 
and is a semi-reference-based approach. Under the Gaussian assumption, we first considered 117 
stochastic search variable selection (SSVS) for novel signature gene selection (George and 118 
McCulloch, 1993). The SSVS approach has been widely used in transcriptome analyses to 119 
select significant genes. For example, Ishwaran and Rao introduced a rescaled Bayesian model 120 
for selecting differentially expressed genes through multi-group microarray data (Ishwaran and 121 
Rao, 2005). To the best of our knowledge, BayICE is the first attempt to incorporate the 122 
mechanism of feature selection for inferring the cellular components of bulk tissues. Moreover, 123 
we claim that the BayICE model possesses the shift-invariant property of deconvolution, which 124 
yields unbiased estimates of cellular proportions. The model with the shift-invariant property 125 
further guarantees that it can recover the expression profiles of uncharacterized cells using 126 
posterior mean inference. For the purpose of inference, we applied Gibbs sampling and the 127 
Metropolis–Hastings as the sampling procedure in the estimation. In brief, BayICE performs 128 
cellular component estimation, uncharacterized cell expression profile estimation, and a novel 129 
strategy for signature gene selection. 130 

The remainder of this paper is organized as follows. Section 2 introduces the 131 
deconvolution in gene expression and states the shift-invariant property. Section 3 introduces 132 
the statistical modeling of BayICE for gene expression deconvolution and proposes a Markov 133 
chain Monte Carlo (MCMC) algorithm for simulating the posterior distributions of parameters. 134 
To assess the model’s performance, Section 4 presents simulation studies that investigate gene 135 
expression deconvolution, gene selection, and model robustness compared to two existing 136 
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methods. Section 5 presents applications to two real datasets where underlying true cell 137 
proportions are known and performance can be benchmarked. Section 6 describes application 138 
of BayICE to 199 non-small cell lung cancer RNA-seq samples and exploration of the cell 139 
components present in the microenvironments of lung tumors. Finally, Section 7 provides final 140 
discussion and conclusions.  141 

2 Deconvolution 142 

The deconvolution in gene expression can be formalized as an optimization problem in which 143 
the parameter of interest is the cellular proportion 𝑾 = (𝑤*,… ,𝑤-)′, and the estimates of W 144 
are obtained by    145 

(2.1) 𝑊1 = 𝑎𝑟𝑔𝑚𝑖𝑛8𝐷:;
𝑦*
⋮
𝑦>
? , ;

𝐵** ⋯ 𝐵*-
⋮ ⋱ ⋮
𝐵>* ⋯ 𝐵*-

?;
𝑤*
⋮
𝑤-
?C	, 

where 𝑦E is the gene expression of gene g, 𝐵EF is the expression of the k-th cell type in gene g, 146 
and D is the distance metric. In general, D is the Euclidean distance. As mentioned above, the 147 
reference-free deconvolution approaches assume the cell type-specific expression (𝐵EF ) is 148 
unobserved, and the reference-based methods, by contrast, require 𝐵EF  as input for the 149 
optimization problem. Additionally, the semi-reference-based approaches allow that one of the 150 
cell types is absent in the reference. We now define the shift-invariant property to characterize 151 
different deconvolution models.  152 

 153 

Definition 1 (Shift-invariant property) 154 

Let Y be the mixed expression from bulk tissue, and B be the cell type-specific expression 155 
matrix. If the cellular proportion estimate of a deconvolution method M is invariant when the 156 
expression distribution shifts with a constant (location parameter), then M has the shift-157 
invariant property. That is, M satisfies 158 

𝒂𝒓𝒈𝒎𝒊𝒏𝑾𝑫(𝒀,𝑩𝑾) = 𝒂𝒓𝒈𝒎𝒊𝒏𝑾𝑫(𝒀 + 𝒄, (𝑩 + 𝒄)𝑾) 159 

 for any constant c, where D is the distance metric used by M. 160 

 161 

The shift-invariant property in Definition 1 is essential for evaluating the deconvolution 162 
methods, especially in the genomic study. Since the protocol of a gene expression experiment 163 
is typically designed for each study, the mean read depth varies across experiments. More 164 
specifically, the different experimental protocols cause the location parameters of expression 165 
distributions to change. If the location parameter affects the estimation of the same composition, 166 
then it is not reasonable to compare results across studies. However, the shift-invariant property 167 
guarantees that a deconvolution method with this property can estimate the proportions 168 
precisely when the location parameter is changed, and thus, the between-study comparison is 169 
valid. In the supplementary file, we have shown that the reference-free and reference-based 170 
deconvolution approaches follow the shift-invariant property. By contrast, EPIC adopted the 171 
inequality-constrained optimization method to derive cell proportions lacks the shift-invariant 172 
property, and hence the following simulation result reveals that the estimates of EPIC are 173 
biased.   174 

  To address the issue of shift-invariant property for the semi-reference-based 175 
deconvolution approaches, we proposed a Bayesian deconvolution model which is more robust 176 
to the change in the location parameter. The Bayesian hierarchy architecture facilitates the 177 
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construction of equality-constrained objective function for the semi-reference-based 178 
deconvolution problem via likelihood approach. The proof details in the supplementary 179 
material, and the model construction will be detailed in the next section. 180 

3 BayICE Deconvolution Model 181 

In this section, we present the proposed hierarchical Bayesian deconvolution model for 182 
intracellular component exploration with novel signature gene selection. Figure 1 provides a 183 
graphical representation of the BayICE hierarchical model. We first describe the input data and 184 
establish the statistical modeling for reference samples and tumor samples. Subsequently, a 185 
stochastic search method, the Bayesian false discovery rate, and an inflation factor are 186 
introduced for signature gene selection. Finally, we adopt the Gibbs sampling approach and 187 
the Metropolis–Hastings approach to develop a comprehensive sampling procedure. 188 

 
Figure 1. Bayesian hierarchical model of BayICE  
The square symbols represent observed data from the reference set and bulk tissues. The white circles indicate priors and 
the grey circles are hyperparameters.  

3.1 Input data and normalization 189 

BayICE is a statistical framework designed for gene expression deconvolution. We first assume 190 
that the gene expression data are available from two sets of samples, namely heterogeneous 191 
tissues with a given clinical condition and a reference set consisting of several groups of 192 
samples with pure cell types. Although BayICE is a quantitative model-based approach, 193 
microarray and RNA-seq expression data are both legal inputs for BayICE. For the microarray 194 
data, we implement a locally weighted scatterplot smoothing algorithm (Yang, et al., 2002) for 195 
normalization. For the read count RNA-seq data, we recommend two different strategies for 196 
normalization. The first is to use new gene expression units, called transcripts per million 197 
(TPMs), which were proposed by Wagner et al. in 2012. The main feature of TPM 198 
normalization is to make the sum of all TPMs equal across samples, which facilitates fair 199 
comparisons between samples. For public data, TPM normalization approach is not always 200 
available because the information of sequencing depth or gene length required for TPM could 201 
be missing. Thus, we adopt subsampling normalization as the second strategy. Subsampling 202 
normalization applies a binomial sampler to resample the read count, and it aims to maintain 203 
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internal associations between genes and can simultaneously adjust external variance between 204 
samples. The details of how we implement the two normalization approaches are provided in 205 
the supplementary materials. After normalization by the first strategy or the second strategy, 206 
we consider a log transformation by log(count + 1). The log transformation of count data has 207 
been widely applied in RNA-seq studies. 208 

3.2 Statistical modeling  209 

The problem of gene expression deconvolution can be formulated as a system of linear 210 
equations that describes the expression of a given gene in a bulk tissue as the weighted sum of 211 
the expression values from multiple cell types present in the tissue. To maximize the 212 
deconvolution power, BayICE incorporates a reference set comprising cell-specific expression 213 
profiles into the inference of cellular components in bulk tissues. In this study, the reference 214 
set contains various types of immune cells, such as T cells, B cells, natural killer cells, 215 
monocytes, neutrophils, and normal tissue cells. In addition to these nonmalignant cells, 216 
malignant cells are a major cellular component of tissues in cancer deconvolution studies. 217 
Unfortunately, the high genetic heterogeneity of malignant cells hinders the possibility of 218 
constructing a predefined cancerous cell expression profile that can be applied to every bulk 219 
sample. To address this problem, BayICE takes the advantages of the flexibility of hierarchical 220 
Bayesian inference to extract malignant cell profiles directly from bulk tissues. Moreover, 221 
BayICE infers cellular proportions with respect to the reference cell types and unknown cell 222 
types of each tissue by integrating with a Bayesian signature gene selection approach. 223 

We first introduce the statistical model for the reference set consisting of N purified 224 
samples with K cell types. We denote an observation in this set as 𝑦ER, which is the normalized 225 
value for gene-g (g = 1, …, G) in the i-th purified sample (i = 1, …, N). The N purified samples 226 
belong to K nonmalignant cell types that exist in the bulk tissues. We introduce a binary vector 227 
variable 𝑥R. = (𝑥R*, … , 𝑥R-)  to represent the cell type for the i-th purified sample. More 228 
specifically, if the i-th purified sample belongs to cell type k, then 𝑥RF = 1 and 𝑥RV = 0 for all 229 
𝑡 ≠ 𝑘. BayICE assumes that 𝑦ER follows the Gaussian distribution with a mean level 𝜇ER and a 230 
gene-specific variance denoted by 𝜎],E^ . For the purpose of signature gene identification, we 231 
consider the mean structure 𝜇ER to comprise a gene-specific baseline (𝛼E) and cell type-specific 232 
effects (𝛽EF). Thus, the modeling of reference data can be written as  233 

(3.1) 
(𝑦ERa𝛼E, b𝛽EFc, {𝑥RF}, 𝜎],E^ f	~	𝑁(𝜇ER, 𝜎],E^ ), 

where 𝜇ER = 𝛼E + ∑ 𝑥RF𝛽EF-
Fj* . 

To search for signature genes that exhibit a differential effect among cell types, we define a 234 
baseline cell type against which changes in expression levels are measured. We set 𝛽E* to be 0 235 
for all gene-g.  236 

The cell type-specific effects (𝛽E*, … , 𝛽E-) in (3.1) are shared in constructing the mean 237 
structure of gene expression in bulk tissues. It has been observed in the literature that gene 238 
expression of a certain cell type changed when it went through cell sorting (Richardson, et al., 239 
2015; van den Brink, et al., 2017). To accommodate the effect of the changes induced by cell 240 
separation, we adopt the joint modeling of 𝛽E*, … , 𝛽E- for pure cell samples and bulk samples. 241 

For the model of the bulk tissue, it is a linear combination of K nonmalignant cell-242 
specific expression profiles and malignant cell gene expression. The expression of gene-g from 243 
the j-th bulk tissue (j = 1, …, M) is denoted by 𝑧El.  The mean of 𝑧El, called 𝜐El, can be modeled 244 
as the weighted sum of nonmalignant cell-specific effects {𝛽EF}  and one malignant cell-245 
specific effect 𝛽En through a linear regression, given by  246 
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(3.2) 
o𝑧Ela𝛼E, b𝛽EFc, b𝑤lFc, 𝜎p,E^ f	~	𝑁(𝜐El, 𝜎p,E^ ), 

𝜐El = 𝛼E + ∑ 𝑤lF𝛽EF-
Fj* + 𝑤ln𝛽En.  

The weights, 𝑤lF, are the proportions of expression attributable to normal cell type k in the j-247 
th tumor, and the weight, 𝑤ln, represents tumor purity, which is the percentage of malignant 248 
cells in a tumor tissue. Notably, BayICE can be used to explore not only tumors but also other 249 
noncancerous tissues. For noncancerous tissues, 𝑤ln  can refer to the proportion of one 250 
unknown cell type that is uncharacterized by the reference set. In our model, a natural constraint 251 
for these cell proportions is that the sum of weights across cell types should be one (i.e., 252 
∑ 𝑤lF-
Fj* + 𝑤ln = 1 for each j). Furthermore, to characterize the gene expression pattern in 253 

malignant cells, we introduce a tumor-specific parameter 𝛽En to represent the effect size of 254 
gene-g in cancer.  In a real application, multiple unknown cell types or cancerous cell types 255 
might be present in a bulk tissue. In this case, BayICE treats these uncharacterized cell types 256 
as a whole, and 𝑤ln represents the proportion of unknown class in a bulk tissue.   257 

3.3 Novel gene selection using the SSVS approach 258 

Identifying signature genes that are expressed in a particular cell type is essential to the success 259 
of expression deconvolution. Although a preselected signature gene set could be easily applied 260 
to data analysis, the application of external signature genes could lose data-dependent 261 
information for deconvolution. Thus, we incorporate the stochastic search variable selection 262 
(SSVS) approach into our Bayesian deconvolution model for integrating expression 263 
deconvolution with novel signature gene selection. The SSVS approach, introduced by George 264 
and McCulloch (1993), specifies a spike-and-slab mixture prior, which uses data to extract the 265 
potential features of the true model by inferring posterior probability. The spike component, 266 
which concentrates its mass at values close to zero, shrinks small effects to zero, whereas the 267 
slab component spreads its mass over a wide range of possible values for the effect size.  268 

The proposed prior structure of BayICE on effect size exhibits a bimodal distribution 269 
on the variance of the coefficients that result in a spike-and-slab type prior on the effects 270 
themselves (Ishwaran, et al., 2010; Ishwaran and Rao, 2005). For each effect size 𝛽EF, the prior 271 
structure is given by  272 

(3.3) 

(𝛽EF|𝜓EF^ , 𝜋F)	~	𝑁o0, 𝜓EF^ 𝑡EFf, 

(𝑡EF|𝜋F)	~	𝜋F𝐼*o𝑡EFf + (1 − 𝜋F)𝐼uo𝑡EFf 

(𝜓EF^ |𝑎n, 𝑏n)	~	𝐼𝑛𝑣Γ(𝑎n, 𝑏n), 

(𝜋F|𝑐n, 𝑑n)	~	𝐵𝑒𝑡𝑎(𝑐n, 𝑑n). 

where 𝐼uo𝑡EFf is a mass function that is 1 at 𝑡EF =c and 0 everywhere else. We set the value c 273 
as a small positive number in this study, such as c = 10}~, and thus the random variable 𝑡EF is 274 
1 with probability 𝜋F  and close to zero with probability 1 − 𝜋F . When the g-th gene is 275 
differentially expressed between the k-th cell type and the other types, 𝛽EF  is more likely 276 
generated from the slab component and 𝑡EF equals one. By contrast, 𝑡EF = 𝑐 indicates that the 277 
g-th gene is irrelevant to cell types and its effect size is from the spike component. The 278 
hypervariance 𝜓EF^  is sampled from an inverse gamma with two given hyperparameters, 𝑎n and 279 
𝑏n . Following Ishwaran and Rao (2005), 𝑎n  and 𝑏n  are set as 5 and 50, respectively. The 280 
proportion of genes differentially expressed in cell type k is controlled by 𝜋F, and we assume 281 
that 𝜋F follows a beta distribution with 𝑐n = 0.1 and 𝑑n = 0.1.  282 
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  To borrow variance information across samples, we modify the variance structure of 283 
effect size 𝛽EF in (3.3) by considering the gene-specific variance 𝜎p,E^  of mixture samples in 284 
(3.2) and the modified prior structure for 𝛽EF is given by 285 

(3.4) 

(𝛽EF|𝜓EF^ , 𝑡EF, 𝜎p,E^ )	~	𝑁o0, 𝜓EF^ 𝑡EF𝜎p,E^ f, 

(𝑡EF|𝜋F)	~	𝜋F𝐼*o𝑡EFf + (1 − 𝜋F)𝐼uo𝑡EFf 

(𝜓EF^ |𝑎n, 𝑏n)	~	𝐼𝑛𝑣Γ(𝑎n, 𝑏n), 

(𝜋F|𝑐n, 𝑑n)	~	𝐵𝑒𝑡𝑎(𝑐n, 𝑑n). 

The role of the gene-specific variance 𝜎p,E^  that appears in (3.4) can be intuitively interpreted 286 
as the baseline in the feature selection procedure. The modified prior structure considers the 287 
trade-off between the value of effect size and gene-specific variance to facilitate the 288 
establishment of feature selection. 289 

3.4 Bayesian false discovery rate 290 

In frequentist approaches to the test multiplicity problem, controlling the false discovery rate 291 
(FDR) has been widely applied to more adequately control genome-wide false positives. 292 
Whittemore in 2007 introduced a Bayesian FDR associated analogously with the frequentist 293 
FDR (Whittemore, 2007) as follows: 294 

(3.5) ∅F(𝑟) =
∑ 𝑃EF(𝐻n|𝑌, 𝑍)𝐷EF(𝑟)>
Ej*

∑ 𝐷EF(𝑟)>
Ej*

 

where 𝑃EF(𝐻n|𝑌, 𝑍) is the posterior probability that gene-g is not associated with cell type k 295 
(H0) given observation (Y, Z), and 𝐷EF(𝑟) is the rejection rule defined by I(𝑃EF(𝐻n|𝑌, 𝑍) < 𝑟). 296 
The tuning parameter r can be adjusted to control the Bayesian FDR at a certain α level. In the 297 
following simulations and applications, the Bayesian FDR is used to address the multiplicity 298 
problem. 299 

3.5 Inflation factor  300 

In a Bayesian framework, the influence of priors on posterior always vanishes as the 301 
sample size increases. This phenomenon limits Bayesian variable selection because the 302 
mechanism of such selection requires an effective prior setting. To overcome this disadvantage, 303 
Ishwaran and Rao (2005) proposed a rescaling approach to enable estimation invariant to the 304 
sample size by setting the prior as a function of the sample size. They applied data rescaling to 305 
the gene selection framework for multi-group microarray data. Furthermore, to achieve 306 
invariance to sample size, Ishwaran and Rao performed a sample size-related transformation 307 
of gene expression through multiplication by the global inflation factor 308 

�(total	sample	size)/	(estimate	of	total	variance). 309 

Multiplication by this global inflation factor has been shown to ensure that the prior has a 310 
nonvanishing effect. Hence, following the concept of data transformation, we rescale the 311 
observations in our reference set and bulk tissue set as follows: 312 

(3.6) 𝑦ER∗ = �
���
����

𝑦ER and  𝑧El∗ = �
���
����

𝑧El, 

where 𝑆�E^ =
*

 }¡
∑ ∑ (𝑦ER𝑥RF − 𝑦¢EF)^FR  is an unbiased estimator of 𝜎E^  calculated from the 313 

reference set. Although we assume that the variance 𝜎E^ of reference data {𝑦ER} is shared with 314 
tissue data {𝑧El}, the calculation of an unbiased estimator using both {𝑦ER} and {𝑧El} data is a 315 
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difficult task because of the convolution structure in {𝑧El}. Note that the multiplier in (3.6) is 316 
a gene-specific inflation factor rather than the abovementioned global inflation factor since the 317 
inflation factor is composed of the total sample size and a gene-related variance. Therefore, the 318 
use of gene-specific factors can simultaneously achieve sample size invariance and gene-scale 319 
consistency. 320 

  After rescaling, the corresponding distributions for the transformed data {𝑦ER∗ } and 321 
{𝑧El∗ } are modified as follows: 322 

(3.7) 
o𝑦ER∗ a𝛼E, b𝛽EFc, {𝑥RF}, 𝜂E^f	~	𝑁(𝜇ER, (𝑁 +𝑀)𝜂E^), 

o𝑧El∗ a𝛼E, b𝛽EFc, b𝑤lFc, 𝜏E^f	~	𝑁(𝜐El, (𝑁 +𝑀)𝜏E^), 

The new variances of the transformed data are adjusted as sample size-related parameters, and 323 
this adjustment can be interpreted as a penalization shrinkage effect of the posterior mean. 324 
After the adjustment with inflation factors, the variances of 𝑦ER∗  and 𝑧El∗  are asymptotically 325 
equal to N+M. For the purpose of variable selection, we introduce two further parameters 𝜂E^  326 
and 𝜏E^ for variances in (3.7) to keep the flexibility of modeling. 327 

3.6 MCMC sampling procedure 328 

Next, based on the transformed data {𝑦ER∗ }  and {𝑧El∗ } , we complete the structure of the 329 
hierarchical Bayesian model in BayICE and then establish a sampling procedure to achieve 330 
signature gene selection and cell component inference. Following the abovementioned 331 
specification, the BayICE model is given by 332 

(3.8) 

o𝑦ER∗ a𝛼E, b𝛽EFc, {𝑥RF}, 𝜂E^f	~	𝑁o𝜇ER, (𝑁 +𝑀)𝜂E^f, 𝑖 = 1,… , N, g = 1,… , G, 

𝜇ER = 𝛼E + ∑ 𝑥RF𝛽EF-
Fj* , 

o𝑧El∗ a𝛼E, b𝛽EFc, b𝑤lFc, 𝜏E^f	~	𝑁o𝜐El, (𝑁 +𝑀)𝜏E^f, 𝑗 = 1,… ,M, g = 1,… , G, 

𝜐El = 𝛼E + ∑ 𝑤lF𝛽EF-
Fj* + 𝑤ln𝛽En, 

𝒘l = o𝑤l*, … ,𝑤l-, 𝑤lnf	~	𝐷𝑖𝑟𝑖𝑐ℎ𝑙𝑒𝑡(𝛿, … , 𝛿), 𝑗 = 1,… ,M, 

o𝛼E, 𝜂E^, 𝜏E^f	~	𝑓o𝜂E^, 𝜏E^f ∝
1
𝜂E^
×
1
𝜏E^

 

o𝛽EFa𝜓EF^ , 𝑡EF, 𝜏E^f~	𝑁o0, 𝜓EF^ 𝑡EF𝜏E^f, g = 1,… , G, k = 1,… , K, 

	(𝑡EF|𝜋F)	~	𝜋F𝐼*o𝑡EFf + (1 − 𝜋F)𝐼uo𝑡EFf 

(𝜓EF^ |𝑎n, 𝑏n)	~	𝐼𝑛𝑣Γ(𝑎n, 𝑏n), 

(𝜋F|𝑐n, 𝑑n)	~	𝐵𝑒𝑡𝑎(𝑐n, 𝑑n), 

where hyperparameters are specified as 𝑎n = 5, 𝑏n = 50, 𝑐n = 1, 𝑑n = 1, and	𝛿 = 1  in this 333 
study.  334 

 Subsequently, based on the hierarchical prior setting, we apply Gibbs sampling and the 335 
Metropolis–Hastings approach to simulate the posterior value from  336 

(	𝜶, 𝜷, 𝑻, 𝝅,𝑾, 𝜼, 𝝉^, 𝝍	|	𝒀∗, 𝒁∗, 𝐗) 337 

where 𝜶 = b𝛼Ec , 𝜷 = b𝛽EFc , 𝑻 = b𝑡EFc , 𝝅 = {𝜋F} , 𝑾 = b𝒘lc , 𝜼 = {𝜂E^} , 𝝉^ = b𝜏E^c , 𝝍 =338 
b𝜓EF^ c, 𝒀∗ = b𝑦ER∗ c, 𝒁∗ = b𝑧El∗ c, and 𝐗 = {𝑥RF}. The Gibbs sampler in BayICE works are shown 339 
in the supplementary file. After a number of iterations, we specify the burn-in period and the 340 
thinning interval to obtain the posterior distribution of the parameters and then perform an 341 
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analysis using the posterior mean or posterior median. In BayICE, the default length of burn-342 
in is 0.6 times the number of iterations, and the thinning interval has a length of 3 iterations. 343 
The convergence property is discussed in the supplementary materials. 344 

4 Simulation Study  345 

This section presents simulation results based on synthetic datasets to benchmark the 346 
performance of BayICE. We consider two types of data: array-based data, which is generated 347 
by a normal simulator, and sequencing-based data, which can be produced by a multinomial 348 
simulator or negative binomial simulator. We mainly use the multinomial simulator to 349 
demonstrate the estimation of cellular proportions, detection of signature genes, and the ability 350 
to recover the expression profile of unknown or malignant cells. Furthermore, we apply three 351 
different simulators to demonstrate the robustness of BayICE, and the results of the robustness 352 
study are shown in the supplementary file. 353 

4.1 Multinomial simulator settings 354 

We first perform a sequencing-based simulation using a multinomial simulator for expression 355 
deconvolution. Thus, we consider a scenario in which five distinct cell subpopulations are 356 
present in a tissue, and one cell type is absent from our reference set. This simulation includes 357 
5000 genes, with 300 genes designed as cell type-related genes. These 300 genes are divided 358 
randomly into five disjoint groups, and the genes assigned to a particular group are associated 359 
with one cell type. For each cell type in a reference set, we have 20 replicates; hence, the 360 
reference set includes 80 samples. In the reference set, an 80 × 4 matrix of binary variables 361 
X = {𝑥RF} is used to record the cell type of samples. Furthermore, in the bulk dataset, we 362 
simulate the expression data of 90 mixed samples with different cell proportions. The 363 
simulation procedure is described as follows. 364 

To account for the fact that the expression level varies across genes, we simulated data 365 
according to a set of real data from purified samples. We collected 19 RNA-seq samples of 366 
normal lung tissues from the Gene Expression Omnibus database with accession number 367 
GSE81089 (Mezheyeuski, et al., 2018), and then took the average gene expression across 19 368 
samples to obtain the baseline 𝑎EÀRÁ  of the g-th gene. Among 17,775 genes, we randomly 369 
picked 5000 genes for our simulation study. Based on each gene-specific expression level, we 370 
define the cell-specific effect as follows: 371 

𝑏EÀRÁ = (NES)u�ÃÄÅ(−NES)*}u�ÃÄÅ𝑎EÀRÁ, 372 

where 𝑐EÀRÁ is a binary variable, which is 1 for upregulated status and 0 for downregulated 373 
status, and NES is the normalized effect size set as one of the numbers {0.1, 0.2, … , 0.6}. The 374 
number {𝑐EÀRÁ} is randomly generated with a probability of 0.5 for 0 and 1. We further sample 375 
a series of values from Uniform(0.9,1.1), called {𝑒RÀRÁ}, as sample-specific effects because of 376 
the sample heterogeneity. Finally, we generate cellular proportions {𝑤l*ÀRÁ, … ,𝑤l-ÀRÁ, 𝑤lnÀRÁ}. To 377 
explore the effect of unknown cell content on the model performance, we assign a fixed number 378 
to 𝑤lnÀRÁ , and the remaining components {𝑤l*ÀRÁ, … ,𝑤l-ÀRÁ} are generated from the Dirichlet 379 
distribution with parameters (1,…,1). Because of the sum-to-one constraint on cellular 380 
proportions, b𝑤l*ÀRÁ, … ,𝑤l-ÀRÁ, 𝑤lnÀRÁc should be normalized by dividing their sum.  381 

The mean expression structure is determined for both purified and mixed samples 382 
according to the abovementioned parameter settings. Notably, the use of a multinomial model 383 
in our simulation is to simulate the sequence alignment procedure that maps the reads against 384 
the reference sequence. The number of trials in the multinomial model is related to the total 385 
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reads, and we set it as 5 × 10Ê; in other words, the average read depth is designed as 1000. The 386 
probability of the multinomial model controls the expression levels across genes, and therefore, 387 
we use the relative mean expression as the probability value. The complete sampling procedure 388 
details in the supplementary file.  389 

4.2 Assessing the inference of deconvolution  390 

To assess the performance of BayICE deconvolution, we include two semi-reference-based 391 
approaches for comparison: EPIC and non-negative least-squares (NNLS). NNLS is a general 392 
approach for solving the constrained least-squares problem where the coefficients are not 393 
allowed to become negative. We modify the NNLS approach by restricting the sum of 394 
coefficients to less than one for incomplete reference data deconvolution. We first examine the 395 
cellular proportion estimations obtained using EPIC, NNLS, and BayICE. Notably, EPIC and 396 
NNLS both require an external step to identify signature genes before deconvolution. In this 397 
case, we applied the marker genes identified by BayICE into EPIC and NNLS for a fair 398 
comparison. 399 

 According to the simulation setting, we generate 90 bulk samples per simulation in 400 
which the unknown cell proportions vary from 0.1 to 0.9. A large unknown cell proportion 401 
value indicates that the corresponding tissue is highly heterogeneous, such as in tumors; by 402 
contrast, a small proportion simulates the microenvironment of normal tissues in which most 403 
of the cell types can be purified. Additionally, we evaluate the performance of each model 404 
under different normalized effect sizes of marker genes. Moreover, BayICE can recover the 405 
underlying expression profile of the unknown cell type using the posterior mean. Because EPIC 406 
and NNLS cannot infer unknown expression profiles, we directly compare the estimation of 407 
uncharacterized cell profiles with the true mean expression. The results are shown in Figures 408 
2 and 3.   409 

 We first evaluate the estimation of gene expression profiles for the unknown cell type 410 
and gene identification from BayICE in Figure 2. Figure 2(A) is a scatter plot between the true 411 
expression of the unknown cell type and the estimated expression. The results reveal the 412 
correlation between the real and estimated values to be greater than 0.98, which implies that 413 
BayICE can recover uncharacterized cell expression when one cell type is absent from the 414 
reference set. In Figure 2(B), we adopt the receiver operating characteristic (ROC) curve to 415 
quantify the results of gene identification under different normalized effect sizes which 416 
represent the strength of cell type-specific activity in marker genes. The performance in terms 417 
of area under the curve (AUC) is significantly improved with the increase of the effect size, 418 
and more specifically, the AUC exceeds 0.94 when the effect is larger than 0.2. Subsequently, 419 
we apply root-mean-square error (RMSE) to quantify the accuracy of cell proportion estimation 420 
from BayICE, EPIC, and NNLS. Figure 3(A) illustrates the changes in RMSE of all estimates 421 
with the increase of normalized effect size under the settings of unknown cell proportion = 0.1, 422 
0.5, and 0.9. In Figure 3(B), we fix the normalized effect size at 0.1, 0.3, and 0.6 and then 423 
evaluate those approaches across different proportions of unknown cells. As a result, it is clear 424 
that the performance of all approaches decreases when the unknown cell content increases or 425 
the effect size decreases. The abovementioned phenomenon reflects that these gene expression 426 
deconvolution approaches are less stable in their inference for tissues with highly 427 
uncharacterized content or weak cell type-specific signal. However, the simulation shows that 428 
the effects of high unknown cell content and low effect size on BayICE estimation are less 429 
severe, and overall, BayICE outperforms the other methods.  430 
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Figure 2. Results of unknown profile estimation and marker gene selection. 
(A) Scatter plot of gene expression of the unknown cell type between the truth and estimation. (B) ROC curves to evaluate 
the gene selection of BayICE under different normalized effect sizes. 

 431 

 
Figure 3. Deconvolution results of cell proportion estimation. 
Root-mean-square error (RMSE) between the true and estimated cellular proportions under (A) different effect sizes or (B) 
different proportions of unknown cells. Ten random sets were generated for each condition, and the RMSE in a set was 
calculated with five pairs of numbers. The medians of the 10 random sets were connected as the line in the figure. 

4.3 Evaluating gene detection accuracy  432 

The spike-and-slab prior in our model provides a natural consequence of gene selection. In 433 
contrast, the existing models require an external tool to select differentially expressed genes 434 
before deconvolution, and DESeq and edgeR are two popular gene selection tools adopted by 435 
the deconvolution models. To evaluate the accuracy of gene detection, we compare with 436 
DESeq and edgeR. It is worth noted that the genes specifically expressed in the unknown cell 437 
type cannot be identified using DESeq and edgeR, and hence the unknown cell type-related 438 
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genes are excluded in the evaluation.  According to the simulation setting, each gene set is 439 
differentially expressed in one cell type. For simplicity, the effect size of marker genes is fixed 440 
at 0.2, and the cell proportions are randomly decided across samples. In this simulation study, 441 
we also assume some genes express inconsistently between purified cells and the same cell 442 
type in bulk samples. For each cell type, we randomly select 100 genes from the gene pool to 443 
be inconsistent genes, and disturbed the expression of these inconsistent genes by multiplying 444 
an inconsistency level.  The values of inconsistency level are 0.1, 0.2, 0.3, 0.4, and 0.5, and the 445 
mean of the disturbed gene expression is the original mean in Section 4.1 multiplied by 0.9, 446 
0.8, 0.7, 0.6, or 0.5.  447 

In this partial comparison, we evaluate the accuracy of identifying genes related to the 448 
four cell types present in the reference. AUC is used to assess the gene detection under different 449 
levels of inconsistency, and the results are shown in Figure 4. For the low inconsistency level, 450 
the AUCs among three methods are close, and it implies that BayICE is comparable to the 451 
other approaches designed explicitly for gene selection. In the case of the considerable 452 
inconsistency in gene expression, the AUC of BayICE outperforms DESeqs2 and edgeR, and 453 
it shows that BayICE succeeds in borrowing information from mixed bulk samples for gene 454 
detection. Consequently, this partial comparison reveals that BayICE can efficiently recover 455 
the findings of the two-step approaches when cell activity causes the difference in gene 456 
expression between pure cells and tumors.  457 

 
Figure 4. AUC for gene identification. 
Comparison of the AUC performance on gene identification. Measuring the performances of BayIC, DESeq2, and edgeR 
at identifying marker genes as measured by the Area Under the ROC Curve (AUC). 

5 Validation in real data with true proportions 458 

In this section, we consider two microarray mixture experiments for validation. They can be 459 
downloaded from the Gene Expression Omnibus database using the accession numbers 460 
GSE19830 and GSE11058 (Abbas, et al., 2009; Shen-Orr, et al., 2010). The samples from 461 
GSE19830 were mixed with rat brain, liver, and lung tissue derived from the same animal in 462 
different proportions. The samples in GSE11058 were mixed with four immune cell lines, 463 
Jurkat, IM-9, Raji, and THP-1 at various proportions. To validate the performance in the case 464 
of the incomplete reference set, we masked one cell type from the reference set and treated the 465 
excluded type as the unknown cell component in tissues. Although EPIC is designed for RNA-466 
seq data, the core concept of EPIC modeling is constrained least-squares optimization, and it 467 
can be widely applied to various types of data. Hence, we also performed comparisons with 468 
EPIC and NNLS on the abovementioned two real datasets.  469 
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Several microarray studies have confirmed that deconvolution on raw-scale data rather 470 
than on log-scale data can accurately reflect the underlying cellular components. The raw scale 471 
of the data was adopted in this validation study. The signature gene selection for the methods 472 
we compared in the microarray followed Hunt et al. (Hunt, et al., 2018), using a t-test between 473 
one cell type and all other cell types for each gene, and we selected the top 200 differentially 474 
expressed genes associated with each cell type. 475 

Figures 5 and 6 compare the true and estimated cell proportions using different methods 476 
under the two evaluated datasets. For example, the scatter plot on the first row of Figure 5 477 
represents the deconvolution results when the expression profile of Jurkat cells was unknown 478 
to all the methods. According to the characteristics of the semi-reference-based approach, the 479 
proportions of Jurkat cells in mixed samples can be recovered through estimating unknown 480 
cell proportions. Notably, the constrained models, NNLS and EPIC, tend to assign a very small 481 
proportion to the unknown cell component. This phenomenon was observed in the 482 
supplementary material of robustness and can be attributed to the loss of the shift-invariant 483 
property, which causes the shrinkage of unknown cell proportion estimates.  484 

 Furthermore, we used the RMSE and Pearson correlation to assess the performance. 485 
RMSE is a measure of accuracy, and the average RMSE of BayICE is 0.093, significantly 486 
lower than those of NNLS (0.170) and EPIC (0.176). Similarly, the measurement of correlation 487 
value is used to monitor the relative order of cellular proportion estimates, and BayICE also 488 
outperformed NNLS and EPIC in terms of the relative size (BayICE = 0.82, NNLS = 0.59, and 489 
EPIC = 0.58). Apparently, BayICE possesses the advantage of incomplete data deconvolution. 490 
Furthermore, the difficulty of deconvolution increases when the abundance of the unknown 491 
cell increases. For instance, in Figure 6, the content of liver cells exceeds 50% of the mixed 492 
samples on average, and the deconvolution approaches perform relatively worse when liver 493 
cells are excluded from the reference set. The aforementioned observation is consistent with 494 
our simulation results.  495 

 
Figure 5. Validation by GSE11058. 
Scatter plots comparing estimated cell proportions between the true and estimated proportions from the results of 
GSE11058. Each column represents a particular method of deconvolution. The row name indicates the cell type that was 
masked from the reference set and referred to as the unknown cell type. Each of the 12 mixed sample results in four 
estimates of weights and thus 4 points in each plot. The root-mean-square error and correlation between the ground truth 
and estimation are also provided in the upper-left corner of each plot. 
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 496 

 
Figure 6. Validation by GSE19830. 
Scatter plots comparing the true and estimated proportions from the results of GSE19830. Each column represents a 
particular method of deconvolution. The row name indicates the cell type that was masked from the reference set and 
referred to as the unknown cell type. Each of the 9 mixed sample results in three estimates of weights and thus three points 
in each plot. The root-mean-square error and correlation between the ground truth and estimation are also provided in the 
upper-left corner of each plot. 

6 Application to Non-Small Cell Lung Cancer  497 

To demonstrate an application of BayICE to a biological problem, we consider RNA-seq data 498 
of lung tissues from patients with non-small cell lung cancer (NSCLC). Because tumor-499 
infiltrating lymphocytes play a critical role in cancer treatment, exploring the changes in 500 
components of immune cells across tumors is of interest. Thus, we consider 199 patients with 501 
NSCLC obtained from GSE81089, and apply BayICE to estimate the cellular components of 502 
the tumor-infiltrating lymphocytes in each tumor sample (Mezheyeuski, et al., 2018). To 503 
construct the reference set, we collect RNA-seq samples of B cells, T cells, granulocytes, and 504 
monocytes of blood tissues from GSE51984 (Pabst, et al., 2016). In addition to immune cell 505 
types, we include normal lung tissues in the reference set, and the expression profiles of 19 506 
normal lung tissues from GSE81089 are used to infer the contents of normal lung cells in 507 
tumors. Because the immune cells are also present in normal lung tissues, we first apply 508 
BayICE to normal lung samples to extract the purified gene expression of lung cells and 509 
estimate the immune cell components in normal samples. Additionally, we randomly divided 510 
19 normal samples into two sets: ten samples are used for extracting purified expression of 511 
lung cells in Section 6.1, and nine samples are analyzed along with tumors for validation in 512 
Section 6.2. As a result, we used the complete reference set consisting of immune cell profiles 513 
and purified lung cell profiles to recover the cellular proportions of each NSCLC sample. 514 

6.1 Deconvolution of normal lung tissues 515 

Figure 7 illustrates the estimated cellular proportions of ten normal lung samples based on the 516 
B cells, T cells, granulocytes, and monocytes. The results of normal lung tissue deconvolution 517 
reveal that monocytes are more prevalent than the other immune cells in lung tissues. 518 
Monocytes typically circulate through the blood for 1–3 days before migrating into tissues, 519 
where they become macrophages or dendritic cells. In lungs, monocytes migrate from the 520 
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bloodstream into the pulmonary alveolus and are specifically called alveolar macrophages, 521 
which play a critical role in homeostasis, host defense, response to foreign substances, and 522 
tissue remodeling (Kopf, et al., 2015).  523 

 In addition to the immune cell types collected in the reference set, BayICE could extract 524 
the component of one uncharacterized cell type present in tissues. In this case, the unknown 525 
cell type was presumably dominated by normal lung cells, and we calculated the mean 526 
expression profile of the unknown cell type using the posterior mean. The next step was to 527 
integrate the immune cell profiles with the estimated profile of normal lung cells to construct 528 
a new reference set for tumor sample deconvolution. 529 

 
Figure 7. Cell proportion estimation of normal lung tissues. 
Plot showing estimated proportions of different cell types from 10 normal lung tissues. The rightmost box represents the 
estimated unknown component from BayICE, and we refer to this component as normal lung cells. 

6.2 Deconvolution of tumors 530 

In this step, we investigated the 199 NSCLC samples and nine healthy samples according to 531 
the new reference set. We applied BayICE to these 208 samples and estimated the fractions of 532 
normal lung cells, B cells, T cells, granulocytes, and monocytes, as well as malignant cells. 533 
Following the mechanism of normal tissue deconvolution, the malignant cell fractions were 534 
defined as the unknown cell proportions in tumor deconvolution. To more effectively 535 
understand the change in cellular components during tumor progression, we considered the 536 
classification of a malignant tumor (TNM) staging system, which is a standard for classifying 537 
the extent of cancer spread. Figure 8 is a boxplot of estimated cell proportions under different 538 
TNM stages.  539 

 Two crucial observations were made from the deconvolution results. First, the 540 
estimated cell proportions were more consistent between healthy samples than between 541 
patients with NSCLC. For example, the interquartile ranges of estimated lung cell proportions 542 
in normal tissues and tumors were 0.047 and 0.137, respectively. A three-fold difference of 543 
dispersion between healthy samples and patients revealed that the homeostatic balance between 544 
cells in the lung is disturbed when tissues are cancerous. The high fluctuation of cellular 545 
components between patients with NSCLC can directly explain the inter-tumor heterogeneity, 546 
which leads to the different attributes of different tumors despite the same diagnoses. Second, 547 
our study showed that the number of immune cells in the tissue microenvironment increases 548 
from normal stage to cancerous stage, which is in agreement with past studies (Banat, et al., 549 
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2015; Li, et al., 2016; Ruffini, et al., 2009; Seo, et al., 2018). In particular, (Banat, et al., 2015) 550 
comprehensively assessed the number of immune cells in lung cancer by directly counting cells 551 
with cell-specific biomarkers and observed an increased number of immune cells in lung cancer 552 
tissues compared with healthy donor lungs. In 2018, Seo et al. (2018) applied two approaches, 553 
ESTIMATE and TIMER, to infer the cellular components in NSCLC (Li, et al., 2016; Seo, et 554 
al., 2018; Yoshihara, et al., 2013). Their results showed a high abundance of dendritic cells 555 
(derived from monocytes), which coincides with our observation of estimated monocyte 556 
proportions. 557 

 
Figure 8. Box plot of cell proportion estimation. 
Orange boxes refer to the results of the nine normal lung samples, and other boxes are results from 199 patients with non-
small cell lung cancer. The tumor samples can be grouped into six stages and the sample number included for each stage is 
indicated in the parentheses. For samples of the same tumor stage, the estimated proportions of any specific cell type are 
summarized as one boxplot and the boxplots for the same cell type are plotted side-by-side.  

7 Discussion and Conclusion  558 

In this study, we developed a novel deconvolution model, BayICE, to infer the cellular 559 
components of bulk tissues. BayICE is a semi-reference-based approach that aims to explore 560 
cell populations characterized by an external reference set of purified samples and 561 
simultaneously investigate the content of uncharacterized cells present in bulk tissues. 562 
However, in contrast to constrained models, BayICE takes advantage of a hierarchical 563 
Bayesian framework to not only estimate the unknown cell proportion but also recover its gene 564 
expression profile. Furthermore, BayICE maintains the shift-invariant property, which 565 
guarantees the accuracy of cell proportion estimation.  566 

Other than the above-mentioned merits, there are two major contributions of this study. 567 
First, BayICE integrates gene expression deconvolution and gene selection in the same model. 568 
Most of the current deconvolution approaches require pre-analysis of an additional dataset to 569 
identify signature genes for deconvolution, and the external gene selection might not be 570 
consistent to the target dataset. Thus, BayICE incorporates SSVS, a Bayesian variable selection 571 
approach, to implement internal gene selection. Second, BayICE adopts shared parameters 572 
between the pure cells and tumor samples for cell-specific effect. It has been studied that the 573 
cell-to-environment interaction causes some of the genes to be expressed inconsistently after 574 
cell sorting. We have shown that the joint modeling of both pure cells and tumors in BayICE 575 
is more resistant to the problem of inconsistent genes. 576 
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 To evaluate the model’s performance, we first conducted an analysis under several 577 
simulation scenarios to investigate cell proportion estimation, gene identification, and the 578 
robustness of the model. For proportion estimation, we compared two other semi-reference-579 
based approaches, EPIC and NNLS, with BayICE under different unknown cell contents. The 580 
results revealed that BayICE significantly outperformed the other methods. We further 581 
provided a partial comparison of gene identification with the well-known gene selection 582 
approaches, DESeq and edgeR. We found that BayICE can decompose bulk data extremely 583 
well and identify cell type-related genes. Moreover, a simulation study using three different 584 
simulators revealed that BayICE is more robust with respect to data types. In addition to 585 
simulation data, we further applied two real datasets with underlying true cell proportions for 586 
validation. The validation of incomplete data deconvolution was consistent with our simulation 587 
results, in which BayICE exhibited high accuracy in cell proportion estimation. 588 

 Our real data application presented an example using the data of 199 patients with 589 
NSCLC. We first applied BayICE to healthy lung samples to investigate the cellular 590 
components under a normal condition and extract the relatively purified expression profile of 591 
lung cells. The deconvolution of normal tissues succeeded in capturing the primary component 592 
of immune cells. Next, we formed a new reference set consisting of the immune cell profiles 593 
and estimated normal lung cell profiles to analyze the patients with NSCLC. From the analysis, 594 
we observed inter-tumor heterogeneity in NSCLC according to the high variation in cell 595 
proportions across tumors. In addition, when comparing immune cell proportions between 596 
normal and NSCLC samples, the increased immune cell content in tumors revealed that the 597 
immune system was highly activated in the cancerous microenvironment. The inference of 598 
NSCLC deconvolution coincides with not only the analytic deconvolution results from other 599 
studies but also the observations from an immunohistochemical experiment. 600 

 BayICE has thoroughly addressed technical problems of deconvolution to investigate 601 
cellular components, but one issue relating to cell activity remains. In real applications, the 602 
activities of cell-to-cell communication and cell-to-environment interaction cause some of the 603 
genes to be expressed inconsistently between reference and bulk tissue samples. This 604 
phenomenon increases the difficulty of selecting marker genes, and an inappropriate gene set 605 
limits the ability to explore tissue environments. Although the joint modeling technique of 606 
BayICE can adjust the biased gene expression induced by cell sorting, integrating the biological 607 
information of cell activity with deconvolution is believed to be more efficient in estimating 608 
cell proportions of bulk tissues. Single-cell RNA-seq has emerged as a powerful new set of 609 
technologies for characterizing cell interaction, and the primary goal of our future studies is 610 
incorporating single-cell RNA data to modify the prior structure with cell interaction. This 611 
extension will generate new insights into the deconvolution framework.  612 

Moreover, we will also investigate the unknown cell proportions estimated by BayICE. 613 
The proportion of the unknown cell class can be further decomposed if the unknown class is 614 
comprised of multiple cancerous cell types. Instead of estimating immune cell proportions, the 615 
study of tumor clonal evolution focuses on exploring the contents of different tumor cell types 616 
to understand tumor progression. Hence, after BayICE dissects the part belonged to tumor, we 617 
can further decompose tumor cells to evaluate the size of tumor clones.  618 

 All of the work in this study was implemented on R, and the R package, BayICE, is 619 
publicly available for deconvolution analysis (https://github.com/AshTai/BayICE).  620 
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