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24

25 Abstract

26 Managing and mitigating agricultural pest resistance to control technologies is a complex 

27 system in which biological and social factors spatially and dynamically interact. We build a 

28 spatially explicit population genetics model for the evolution of pest resistance to Bt toxins 

29 by the insect Ostrinia nubilalis and an agent-based model of Bt maize adoption, emphasizing 

30 the importance of social factors. The farmer adoption model for Bt maize weighed both 

31 individual profitability and adoption decisions of neighboring farmers to mimic the effects 

32 of economic incentives and social networks. The model was calibrated using aggregate 

33 adoption data for Wisconsin. Simulation experiments with the model provide insights into 

34 mitigation policies for a high-dose Bt maize technology once resistance emerges in a pest 

35 population. Mitigation policies evaluated include increased refuge requirements for all farms, 

36 localized bans on Bt maize where resistance develops, areawide applications of insecticidal 

37 sprays on resistant populations, and taxes on Bt maize seed for all farms. Evaluation metrics 

38 include resistance allele frequency, pest population density, farmer adoption of Bt maize and 

39 economic surplus generated by Bt maize. 

40

41 Based on economic surplus, the results suggest that refuge requirements should remain the 

42 foundation of resistance management and mitigation for high-dose Bt maize technologies. 

43 For shorter planning horizons (< 16 years), resistance mitigation strategies did not improve 

44 economic surplus from Bt maize. Social networks accelerated the emergence of resistance, 

45 making the optimal policy intervention for longer planning horizons rely more on increased 
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46 refuge requirements and less on insecticidal sprays targeting resistant pest populations. 

47 Overall, the importance social factors play in these results implies more social science 

48 research, including agent-based models, would contribute to developing better policies to 

49 address the evolution of pest resistance.

50

51 Author Summary

52 Bt maize has been a valuable technology used by farmers for more than two decades to 

53 control pest damage to crops. Using Bt maize, however, leads to pest populations evolving 

54 resistance to Bt toxins so that benefits decrease. As a result, managing and mitigating 

55 resistance has been a serious concern for policymakers balancing the current and future 

56 benefits for many stakeholders. While the evolution of insect resistance is a biological 

57 phenomenon, human activities also play key roles in agricultural landscapes with active pest 

58 management, yet social science research on resistance management and mitigation policies 

59 has generally lagged biological research. Hence, to evaluate policy options for resistance 

60 mitigation for this complex biological and social system, we build an agent-based model that 

61 integrates key social factors into insect ecology in a spatially and dynamically explicit way. 

62 We demonstrate the significance of social factors, particularly social networks. Based on an 

63 economic surplus criterion, our results suggest that refuge requirements should remain the 

64 foundation of resistance mitigation policies for high-dose Bt technologies, rather than 

65 localized bans, areawide insecticide sprays, or taxes on Bt maize seed.

66
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67 Introduction

68 Globally, farmers have planted more than 2.3 billion hectares of genetically engineered crops 

69 since their commercial introduction in 1996, including a new maximum of 190 million 

70 hectares in 2017 [1]. Focusing on maize (Zea mays), the world’s leading grain crop with 

71 annual production exceeding a billion metric tons, the United States, Brazil and Argentina 

72 together produced almost half of the world’s supply in 2017 [2]. Bt maize – maize genetically 

73 engineered to produce Bacillus thuringiensis (Bt) toxins in plant tissues for insect control – 

74 accounted for more than 80% of the maize planted in each of these three nations in 2017 [1]. 

75 After more than two decades of commercial use of genetically engineered crops, insect 

76 resistance to Bt toxins continues to be a major concern around the world [3]. A high-

77 dose/refuge resistance management strategy continues to be the primary policy in multiple 

78 nations for delaying resistance to these Bt toxins [4–6]. Nevertheless, field-evolved 

79 resistance to some of these Bt toxins has been documented for populations of western corn 

80 rootworm (Diabrotica virgifera virgifera) in the United States and various lepidopteran 

81 species in multiple locations [7].

82

83 The commercialization of Bt crops has generated a variety of research, including 

84 bioeconomic models that integrate population genetics and pest ecology with farmer 

85 economic returns [8–10]. Though these models contributed to the development of insect 

86 resistance management policies, little other work exists on the role of social factors in the 

87 evolution of insect resistance to commercialized toxins. Insect resistance to these toxins 

88 evolves in response to human management activities, activities driven by a variety of social 

89 factors that include not only economic considerations, but also sociological, psychological, 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 12, 2019. ; https://doi.org/10.1101/732776doi: bioRxiv preprint 

https://doi.org/10.1101/732776
http://creativecommons.org/licenses/by/4.0/


5

90 cultural, historical and political considerations [11]. As a result, examining genetic and 

91 ecological processes in isolation from these broader social factors driving human behavior 

92 potentially misses key determinants of the evolution of insect resistance. Hence, a broader, 

93 complex systems model of insect resistance management that incorporates both biological 

94 and social processes can potentially provide new insights [12].

95

96 In the United States (US), the Environmental Protection Agency (EPA) required companies 

97 commercializing Bt crops to develop resistance mitigation plans as a condition for product 

98 registration [13]. Once a resistant population has been officially documented according to 

99 the EPA process, these resistance mitigation plans generally restrict the availability of the 

100 technology (Bt seed) in and around the region where the resistant population emerges. 

101 Though resistant insect populations and field failures in the US have been documented in the 

102 scientific literature [7,14], the official EPA criteria have yet to trigger implementation of 

103 these mitigation plans for any pest. Instead, the EPA has required a more generalized 

104 response by Bt crop registrants [15]. Interestingly, little research exists that evaluates and 

105 compares the mitigation plans that have been filed or other mitigation policies, particularly 

106 from an economic perspective. Given the length of time that Bt crops have been in use in the 

107 US and elsewhere, insect resistance is likely to become an increasing problem, making more 

108 research on mitigation responses and strategies especially timely.

109

110 This paper has two goals. First, we develop an agent-based model of insect resistance to Bt 

111 maize that incorporates farmer adoption behavior. We then use the model to compare 

112 different mitigation policies in order to inform policymakers and other stakeholders of the 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 12, 2019. ; https://doi.org/10.1101/732776doi: bioRxiv preprint 

https://doi.org/10.1101/732776
http://creativecommons.org/licenses/by/4.0/


6

113 types of programs that are likely to generate the largest economic benefits for society. 

114 Second, focusing specifically on the impact of social networks on farmer adoption behavior, 

115 we show that social factors can also play a key role in the evolution of insect resistance to Bt 

116 toxins in agricultural cropping systems.  

117

118 Agent-based modeling has become more widely-used for studying complex systems and 

119 emergent behavior, including socio-ecological modeling of insect resistance management 

120 [16,17]. In agent-based models, an observed macroscopic phenomenon emerges as a result 

121 of interaction among heterogeneous agents in a dynamically evolving environment. Agents 

122 typically follow simple decision rules and influence each other either directly or indirectly 

123 through the environment, which itself evolves according to its own rules and agent actions. 

124 Because the processes being explicitly modeled are complex, researchers use computer 

125 simulations to examine outcomes over a wide range of parameter values. In short, agent-

126 based models are laboratory experiments conducted in silico [17,18]. Despite the remaining 

127 challenges to overcome, such as ad hoc assumptions and lack of relevant data for validation 

128 [19–21], agent-based modeling can provide insights into complex systems that would be 

129 difficult to study otherwise. Given the merits, applications of agent-based models to pest and 

130 resistance management in agricultural systems have been developed [22–24].

131

132 Although agent-based models can integrate many factors, they still face the fundamental 

133 tradeoff in modeling: fidelity to the phenomenon being examined and abstraction for ease of 

134 analysis and interpretation [17]. This paper focuses on deriving new insights into policy 

135 options for mitigating insect resistance once it has evolved, and emphasizes the significance 
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136 of social factors for questions relevant to policymakers [22]. As a result, social components 

137 are richer than existing models that use individual-based modeling to incorporate social 

138 factors [25], while the biological aspects of the model are simpler than other models focusing 

139 on biological processes [26–28].

140

141 We extend existing work [25] on insect resistance management for Bt crops by more fully 

142 leveraging the power of agent-based modeling. First, we explicitly model the local influence 

143 that neighbors have on farmers through social networks as they make decisions regarding 

144 adoption of Bt maize, creating a hybrid decision process that mixes both individual profit 

145 considerations and a desire to mimic neighbors. Second, we allow the additional cost of 

146 planting Bt seed to vary over time, because this cost influences adoption decisions and 

147 companies have reduced the cost of single-toxin Bt seed to encourage farmers to continue to 

148 plant Bt maize in the face of pest population suppression [29]. With this pricing flexibility, 

149 we calibrate the farmer decision model using historical data that reflects these decreasing 

150 prices, and then can examine the impact of a tax on Bt seed as a policy option for mitigating 

151 resistance.

152

153 For this analysis, we parameterize a bioeconomic model of maize production with the option 

154 to use high-dose Bt maize to manage European corn borer (Ostrinia nubilalis). We calibrate 

155 the Bt maize adoption model using aggregate historical adoption data for farmers in the state 

156 of Wisconsin. Through the calibration process, we emphasize the significant role that a social 

157 factor – the local influence of social networks on Bt maize adoption [30] – can play in the 

158 evolution of insect resistance. Using the calibrated model, we then simulate a number of 
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159 mitigation policies implemented either over the entire landscape or around the areas where 

160 resistance develops. In particular, we consider combinations of an increased refuge 

161 requirement and a tax on the sale of Bt seed for all farms, and a ban on the use of Bt maize 

162 and areawide use of an additional insecticide to control the pest in the area around where 

163 resistance emerges. To assess the relative performance of each policy, we use economic 

164 surplus as a monetary measure of the social value generated by the use of Bt maize and 

165 conduct sensitivity analysis of key parameters to explore the robustness of model results.

166

167 Results

168 Baseline Results

169 Running the calibrated model 1,000 times with different random seeds and averaging over 

170 these iterations gave baseline results for the insect population, the Bt seed adoption rate, 

171 and the resistance (R) allele frequency at the landscape level. In the model, periods 0 to 10 

172 were an initialization phase, periods 11 to 32 were a calibration phase corresponding to 

173 years 1996 to 2017, and periods 33 to 60 were projections (see Model). The baseline model 

174 captured the aggregate Bt adoption rate of Wisconsin farmers by calibrating two parameters 

175 that determined Bt maize adoption – farmer responsiveness to profit incentives and the 

176 farmer tendency to mimic the adoption decisions of neighbors due to social network effects. 

177 The calibrated model reproduced the previously noted oscillation of the European corn 

178 borer population before the advent of Bt maize [31], and the documented suppression of the 

179 pest population due to the widespread farmer adoption of Bt maize in Wisconsin and other 

180 states [32]. As expected, the calibrated model projected a surge in the R-allele frequency as 
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181 the insect resistance developed, resulting in the eventual recovery of the pest population. 

182 Baseline results suggested that period 33 was the beginning of a significant increase in the 

183 R-allele frequency. In period 33, the R-allele frequency was 4.1%, but rose quickly, exceeding 

184 10% in period 36, 20% in period 38, 30% in period 39, 40% in period 40 and 50% in period 

185 41. The pest population did not recover until later, with the average density not exceeding 

186 0.5 larvae per plant until period 50.

187

188 Policy Experiments

189 We simulated policies to mitigate resistance to the Bt toxin once it emerged. Refuge 

190 requirements have been the lynch pin of resistance management, and so the mitigation 

191 policies we examined began with increasing refuge requirements. In addition, building on 

192 the model’s capacity for capturing the complexity from the interaction of biological and 

193 social factors, we experimented with combinations of three other types of mitigation 

194 policies: localized bans on the use of Bt maize around areas where resistance emerged, 

195 areawide applications of other insecticides to control the pest around areas where resistance 

196 emerged, and a uniform tax on the sale of Bt seed for all farmers buying it. Refuge policies 

197 and localized bans directly regulate the use of Bt maize, areawide spray policies directly 

198 manage resistant pest populations, and the Bt seed tax adjusts farmer incentives to use Bt 

199 maize. The simulation of resistance mitigation policies was a combination of different 

200 assumptions for these four policy parameters: the refuge requirement, localized bans, 

201 areawide management, and a Bt seed tax.

202
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203 The simulated landscape consisted of a grid of fields, with 44% of fields assigned randomly 

204 to maize production initially and the remainder to non-maize. Fields remained in their initial 

205 allocation throughout a simulation, but were reassigned for each simulation. During a 

206 simulation, insect resistance was declared when the R-allele frequency exceeded 50% in the 

207 pest population in a field after Bt toxin mortality and before pest dispersal occurred. The 

208 50% threshold was chosen because at this level the landscape-average pest population 

209 began to increase (Fig 1), implying that higher population densities were occurring in some 

210 fields due to resistance. For resistance mitigation, the refuge requirement was increased 

211 from the baseline of 5% to either 20% or 50% for all farmers on the landscape planting Bt 

212 maize, with complete compliance achieved using seed mixtures. The localized ban was 

213 imposed only on farms within a radius r of any field where resistance was declared, again 

214 with complete compliance assumed. We considered two radii: once and twice the distance 

215 of adult dispersal from the natal field (r = 1×dispersal, r = 2×dispersal). Conceptually, this 

216 ban was a 100% refuge requirement applied locally and dynamically imposed and lifted 

217 according to the situation in the previous period. For areawide management, a non-Bt 

218 insecticide was applied in the period when resistance was declared, either covering only the 

219 field of resistance or all maize fields in a neighborhood around the field within the distance 

220 of adult dispersal (r = 0×dispersal, r = 1×dispersal). We assumed 100% compliance with the 

221 insecticide application for all fields within this area and that the application reduced the pest 

222 population by 80% after Bt toxin mortality and increased farmer costs by $33.51 ha-1. This 

223 cost was based on published survey averages for active ingredient and application costs and 

224 adjusted for inflation to 2017 equivalents [33,34]. Finally, the tax policy increased the Bt 

225 seed cost by 25% or 50% for all farmers on the landscape for all periods after resistance was 
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226 declared. In brief, each policy parameter had the following three levels: refuge requirement 

227 (5%, 20%, 50%), localized ban (none, r = 1×dispersal, r = 2×dispersal), areawide spray (none, 

228 r = 0×dispersal, r = 1×dispersal), and Bt seed tax (0%, 25%, 50%). Three levels for each of 

229 these four policy parameters created 34 = 81 mitigation policy combinations to simulate.

230

231 Fig 1. Baseline results from the calibrated model. It contains the insect population 

232 density (Insect), Bt seed adoption rate (Bt), and the resistance allele frequency (R) (results 

233 for each period are averages over 1,000 simulations).

234

235 The calibrated model was run 1,000 times for each policy and, just as for the baseline, the 

236 following three results variables were averaged over all 1,000 iterations for each period: 

237 aggregate farmer adoption of Bt maize, population-level R-allele frequency, and average pest 

238 population density for the landscape. In addition, as a performance metric to compare each 

239 policy, we approximated economic surplus each period as the sum of farmer profits and the 

240 technology fees collected by the seed company, divided by the total number of farmers.

241

242 Costs for spraying insecticides were subtracted from farmer profits for those making 

243 applications, while collected taxes were subtracted from farmer profits, but added to the 

244 economic surplus (i.e., the tax was a surplus transfer, not a surplus loss). To simplify the 

245 analysis, we did not discount future surpluses. Each policy scenario began after the 

246 calibration phase (i.e., at period 33), and the cumulative surplus was evaluated for each 

247 length of planning horizon ranging from 1 to 25 years (i.e., periods 33 to 57).

248
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249 To build intuition about the nature of each policy treatment (i.e. refuge, tax, spray, and ban), 

250 we first report results for each policy individually (not combinations of policies) by plotting 

251 the dynamics for Bt adoption, the R-allele frequency, and the pest population density (Fig 2–

252 Fig 4). In Fig 2 (Bt adoption), results for the ban policy (Ban 1x) are plotted with a separate 

253 vertical axis due to its qualitatively different and much stronger effect than for the other 

254 policies. Also, results for the spray policy with r = 1×dispersal (Spray 1x) and the ban policy 

255 with r = 2×dispersal (Ban 2x) are omitted as they were very similar to those with smaller 

256 radii. In total, Fig 2 plots the Bt adoption rate against the planning horizon for the following 

257 policies: baseline (Baseline), 20% refuge (20% Refuge), 50% refuge (50% Refuge), 25% seed 

258 tax (25% Tax), 50% seed tax (50% Tax), areawide spray in the field with resistance (Spray 0x) 

259 and a localized ban on Bt seed within one pest dispersal radius of the field with resistance 

260 (Ban 1x). Consistent with Fig 1, the baseline policy showed a continuing increase in Bt maize 

261 adoption from planning horizon year 0 (period 32 in Fig 1), with a peak of almost 86.5% in 

262 planning horizon year 9 (period 41 in Fig 1). All policies showed this same general trend 

263 (with one exception), but with a lower adoption peak occurring sooner for the seed tax 

264 policies, a higher adoption peak occurring later for the increased refuge policies (especially 

265 for 50% refuge), and a slightly higher and later peak occurring for the areawide spray 

266 policies. The one exception were localized bans the sale of Bt seed, for which implementation 

267 caused a rapid decline in the use of Bt maize, with almost complete dis-adoption by the end 

268 of the simulation in horizon period 25.

269

270 Fig 2. Bt adoption rate under single policies plotted against the planning horizon. The 

271 results for each period are averages over 1,000 simulations.
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272

273 In Fig 3 (R-allele frequency), results for both tax policies are omitted as they were almost 

274 identical to the results for the baseline, suggesting low policy efficacy. This result was 

275 surprising because Bt adoption differs noticeably for these policies (Fig 2). All mitigation 

276 policies plotted in Fig 3 slowed the development of resistance compared to the baseline. The 

277 most effective mitigation policies were the 50% refuge for all farms (50% Refuge) and a 

278 localized ban on and around fields with resistance (Ban 1x), both of which kept the R-allele 

279 frequency below 20% for more than 20 years. By horizon period 25, however, the 50% 

280 refuge policy showed a rapid increase in the R-allele frequency, suggesting its failure, while 

281 the ban policy kept the frequency below 20%, suggesting that it was the most effective policy 

282 for mitigating resistance over the long-run (>25 years). The 20% refuge for all farms (20% 

283 Refuge) effectively mitigated the resistance for about 10 years, and then the R-allele 

284 frequency began a rapid increase, reaching the baseline level by horizon period 25. The spray 

285 policies (Spray 0x) were not particularly effective for mitigating resistance, showing a steady 

286 increase in the R-allele frequency, though slower than for the baseline and tax policies.

287

288 Fig 3. R-allele frequency under single policies plotted against the planning horizon. 

289 The results for each period are averages over 1,000 simulations.

290

291 In Fig 4 (pest population density), results for both tax policies are again omitted as they were 

292 almost identical to results for the baseline. The areawide spray policy (Spray 0x) kept the 

293 pest population density low over all 25 years, even with a radius = 0, due to the efficacy of 

294 the insecticide spray. The baseline with no intervention to mitigate resistance kept the pest 
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295 population density low for about 15 years, and then the population increased and began to 

296 oscillate as expected. Surprisingly, the refuge policies showed distinctly different patterns 

297 over the 25 years. The 20% refuge policy (20% Refuge) kept the pest population low for about 

298 20 years (about 5 years longer than the baseline), while the 50% refuge (50% Refuge) showed 

299 a long slowly increasing pest population density over all 25 years, exceeding the baseline in 

300 year 17 and the 20% refuge policy in year 23. Interestingly, the ban policy (Ban 1x) only kept 

301 the pest population low for about 10 years (about 5 years longer than the baseline).

302

303 Fig 4. Insect population density under simple policies plotted against the planning 

304 horizon. The results for each period are averages over 1,000 simulations.

305

306 These results showed the tradeoffs inherent in the mitigation of resistance. For example, the 

307 50% refuge and ban policies were both the most effective at reducing the frequency of 

308 resistance alleles (Fig 3), but came at the cost of reduced adoption of Bt maize (Fig 2) and 

309 higher average pest populations (Fig 4), both implying lower benefits. Hence, we used 

310 economic surplus as a measure that integrates across costs and benefits in order to compare 

311 mitigation policies and to develop recommendations.

312

313 Fig 5 plots average annual economic surplus against the planning horizon, again omitting 

314 results for the tax policies as they were almost identical to baseline results. Each point on the 

315 curves in Fig 5 is an annualized average of the accumulated surplus over the corresponding 

316 planning horizon, i.e., the sum of landscape surplus over the planning horizon, divided by the 

317 number of years in the planning horizon and the maize planted area. As seen in Fig 5, the 
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318 baseline (5% refuge, no localized ban, no areawide spray, no Bt seed tax) generated the 

319 greatest average annual surplus for all planning horizons up to 15 years. This result occurred 

320 because the surplus measure was cumulative, and the baseline policy accumulated more 

321 surplus during the early years than the other policies. However, for planning horizons of 16 

322 or more years, the optimal mitigation policy increased the refuge requirement from 5% to 

323 20% for all farms, but did not impose a localized ban, an areawide spray, or Bt seed tax. The 

324 areawide spray was suboptimal due to the additional costs incurred by farmers, while the 

325 ban policy was sub-optimal due to the loss of Bt maize benefits for farmers and the lost 

326 revenue for the seed company. Interestingly, the 50% refuge policy generated the lowest 

327 economic surplus – though it was one of the most effective mitigation policies, its cost in 

328 terms of lost benefits to farmers was too high. Recall that results for the two omitted tax 

329 policies (25% Tax, 50% Tax) were almost identical to the baseline.

330

331 Fig 5. Average annual surplus for different mitigation policies plotted against the 

332 planning horizon.

333

334 Because the results in Fig 5 did not include combinations of mitigation policies, Table 1 

335 summarizes results over the 81 policy combinations evaluated. Three combinations 

336 emerged as optimal for some length of planning horizon. For a planning horizon of 1 to 15 

337 years, the baseline policy (5% refuge, no localized ban, no areawide spray, no Bt seed tax) 

338 continued to be optimal even as resistance increased. For a planning horizon of 16 to 22 

339 years, the optimal policy increased the refuge requirement from 5% to 20%, but did not 

340 impose a localized ban, an areawide spray, or Bt seed tax. For a planning horizon of 23 to 25 
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341 years, technically adding the 50% tax to the 20% refuge requirement was optimal, but the 

342 increase in economic surplus was trivial (<0.05%). Therefore, our economic surplus 

343 criterion suggested that the optimal resistance mitigation policy was no intervention if a 

344 shorter (≤15 years) planning horizon was used and, if a longer (≥16 years) planning horizon 

345 was used, increasing the required refuge to 20% for all farmers when resistance emerged. 

346 Because mitigation policies that increased the required refuge decreased current benefits to 

347 achieve increased future benefits, discounting implies that the 20% and 50% refuge policies 

348 would have generated less surplus than plotted in Fig 5. Calculations showed that, with a 

349 13% or higher discount rate, the no-intervention baseline remained the optimal policy for 

350 all planning horizons less than or equal to 25 years.

351 Table 1. Optimal policy combination by length of optimization period

Length of 

Optimization Period

Refuge 

Requirement

Localized

Ban

Areawide 

Spray Bt Seed Tax

1-15 5% None None 0%

16-22 20% None None 0%

23-25 20% None None 50%

352

353

354 We also investigated the distribution of surplus shares under three resistance mitigation 

355 policies: the baseline (with a 5% refuge), a 20% refuge for all farmers planting Bt maize, and 

356 both a 20% refuge and a 50% Bt seed tax for all farmers planting Bt maize. Recall that 

357 economic surplus was the sum of farmer profit, the technology fee collected by the company 

358 and tax revenue and that adding the Bt seed tax as a mitigation policy had little impact on 
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359 surplus with a 20% refuge requirement. For the baseline, farmers and the companies roughly 

360 divided the surplus evenly as yield gains and technology fees (Fig S1). Increasing the refuge 

361 requirement from the baseline of 5% to 20% to mitigate resistance increased the company 

362 share of surplus by about 5 to 10 percentage points, with the farmer share falling to about 

363 40% (Fig S1). Adding a 50% Bt seed tax on top of the 20% refuge requirement to mitigate 

364 resistance, the tax burden was borne more by the companies, with their share declining by 

365 about 15 percentage points to 45% of the surplus, while farmers received about 35% of the 

366 surplus and tax revenue accounts for about 20% of the surplus.

367

368 Role of Social Networks

369 To highlight the difference created by incorporating the effects of social networks, Fig 6 and 

370 Fig Fig 7 show results with all parameters the same as for the baseline except that the model 

371 was recalibrated with social networks “shut off” by setting the parameter . In this case, 𝑞 = 1

372 farmers made Bt maize adoption decisions based only on their individual expected profitably, 

373 giving no weight to their neighbors’ decisions. In terms of Bt maize adoption, without the 

374 effect of social networks, the farmer adoption rate grew faster first, but then slowed and 

375 eventually declined from period 43 onward (Fig 6). This result was explained by the lack of 

376 social network effects. Without them, profitable adoption by early adopters was not slowed 

377 by neighboring non-adopters. Similarly, as the technology became less effective due to 

378 resistance, profit-motivated dis-adoption of Bt maize was not slowed by neighbors’ inertia. 

379 As a consequence of the lower usage of Bt maize, the R-allele frequency reached key levels 

380 later than for the baseline. Specifically, the R-allele frequency did not exceed 10% until 

381 period 42, 20% until period 45, 30% until period 46, 40% until period 47, and 50% until 
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382 period 48, or about 7 years later than for the baseline. Hence, not including the effects of 

383 social networks on farmer adoption of Bt maize slowed the estimated evolution of resistance 

384 by about 7 years.

385

386 Fig 6. Results from the calibrated model without social network effects. It contains the 

387 insect population density (Insect), Bt seed adoption rate (Bt), and the resistance allele 

388 frequency (R) for the calibrated model without social network effects. The results for each 

389 period are averages over 1,000 simulations.

390

391 Fig 7. Average annual surplus for different mitigation policies. Each is plotted against 

392 the planning horizon for the calibrated model without social network effects.

393

394 Fig 7 plots average annual economic surplus against the planning horizon with the effect of 

395 social networks on adoption “shut off.” Again, results for the tax policies were omitted as 

396 they were almost identical to baseline results. Compared to Fig 5, which incorporated the 

397 effects of social networks on adoption, Fig 7 shows that all mitigation policies generated 

398 essentially the same surplus for the first 6 or 7 years. Because mitigation policies were not 

399 implemented until the R-allele frequency exceeded a 50% threshold, the slower projected 

400 evolution of resistance without social networks effects delayed policy implementation, so 

401 that all policies were initially equivalent.

402

403 Based on Fig 7, the optimal policy depended on the planning horizon and varied from Fig 5. 

404 The baseline again generated the greatest average annual surplus for all planning horizons 
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405 up to 17 years (about the same as in Fig 5). Again, the 20% refuge for all farmers was the 

406 optimal mitigation policy for longer planning horizons, but only for the narrow range from 

407 18 to 20 years. Furthermore, the difference between the baseline (with 5% refuge) and the 

408 20% refuge mitigation policy was much smaller than in Fig 5. However, just as in Fig 5, the 

409 50% refuge policy generated among the lowest amounts of economic surplus. Interestingly, 

410 for planning horizons exceeding 20 years, the areawide spray policy became optimal, which 

411 did not occur in Fig 5. This result occurred because without social network effects, farmers 

412 more quickly dis-adopted Bt maize when resistance developed, thus avoiding the higher 

413 costs of the spray policy and lower Bt maize benefits, and so they generated higher surplus. 

414 Again, the ban policy generated the lowest economic surplus over many planning horizons, 

415 even with the more rapid dis-adoption of Bt maize when resistance developed.

416

417 Because the results in Fig 7 did not include combinations of mitigation policies, Table 2 

418 summarizes results over the 81 policy combinations evaluated, just as Table 1 did for Fig 5. 

419 Without social network effects, farmer adoption of Bt maize only responded to individual 

420 profitability, which created some shifts in the optimal mitigation policy. Three policy 

421 combinations again emerged as optimal for some length of planning horizon. For a planning 

422 horizon of 1 to 17 years, the baseline policy continued to be optimal even as resistance 

423 increased, and for a planning horizon of 18 to 19 years, the optimal policy increased the 

424 refuge requirement from 5% to 20%. These were the same policies as when the effects of 

425 social networks were included, but the planning horizons changed to be slightly longer for 

426 the baseline policy and shorter for the 20% refuge policy (Table 1). The greatest change 

427 without social network effects was for the longest planning horizons. For a 20- to 25-year 
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428 planning horizon, the optimal resistance mitigation policy was to reduce the refuge 

429 requirement back to 5% for all farmers, to add a 50% Bt maize seed tax on all farmers, and 

430 to make areawide insecticide applications in areas where resistance emerged. With social 

431 network effects and longer planning horizons of 22 to 25 years, the refuge remained at 20% 

432 and only the 50% Bt seed tax was added (Table 1). The greater responsiveness of farmers to 

433 individual profitability without social network effects made more active mitigation policies 

434 optimal, but only for longer planning horizons. However, the effect was not large, as again 

435 calculations showed that with a 9% or higher discount rate, the no-intervention baseline 

436 remained the optimal policy for all planning horizons less than 25 years.

437 Table 2. Optimal policy combination by length of optimization period without social 

438 network effects

Length of 

Optimization Period

Refuge 

Requirement

Localized

Ban

Areawide 

Spray Bt Seed Tax

1-17 5% None None 0%

18-19 20% None None 0%

20-25 5% None r = 0 50%

439

440 Discussion

441 Research on insect resistance mitigation strategies and empirical applications of agent-

442 based models to pest and resistance management are limited [22–24]. Hence, as part of this 

443 paper’s first goal, we demonstrated the capacity of an agent-based model to produce results 

444 of use by policymakers and other stakeholders, specifically examining resistance mitigation 
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445 policies for Bt maize and the European corn borer and the role of social networks in Bt maize 

446 adoption. We evaluated 81 resistance mitigation policies that combined three levels of four 

447 policies (non-Bt maize refuge, areawide non-Bt insecticide sprays, localized Bt maize bans, 

448 Bt maize seed tax) implemented when and/or where resistance emerged. These 

449 combinations showed variation in projected dynamics for Bt maize adoption, resistance 

450 allele frequency in the pest population, and the average pest population density. 

451

452 From a biological perspective focused on keeping the frequency of resistance alleles in the 

453 pest population low, the most effective mitigation policies were a 50% refuge requirement 

454 for all farms when resistance emerged on the landscape and a localized ban on planting Bt 

455 maize within one radius of adult dispersal of farms with resistance. Bringing a broader 

456 economic perspective that balanced costs and benefits, we used economic surplus (the sum 

457 of farmer profit from maize production, company technology fees from selling Bt maize seed, 

458 and any tax revenue collected) to identify recommended mitigation policies. Surprisingly, 

459 results showed that when resistance emerged, the optimal response in terms of maximizing 

460 economic surplus was making no policy changes, but continuing the current resistance 

461 management policy of 5% non-Bt refuge, with no requirement of insecticidal sprays or 

462 localized Bt maize bans in and around areas of resistance, or Bt seed taxes when resistance 

463 emerges. For planning horizons beyond 16 years it became optimal to increase refuge 

464 requirements to 20% for all farmers when resistance developed. Furthermore, for planning 

465 horizons beyond 22 years it became optimal to add a 50% tax on all Bt maize seed sold when 

466 resistance developed in addition to the 20% refuge requirement. These results show the 
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467 impacts that incorporating broader social science perspectives into resistance management 

468 or mitigation can have on recommended policy responses. 

469

470 Several caveats apply to these results, as models cannot avoid the fundamental tradeoff 

471 between fidelity to the phenomenon examined and abstraction for ease of analysis and 

472 interpretation. Baseline results assume one single-toxin Bt maize producing a high dose of 

473 the toxin. However, multiple single-toxin Bt maize hybrids with different modes of action 

474 have been commercialized in the US, and single-toxin Bt maize hybrids have been phased out 

475 as companies have shifted to Bt maize hybrids with multiple, pyramided traits [35]. 

476 Furthermore, refuge requirements in the Midwest have changed over time for the different 

477 Bt maize hybrids. Initial requirements were for 20% non-Bt maize as structured refuge, but 

478 more recently, some Bt maize hybrids with pyramided traits have a 5% or 10% refuge 

479 requirement implemented as a seed mix and/or structured refuge [35,36]. Our model does 

480 not capture the use of multiple toxins entering the market at different times, overlapping use 

481 of hybrids with multiple, pyramided traits at the same time by neighboring farmers, or 

482 changes in refuge requirements and methods of implementation. In addition, our model 

483 assumes that Bt maize delivers a high dose of the toxin, which is accurate for European corn 

484 borer, but not for other lepidopteran pests such as corn earworm (Helicoverpa zea) or Bt 

485 maize for corn rootworm [14,37,38]. Furthermore, the model focuses on a single pest, 

486 though farmers simultaneously manage multiple pests with varying levels of control by 

487 different Bt maize hybrids [39]. In addition, the model assumes a single selection by the Bt 

488 toxin each year, while many target pests, including the European corn borer, have multiple 

489 generations per season with more than one selection event by Bt maize [39]. Also, economic 
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490 surplus is not a complete measure of social benefits [40]. For example, as used here, it does 

491 not include environmental impacts of insect management, even though a significant benefit 

492 of Bt maize is that farmers use it as a substitute for conventional insecticides [41–43]. 

493

494 With these caveats, the policy experiments reported here suggest that refuge requirements 

495 remain the foundation of resistance mitigation for high-dose technologies, just as they are 

496 for resistance management. Based on maximizing social surplus, the optimal policy to 

497 mitigate resistance when it emerges was to maintain the current refuge requirement or to 

498 modestly increase it for all farmers, rather than to implement localized bans on the sale of Bt 

499 maize in areas where resistance develops or to make areawide applications of insecticidal 

500 sprays on resistant populations. Based on the economic surplus criterion, the benefits of 

501 lower resistance allele frequency for these policies did not adequately compensate for the 

502 added costs or loss of the benefits from using Bt maize. Taxes on the sale of Bt maize seed 

503 did not cause surplus to differ substantially from the baseline policy, suggesting a possible 

504 mechanism to fund various programs to improve Bt maize use, such as development of 

505 educational materials and outreach or research activities. However, the results showed that 

506 companies bear a large share of these costs, suggesting that it would be more efficient for 

507 companies to directly fund these programs based on seed sales rather than creating a seed 

508 tax program to fund them. Also, as a caveat, this model did not incorporate the Bt technology 

509 market. As a result, for example, the model did not include market competition among 

510 companies via differentiated traits, including different regulatory requirements, as, for 

511 example, companies would lobby to not have their hybrids included in tax schemes if 

512 resistance developed to a competitor’s Bt maize. 
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513

514 As a secondary goal of this paper, we demonstrated that social factors can play key roles in 

515 the development and management of insect resistance, focusing on the effect that social 

516 networks can play on farmer adoption of Bt maize. As modeled here, adoption depended in 

517 part on the average adoption of a farmer’s neighbors, not just each farmer’s expected 

518 profitability, as a way to capture the effects of information exchange, integration of multiple 

519 farmers’ experiences with pests and adoption, shared local institutions and markets, and 

520 similar factors. Modeling the mechanisms for this social network and the specific 

521 connections among individual farmers is beyond the scope of this analysis. Relative to a 

522 model in which farmers responded only to their individual profitability, social networks as 

523 modeled here impeded farmer responsiveness to profitability signals, which slowed the 

524 initial adoption of Bt maize and its dis-adoption as pest populations declined or resistance 

525 developed. Model calibration to observed state-level adoption rates identified model 

526 parameters and reduced differences in initial adoption rates with and without social 

527 networks. However, this calibrated model implied a relatively slower adjustment in Bt maize 

528 use by farmers. As a result, when including social network effects, our model projected that 

529 resistance develops about 7 years earlier than without social network effects and the optimal 

530 mitigation policy more strongly favored use of moderate increases in refuge for all farmers. 

531 Resistance developed earlier because farmers uses Bt maize more intensely since they did 

532 not dis-adopt Bt maize as pest populations declined and resistance developed, even though 

533 the profitability of Bt maize decreased. With social network effects, the optimal resistance 

534 mitigation policy also more strongly favored use of modest increases in refuge because more 

535 farmers continued to use Bt maize and obtain it benefits relative to more costly, but effective, 
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536 policies such as areawide sprays or localized bans. In this example, ignoring social network 

537 effects could contribute to making inappropriate policy recommendations for managing pest 

538 resistance or mitigating it once it develops. 

539

540 The intensity and extent of farmer adoption of Bt maize plays a key role in the management 

541 and mitigation of pest resistance. This agent-based model incorporated the influence of 

542 social factors by having individual farmer adoption respond to expected profitability and the 

543 adoption behavior of neighboring farmers. However, many social factors not addressed by 

544 this model also affect adoption. For example, expected profitability depends not only on all 

545 the market factors driving maize prices, but also technology markets and the pricing 

546 behavior of firms selling Bt maize [29]. Similarly, farmers adopt Bt maize not only for 

547 expected profit, but also to manage income risk [44,45]. Also, social networks for agricultural 

548 management rarely have the simple spatial structure assumed here, but typically have 

549 varying nodes of importance such as key crop consultants, retailers, and extension agents 

550 [30,46]. In addition, social factors affect resistance through more than just adoption of Bt 

551 maize, such as through farmer compliance with resistance management and mitigation 

552 practices and how Bt maize affects broader cropping systems such as crop rotations [10,11]. 

553 Overall, our results demonstrate that social factors can play an important role in resistance 

554 management and mitigation. However, more applied and quantitative social science 

555 research would contribute to developing better policy recommendations for resistance 

556 management and mitigation, and agent-based models can be a part of this contribution.

557
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558 Model

559 Landscape

560 The spatially explicit model used a 30×70 grid space representing the cropland in Wisconsin. 

561 Modeled farmers mimic the Wisconsin crop landscape [47] and plant 44% of the fields to 

562 maize, the host crop for the pest. Fields maintain their initial random assignment to maize 

563 or non-maize production during a simulation, but are reassigned at the start of each new 

564 simulation. During a simulation, maize farmers decide adoption of Bt maize each period. Fig 

565 8 depicts a typical model landscape, in this case with 90% Bt adoption and a resistance allele 

566 frequency of 51% for the total population. A circle (○) represents a farmer who plants 

567 conventional (non-Bt) maize, whereas a black dot (●) represents a farmer who adopts Bt 

568 maize. A light-gray background (◼︎) indicates that the pest population in an individual field 

569 before adult dispersal has a resistance allele frequency of more than 50%, the criterion used 

570 for declaring that a population is resistant [48]. To avoid boundary effects, top fields wrap to 

571 corresponding bottom fields and left-most fields to corresponding right-most fields, creating 

572 a torus, implying that the model space is part of a larger landscape with comparable 

573 dynamics occurring for the pest population and its genetic structure [28].

574

575 Fig 8. Example model landscape. Circle (○) represents a field planted to non-Bt maize, 

576 black dot (●) represents a field planted to Bt maize, and light-gray (◼︎) indicates a field 

577 with a pest population with a resistance allele frequency of more than 50% before adult 

578 dispersal.
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579

580 Pest Population Genetics

581 The pest population-genetics model is parametrized for European corn borer (Ostrinia 

582 nubilalis), a major pest for Midwestern maize and the primary target for initial commercial 

583 releases of Bt maize beginning in 1996 [32]. The insect model uses discrete time steps 

584 corresponding to distinct generations and consistent with the seasonality of many types of 

585 crop production and pest life cycles. O. nubilalis typically has two generations per year in the 

586 major US maize production region, though northern regions may have only one generation 

587 per year and southern regions may have three or more [39]. The model simplifies these 

588 dynamics to one discrete time step per year that aggregates population dynamics and genetic 

589 selection across these generations. Hutchison et al. [32] used a comparable empirical 

590 approach to estimate annual population growth rates for O. nubilalis using annual 

591 observations of second-generation adult population densities in Minnesota and Wisconsin. 

592

593 Historically, the O. nubilalis population in the Midwestern US has oscillated with an 

594 approximately seven year cycle [49] largely due to the entomopathogenic parasite Nosema 

595 pyrausta [31]. Field data for second-generation populations in Wisconsin over 1944-1995 

596 show an average peak and trough for the oscillation of about 1.2 and 0.2 larvae per plant 

597 [31,32]. The population model approximates these dynamics using a lagged logistic growth 

598 model: 

599 𝑁𝑡 + 1 = 𝑔𝑁𝑡(1 ‒
𝑁𝑡 ‒ 1

𝐾 )#(1)
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600 where  is the second-generation larval population (larvae per maize plant),  is the annual 𝑁𝑡 𝑔

601 growth rate and  is the carrying capacity. Using  = 2.15 and  = 1.4 generates a reasonable 𝐾 𝑔 𝐾

602 approximation of historical O. nubilalis population dynamics in Wisconsin, with a similar 

603 range of population minimums and maximums as observed and six or seven years between 

604 peaks.

605

606 The genetics model assumes two alleles, R for resistant and S for susceptible, creating three 

607 genotypes, homozygous resistant RR, homozygous susceptible SS, and heterozygous RS, with 

608 respective Bt toxin larval survival rates of 1.0, 0.0, and 0.18. Each period, after Bt toxin 

609 mortality and density-dependent mortality for larvae, random mating occurs among the 

610 adult population within each field before adult dispersal. Note that, with random mating, RR 

611 and RS genotypes both contribute R alleles, but RS genotypes do so half as often on average, 

612 also contributing S alleles just as often. Let , , and  respectively denote the relative 𝛼𝑡 𝛽𝑡 𝛾𝑡

613 frequencies in period t of RR, SS, and RS genotypes, which by definition sum to 1. Random 

614 mating then implies 1 = 𝛼𝑡 + 1 + 𝛽𝑡 + 1 + 𝛾𝑡 + 1 = (𝛼𝑡 + 𝛽𝑡 + 𝛾𝑡)2 = (𝛼𝑡 + 0.5𝛾𝑡)2 +

615 , so that(𝛽𝑡 + 0.5𝛾𝑡)2 + 2(𝛼𝑡 + 0.5𝛾𝑡)(𝛽𝑡 + 0.5𝛾𝑡) 

616

𝛼𝑡 + 1 = (𝛼𝑡 + 0.5𝛾𝑡)2,

𝛽𝑡 + 1 = (𝛽𝑡 + 0.5𝛾𝑡)2,
𝛾𝑡 + 1 = 2(𝛼𝑡 + 0.5𝛾𝑡)(𝛽𝑡 + 0.5𝛾𝑡).#(2)

617

618 Adults disperse uniformly within a radius r of maize fields (i.e. not onto non-maize fields). 

619 The literature provides a range of observations for dispersal, with dispersal in most cases 

620 taking place within 20km and depending on various factors (season, gender, mating status). 
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621 To capture the effects of dispersal yet remain computationally tractable, the model uses a 

622 dispersal radius of 15km, which corresponds to 3 fields in the model grid space. We assume 

623 that the natal field is always available as a destination, which implies that if no neighboring 

624 fields exist within the dispersal range, adults stay in the same field.

625

626 Farmer Behavior

627 Individual farmers manage each field and decide each period whether to plant Bt or non-Bt 

628 maize. A number of economic and social factors influence farmers’ adoption decisions for Bt 

629 maize [50]. Rather than explicitly enumerating and modeling these multiple factors, agent-

630 based models combine simple behavioral models with suitable random components and let 

631 complex phenomenon emerge [18]. Though expected profitability greatly influences farmer 

632 management decisions in commercial agriculture, their local social networks also 

633 significantly influence their behaviors, not just by providing additional information 

634 regarding the relative profitability of different practices [30,46,51]. Therefore, we model the 

635 Bt adoption process as a hybrid of individual profit maximization and local imitation to 

636 capture the effect of social networks.

637

638 Farmer Profit

639 The profit-based component of farmer behavior uses the following switching function [25]:

640 Pr(𝑆𝑤𝑖𝑡𝑐ℎ 𝐶 𝑡𝑜 𝐴) = {1 ‒ exp [ ‒ 𝜌(𝜋𝐴 ‒ 𝜋𝐶)] if  𝜋𝐴 > 𝜋𝐶
0                                        otherwise  .#(3)

641 Here,  is the profitability of the alternative choice and  is the profitability of the current 𝜋𝐴 𝜋𝐶

642 choice, with both profits calculated using the pest population density for the previous period 
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643 in the field. The function determines the probability that the farmer switches from the 

644 current choice to the alternative ( ), with the probability increasing as the 𝑆𝑤𝑖𝑡𝑐ℎ 𝐶 𝑡𝑜 𝐴

645 alternative becomes relatively more profitable than the current choice. We use a “soft” 

646 probabilistic switching decision to capture the effect of other unobserved individual factors 

647 [39]. The parameter  captures the responsiveness of farmer adoption to profitability 𝜌

648 differences, with a greater  increasing the probability farmers use the more profitable 𝜌

649 alternative. As explained in the Calibration section, we calibrate  against the Bt seed 𝜌

650 adoption data for Wisconsin to derive  = 0.0023. The negative-exponential function implies 𝜌

651 that the switching probability is the farmers’ expected utility gain from switching when the 

652 gain is uncertain, assuming constant absolute risk aversion for the farmer, a commonly used 

653 assumption for empirical analysis [52,53]. 

654

655 Farmer profit for a field ( ) is crop revenue minus cost, where revenue declines as the pest 𝜋

656 population increases and cost varies with the scenario: 

657 𝜋 = 𝑃𝑌(1 ‒ 𝐿𝑜𝑠𝑠(𝑁)) ‒ 𝐶𝑜𝑠𝑡.#(4)

658 Here P is crop price ($ Mg-1), Y is potential or pest-free crop yield (Mg ha-1), Loss is 

659 proportional crop loss, which depends on N, the average pest population density (larvae per 

660 plant), and Cost is the production cost ($ ha-1). To focus on factors other than annual 

661 variability in crop prices and yields, crop price and potential yield are fixed at reported 

662 averages in 2017 for Wisconsin farmers: P = $129.91 ha-1 and Y = 10.92 Mg ha-1 [54]. These 

663 values imply constant potential revenue of $1,418.62 ha-1 across fields and seasons. The 

664 proportion of potential revenue lost due to pest damage depends on the average larval 

665 population density based on an empirical model [44]: .𝐿𝑜𝑠𝑠(𝑁) = 0.1186𝑁0.5146
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666

667 Cost consists of a base cost C ($ ha-1) that does not vary by policy scenario and costs that do:

668 𝐶𝑜𝑠𝑡 = {𝐶 + 𝑇(1 ‒ 𝜃)(1 + 𝜏) + 𝐶𝑠
𝐶 + 𝐶𝑠                                      

    if Bt maize             
if non - Bt maize #(5)

669 Based on US Department of Agriculture crop budgets [55], the base cost C is set to $1,202.51 

670 ha-1, the reported average for 2017 in the region containing Wisconsin for all costs except 

671 opportunity costs for land and operator labor and management. T ($ ha-1) is the additional 

672 seed cost for Bt maize (“technology fee”), which varies over time based on the function 

673 estimated with Wisconsin market data [27]. Specially,  = $17.49 ha-1 from 1996 to 2003, 𝑇

674 and then declines to  = $17.45 ha-1 for 2004, $15.78 ha-1 for 2006, $13.75 ha-1 for 2007, 𝑇

675 $11.41 ha-1 for 2008, $9.18 ha-1 for 2009, $8.29 ha-1 for 2010, $7.82 ha-1 for 2011, $7.39 ha-1 

676 for 2012, and then remains at a base of $7.04 ha-1 for years 2013 and afterward. The 

677 remaining cost parameters vary with the policy scenario:  is the proportion of refuge (non-𝜃

678 Bt maize) planted with Bt maize,  is the tax rate for Bt maize, and  is the cost ($ ha-1) for a 𝜏 𝐶𝑠

679 foliar insecticidal spray as part of areawide management of adults. Each scenario sets these 

680 cost parameters at appropriate values as described in the Policy Experiments section. For 

681 example, a refuge only scenario sets  =  = 0 and sets  at 0.05, 0.20 or 0.50; a ban only 𝜏 𝐶𝑠 𝜃

682 scenario sets  =  = 0 and  (100% refuge) in fields where a ban is in effect; and an 𝜏 𝐶𝑠 𝜃 = 1

683 areawide spray policy sets  = 0 and imposes the cost  for all affected fields. The cost of an 𝜏 𝐶𝑠

684 insecticidal spray  is $33.51 ha-1 based on published survey averages for insecticide active 𝐶𝑠

685 ingredients used in maize and application costs, adjusted for inflation to 2017 equivalents 

686 [33,34].

687
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688 Social Network

689 Network analysis has been widely applied to understand the diffusion of innovations as a 

690 social phenomenon, including in agriculture [56,57]. Neighboring farmers have been shown 

691 to create a local environment that affects individual farmer adoption decisions, both for 

692 hybrid maize seed and for Bt maize [30,58]. To capture this social network effect, the model 

693 assumes each farmer in a field is connected to farmers in neighboring fields, with the size of 

694 the neighborhood determined by a “radius”. Fig 9 shows an example of a size-2 

695 neighborhood for a farmer with nine neighbors who plant maize, either Bt or non-Bt. Those 

696 neighbors themselves have their own neighborhoods, with each connection undirected so 

697 that the local social networks are tightly overlapped. The number of neighbors for a size-n 

698 neighborhood can range from 0 to a maximum of . With no data for social network 4𝑛(𝑛 + 1)

699 sizes for farmers, and considering that  gives up to 48 neighbors (implying a substantial 𝑛 = 3

700 computational burden), the model randomly assigns neighborhood sizes to each farmer for 

701 all seasons using a uniform distribution over .{0, 1, 2}

702

703 Fig 9. Example size-2 neighborhood. It is centered on a farmer (×) with nine neighbors 

704 who plant maize, either Bt maize (●) or non-Bt maize (○).

705

706 Given this local social network, each maize farmer chooses each season to grow either Bt or 

707 non-Bt maize for a field. A parameter q defines the impact of social networks on farmer 

708 adoption decisions. With probability , a farmer focuses solely on individual profits using the 𝑞

709 switching function and with probability  follows the majority choice of his neighbors in 1 ‒ 𝑞
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710 the previous season. For example, if the farmer in Fig 9 follows the majority, he plants Bt 

711 maize next season because his neighborhood has 5 Bt maize adopters and 4 non-adopters. 

712 In the case of a tie, he chooses Bt maize as well. Also, one-third of the farmers randomly have 

713 a size-0 neighborhood ( ) and so, with no social network, always use the switching 𝑛 = 0

714 function. As a result, the probability that a farmer uses the switching function is , 𝑞 +
1
3(1 ‒ 𝑞)

715 while the probability that a farmer has a size-1 neighborhood is , which is also the 
1
3(1 ‒ 𝑞)

716 probability that a farmer has a size-2 neighborhood. Thus, the model has two calibration 

717 parameters for Bt maize adoption:  defining the impact of social networks and  defining 𝑞 𝜌

718 the responsiveness of farmers to profit in the switching function. 

719

720 Lastly, a refuge policy is implemented as a fixed proportion  of non-Bt maize with complete 𝜃

721 compliance by farmers, the so-called “refuge in a bag” [59] in which the company mixes Bt 

722 and non-Bt maize seeds before purchase. In our model, the refuge requirement has two 

723 effects. First, the effective seed cost is the proportion  of the technology fee  at that (1 ‒ 𝜃) 𝑇

724 period. Second, the effective survival rate of each genotype is calculated as the weighted 

725 average: , where s is the original survival rate. That is, with probability , any 𝜃 + (1 ‒ 𝜃)𝑠 𝜃

726 genotype survives due to the non-Bt maize, and with probability , each genotype 1 ‒ 𝜃

727 survives according to its Bt toxin survival rate. Initially, we assume , which is the 𝜃 = 0.05

728 lowest refuge requirement already in place, and later increased refuge levels are examined 

729 as resistance mitigation policies.

730
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731 Running the Model

732 Each model run begins with initialization, including randomly placing farmers across the 

733 landscape. Since corn fields occupy roughly 44% of total farmland in Wisconsin (represented 

734 by 30×70 fields configured as a torus), the total number of maize farmers for a run is 

735 approximately 0.44  30  70 = 924. After initialization, the run proceeds period by period, × ×

736 with a period corresponding to a growing season or year. Before introducing Bt maize into 

737 the model, the insect module runs for 11 periods, which corresponds to the pre-Bt periods 

738 and helps stabilize the model’s biological dynamics. Thereafter, the model simultaneously 

739 updates the pest population density of each field for each period. First, Bt toxin effects reduce 

740 each field’s pest population based on the survival rates of the genotypes established there 

741 the previous season. Second, mating determines the genotype composition of the next 

742 generation based on random mating of the population in the field. Third, reproduction 

743 determines the pest population density based on the lagged logistic growth model. Fourth, 

744 the population locally re-mixes across fields based on the dispersal model. Finally, maize 

745 farmers simultaneously make planting decisions (whether to plant Bt or non-Bt maize) for 

746 the next period based on the farmer behavioral model. In short, during a growing season the 

747 Bt toxin (if present) reduces the natal population in a field, survivors randomly mate and 

748 produce the next generation, which then disperses locally across fields, and then farmers 

749 make maize planting decisions for the following spring.

750

751 Calibration

752 We used aggregate Bt maize adoption data for Wisconsin to calibrate the model. Our 

753 calibration minimized the average of the mean squared error (MSE) of prediction for the 
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754 simulated landscape compared to the observed data. Specifically, the MSE for a run was the 

755 squared deviation of the simulated Bt adoption rate from the annual Wisconsin adoption 

756 data, averaged across all periods with adoption data (t = 11 to 32). Since runs were random, 

757 the MSEs were averaged across 1,000 runs. The two calibration parameters were the 

758 responsiveness of farmers to expected profit differences between alternatives ( ) and the 𝜌

759 probability (q) that farmers focus solely on profit differences to make adoption decisions, 

760 rather than their neighbors’ choices. To avoiding both over-fitting and excessive 

761 computational requirements, a grid search was used with increments of 0.0002 for  and of 𝜌

762 0.1 for . To highlight the significance of local networks, we also calibrated the model by 𝑞

763 fixing  and using only , which “shut off” all social network effects on adoption.𝑞 = 1 𝜌

764

765 Plotting the Wisconsin Bt maize adoption data and both calibration fits shows the superior 

766 fitting of the two-parameter hybrid model relative to the one-parameter model (Fig 10). 

767 Using the same random seeds for both models, the optimum solutions are  and 𝜌 = 0.0036

768  for the hybrid model and  for the single parameter model. These optimal 𝑞 = 0.3 𝜌 = 0.0022

769 values for the two-parameter model imply that 70% of the years, farmers follow the majority 

770 choice of their neighborhood, suggesting that network effects are important for 

771 understanding farmer adoption dynamics for Bt maize.

772

773 Fig 10. Aggregate adoption of Bt maize in Wisconsin and two simulated results. The 

774 simulated results are generated by calibrating one parameter and two-parameters.

775

776
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944 Fig 1. Baseline results from the calibrated model. It contains the insect population 

945 density (Insect), Bt seed adoption rate (Bt), and the resistance allele frequency (R) (results 

946 for each period are averages over 1,000 simulations).
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950 Fig 2. Bt adoption rate under single policies plotted against the planning horizon. The 

951 results for each period are averages over 1,000 simulations.
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955 Fig 3. R-allele frequency under single policies plotted against the planning horizon. 

956 The results for each period are averages over 1,000 simulations.
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959 Fig 4. Insect population density under simple policies plotted against the planning 

960 horizon. The results for each period are averages over 1,000 simulations.
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964 Fig 5. Average annual surplus for different mitigation policies plotted against the 

965 planning horizon.
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968 Fig 6. Results from the calibrated model without social network effects. It contains the 

969 insect population density (Insect), Bt seed adoption rate (Bt), and the resistance allele 

970 frequency (R) for the calibrated model without social network effects. The results for each 

971 period are averages over 1,000 simulations.
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974 Fig 7. Average annual surplus for different mitigation policies. Each is plotted against 

975 the planning horizon for the calibrated model without social network effects.
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980 Fig 8. Example model landscape. Circle (○) represents a field planted to non-Bt maize, 

981 black dot (●) represents a field planted to Bt maize, and light-gray (◼︎) indicates a field with 

982 a pest population with a resistance allele frequency of more than 50% before adult dispersal.
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986 Fig 9. Example size-2 neighborhood. It is centered on a farmer (×) with nine neighbors 

987 who plant maize, either Bt maize (●) or non-Bt maize (○).
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991 Fig 10. Aggregate adoption of Bt maize in Wisconsin and two simulated results. The 

992 simulated results are generated by calibrating one parameter and two-parameters.
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1000 Fig S1. Cumulative share of surplus by planning horizon.  The top panel is for the baseline, 

1001 the middle is for the 20% refuge mitigation policy, and the bottom is for the 20% refuge 

1002 mitigation policy combined with a 50% Bt seed tax.
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1005 Fig S2. Bt adoption rate under simple policies. Each is plotted against the planning 

1006 horizon without social network effects. The results for each period are averages over 1,000 

1007 simulations.
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1010 Fig S3. R-allele frequency under simple policies. Each is plotted against the planning 

1011 horizon without social network effects. The results for each period are averages over 1,000 

1012 simulations.
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1015 Fig S4. Insect population density under simple policies. Each is plotted against the 

1016 planning horizon without social network effects. The results for each period are averages 

1017 over 1,000 simulations.
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