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ABSTRACT 25 

Human activities have led to increased deposition of nitrogen (N) and phosphorus (P) into soils. 26 

Nutrient enrichment of soils is known to increase plant biomass and rates of microbial litter 27 

decomposition. However, interacting effects of hydrologic position and associated changes to soil 28 

moisture can constrain microbial activity and lead to unexpected nutrient feedbacks on microbial 29 

community structure-function relationships.  Examining how feedbacks of nutrient enrichment on 30 

decomposition rates is essential for predicting microbial contributions to carbon (C) cycling as 31 

atmospheric deposition of nutrients persists. This study explores how long-term nutrient addition 32 

and contrasting litter chemical quality influence soil bacterial community structure and function. 33 

We hypothesize that long-term nutrient enrichment of low fertility soils alters bacterial community 34 

structure and leads to higher rates of litter decomposition with decreasing C:N ratio of litter; but 35 

low nutrient and dry conditions limit constrain microbial decomposition of high C:N ratio litter. 36 

We leverage a long-term fertilization experiment to test how nutrient enrichment and hydrologic 37 

manipulation (due to ditches) affects decomposition and soil bacterial community structure in a 38 

nutrient poor coastal plain wetland. We conducted a litter bag experiment and characterized litter-39 

associated and bulk soil microbiomes using 16S rRNA bacterial sequencing and quantified litter 40 

mass losses and soil physicochemical properties. Results revealed that distinct bacterial 41 

communities were involved in decomposing higher C:N ratio litter more quickly in fertilized 42 

compared to unfertilized especially under drier soil conditions, while decomposition rates of green 43 

tea litter (lower C:N ratio) were similar between fertilized and unfertilized plots. Bacterial 44 

community structure in part explained litter decomposition rates, and long-term fertilization and 45 

drier hydrologic status affected bacterial diversity and increased decomposition rates. However, 46 

community composition associated with high C:N litter was similar in wetter plots with available 47 
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nitrate detected, regardless of fertilization treatment. This study provides insight into long-term 48 

fertilization effects on soil bacterial diversity and composition, decomposition, and the increased 49 

potential for soil C loss as nutrient enrichment and hydrology interact to affect historically low 50 

nutrient ecosystems. 51 

 52 

Keywords: biodiversity-ecosystem function; carbon cycling; decomposition; microbiomes; tea bag 53 

index; wetlands. 54 

 55 

INTRODUCTION 56 

 Humans modify their landscapes through fossil fuel burning, deforestation, and intense 57 

agricultural activity (Vitousek et al. 2010, Fowler et al. 2013). These anthropogenic disturbances 58 

have led to increased atmospheric deposition of nitrogen (N) and phosphorus (P), and can be 59 

particularly disruptive to historically nutrient-limited ecosystems (Guignard et al. 2017). This 60 

increased nutrient deposition can cause a fertilization effect on plant-microbial interactions which 61 

results in increased biomass and shifts in community structure (Cherif and Loreau 2009, Leff et 62 

al. 2015, Harpole et al. 2016). This fertilization effect can increase plant biomass C, which fuels 63 

heterotrophic microbial growth and leads to increased respiration of CO2 (Hoosbeek et al. 2004, 64 

Kuzyakov 2010). The extent to which nutrient enrichment predicts decomposition rates is also 65 

determined by the interaction of soil microorganisms with the plant inputs and the abiotic soil 66 

environment. While human alteration of the environment and its effect on C storage and release is 67 

relatively well-documented in terrestrial ecosystems, the mechanisms governing the interactive 68 

effects of nutrient enrichment on plant-soil-microbial relationships at terrestrial-aquatic interfaces 69 

are relatively understudied. The availability of terminal electron acceptors in hydrologically 70 
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dynamic ecosystems are known to shape the resident microbial community and to control 71 

biogeochemical functions (Bernhardt et al. 2017). This makes it challenging to predict microbial 72 

responses to environmental change in ecosystem models.  73 

 Changes in the nutrient stoichiometry of both plants and surrounding soils are expected to 74 

affect microbial community composition and function, leading to changes in elemental cycling. 75 

Prior studies have shown that long-term nutrient addition enhances grassland plant biomass and 76 

increases C inputs into soils (e.g., Harpole et al. 2016). These additional plant inputs also increase 77 

CO2 outputs via microbial respiration (Hoosbeek et al. 2004, Lange et al. 2015). If microbes are 78 

not limited by N and P, the increase in plant-derived organic C inputs are more quickly metabolized 79 

and soil CO2 fluxes increase (Peralta and Wander 2008, Cotrufo et al. 2013, Castellano et al. 2015). 80 

Plant biomass could also vary in C:N or C:P ratios, which could also cause changes in microbial 81 

nutrient use and respiration rates. Thus, it is important to understand how changes in available 82 

nutrients within plant litter alter microbial communities and CO2 respiration rates as surrounding 83 

environmental conditions also shift (Hoosbeek et al. 2004, Lange et al. 2015).  84 

 Nuanced interactions between litter chemical quality, abiotic environment, and resident 85 

microbial composition can manifest in similar decomposition patterns (i.e., increased rates due to 86 

increased nutrient availability). However, the degree to which microbial structure contributes to 87 

the magnitude of litter mass loss is challenging to pinpoint since interactions among abiotic 88 

(temperature, nutrient availability, moisture) and biotic (community structure) factors determine 89 

decomposition rates (Kuzyakov and Blagodatskaya 2015, Meier et al. 2017, Deveau et al. 2018). 90 

In this study, we examine the extent that litter-associated microbiomes are unique depending on 91 

historical nutrient enrichment and how this community composition contributes to decomposition 92 

of litter of varying chemical quality (i.e., C:N ratio).  93 
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The nutrient availability in upland conditions makes priming (using standing litter 94 

nutrients) more pronounced as aerobic respiration is more energetically favored. In this study, we 95 

measured the extent that microbial community change (due to nutrient enrichment) contributes to 96 

enhanced decomposition using a model litter comparison. The Tea Bag Index (TBI) compares the 97 

decomposition rates of two different plant litters, green and rooibos LiptonÔ tea bags (Keuskamp 98 

et al. 2013). Green tea has a measured mean C:N ratio of 12.229 while rooibos tea is measured to 99 

have a much higher mean C:N ratio of 42.870. We used the TBI protocol to examine how long-100 

term fertilization affects decomposition rates in a nutrient-limited coastal plain wetland ecosystem. 101 

We also characterized the bacterial communities (using targeted amplicon sequencing of the V4 102 

region of the 16S rRNA gene) associated with the litter decomposition of two differing litter types 103 

(green and rooibos teas) occurring in wetland soils exposed to fertilization or not. The extent that 104 

community composition matters to decomposition rate depends on biotic and abiotic factors. In 105 

this study, litter type, nutrient enrichment and hydrologic status resulted in distinct bacterial 106 

communities.  107 

 108 

MATERIALS AND METHODS 109 

 110 

Experimental design of a long-term ecological experiment  111 

 Initiated in 2003, a long-term ecological experiment started at East Carolina University’s 112 

West Research Campus (WRC) (35.6298N, -77.4836W) examines the effects of mowing and 113 

fertilization on coastal plain wetland plant and microbial communities. This study site is classified 114 

as a jurisdictional wetland, and the plant community has been described as a mosaic of wet pine 115 

flatwood habitat, pine savanna, and hardwood communities (Chester 2004). The soils were 116 
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characterized as fine, kaolinitic, thermic Typic Paleaquults (Coxville series), fine-loamy, siliceous, 117 

semiactive, thermic Aeric Paleaquults (Lynchburg series), and fine-loamy, siliceous, subactive, 118 

thermic Aquic Paleudults (Goldsboro series). These soils are moderately to poorly drained ultisols 119 

(USDA NRCS 2019). The annual mean temperature is 16.4 °C and annual precipitation is 126 cm 120 

(U.S. Climate Data 2019). Fertilization and mowing treatments are replicated on eight 20×30 m 121 

blocks in a full factorial design, and the N-P-K 10-10-10 pellet fertilizer is applied 3× per year 122 

(February, June, and October) for a total annual supplementation of 45.4 kg/ha for each nutrient. 123 

Plots are mowed by bush-hog annually to simulate fire disturbance (Goodwillie et al. In Review). 124 

Within each plot, annual soil and plant sampling takes place at three randomly-placed quadrats 125 

(Fig. 1). The plant community in plots that are mowed is dominated by perennial forbs in two 126 

major genera of the Asteraceae—Eupatorium and Solidago—and graminoid species. The relative 127 

abundance of major grass species differs between mowed and fertilized plots, with switchcane 128 

(Arundinaria tecta) most dominant in fertilized plots and broomsedge (Andropogon virginicus) 129 

found almost exclusively in unfertilized plots. Sedges (e.g., Rhychospora and Carex spp.) and 130 

species of Juncus are common in (wet) plots away from, but not in (dry) plots adjacent to the 131 

drainage ditch. This hydrologic gradient is caused by a roadside drainage ditch such that four 132 

blocks near the ditch are drier and four blocks away from the ditch are wetter (Goodwillie et al. In 133 

Review). In 2018, volumetric soil moisture content (measured by capacitance), was >2 times 134 

wetter in blocks away from the ditch compared to blocks adjacent to the ditch. However, this 135 

hydrologic gradient has not yet been characterized by modeling flow according to water levels 136 

over time. The ditch was not intentionally manipulated as part of our experimental design, but it 137 

contributes an important ecological variable to the study (Goodwillie et al. In Review). For this 138 

study, tea litter decomposition experiments were focused in the mowed plots only.  139 
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 140 

Soil sampling 141 

We collected composite soil samples from all mowed/unfertilized and mowed/fertilized 142 

plots, which represented two soil cores (12 cm depth, 3.1 cm diameter) adjacent to each of three 143 

permanently installed 1 m2 quadrats where plant community data are annually collected. Each 144 

composite bulk soil sample was passed through a 4 mm sieve and homogenized before further 145 

analysis. This bulk soil sampling occurred on November 14, 2019, about three months after the tea 146 

litter bags were collected from the field. 147 

 148 

Soil physico-chemical analyses 149 

We measured gravimetric soil moisture by weighing 20-30 g of field-moist soil, drying at 150 

105 °C overnight, and then re-weighing. We calculated percent moisture as difference between 151 

field-moist and dried soils divided by the oven-dried soil weight. In addition, we measured pH of 152 

oven-dried soil by mixing a 1:1 soil:water solution and using a pH probe (Genemate-Bioexpress; 153 

Kaysville, Utah; USA). We measured total soil organic carbon and total nitrogen on finely ground 154 

dried soil using an elemental analyzer (2400 CHNS Analyzer; Perkin Elmer; Waltham, 155 

Massachusetts, USA) at the Environmental and Agricultural Testing Service laboratory 156 

(Department of Crop and Soil Sciences at North Carolina State University). Extractable inorganic 157 

N for each soil sample was measured on approximately 5 g of field moist soil. We added 45 ml of 158 

2 M KCl to soil, shook the sample for about 1 hour, and gravity filtered. Total phosphate (PO43-) 159 

was extracted by combining 0.1 g dried soil (ground and passed through a 500 µm sieve) with 0.5 160 

ml of 50% w/v Mg(NO3) and ashing for 2 hours at 550 °C. Samples were hydrated with 10 mL of 161 

1 M HCl,  shaken for 16 hours at 250 RPM, and the filtered (22 µm filter). Water extractable PO43- 162 
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was determined by combining 1 g dried soil (ground and passed through a 500 µm sieve) with 163 

deionized water, shaken for 1 hour, and filtered (22 µm filter). Ammonium (NH4+), nitrate (NO3-), 164 

and PO43- ions in soil extracts were colorimetrically measured using a SmartChem 200 auto 165 

analyzer (Unity Scientific Milford, Massachusetts, USA) at the East Carolina University 166 

Environmental Research Laboratory.  167 

 168 

Field experimental methods  169 

 The field protocol for this experiment was adapted from the Tea Bag Index Protocol 170 

(Keuskamp et al. 2013) and applied within the eight-replicate fertilized and unfertilized plots of 171 

the WRC. The experimental setup involved three bags of LiptonÔ green tea and three bags of 172 

LiptonÔ rooibos tea per replicate plot (3 bags × 8 blocks × 2 treatment plots = 48 bags per each 173 

tea bag type). In each treatment plot, we prepared six holes about 20 cm apart and 8 cm deep using 174 

a hand trowel. We weighed green and rooibos tea bags and buried them in separate holes. Soil was 175 

lightly packed around the tea bags, while keeping the labels visible above the soil. Tea bags were 176 

recovered after 111 days (May 21–September 09, 2018) using hand trowels to loosen soil adjacent 177 

to tea bag locations. Two of three green tea bags at each replicate plot were measured for mass 178 

loss. The third green tea bag was placed into a sterile Whirl-pak bag and stored at -20 °C for tea-179 

associated bacterial community analysis. The rooibos tea was processed following the same 180 

procedure. Upon returning to the lab, the tea bags for decomposition analysis were separated from 181 

adhered soil particles, placed into individual aluminum weighing dishes, and oven-dried at 70 °C 182 

for 48 hours. To quantify mass loss, the tea bags were reweighed following drying and compared 183 

to their initial weight prior to soil incubation.  184 

 185 
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Soil and tea-associated bacterial 16S rRNA sequencing  186 

Following freezing, tea litter was removed from tea bags, and DNA was extracted from 187 

samples using the Qiagen DNeasy PowerSoil kit. We also extracted DNA from soils using the 188 

Qiagen DNeasy PowerSoil Kit. For each unfertilized or fertilized treatment, DNA was extracted 189 

from green tea (15 total), rooibos tea (14 total), and bulk soil samples (16 total). Three litter 190 

samples could not be located and were not retrieved from the field. Following extraction, sample 191 

DNA was used as template in PCR reactions with a bacterial 515F/806RB barcoded primer set 192 

originally developed by the Earth Microbiome Project to target the V4-V5 region of the bacterial 193 

16S subunit of the rRNA gene (Apprill et al., 2015; Caporaso et al., 2012; Parada et al., 2016). For 194 

each sample, three 50 µL PCR libraries were prepared by combining 35.75 µL molecular grade 195 

water, 5 µL Amplitaq Gold 360 10x buffer, 5 µL MgCl2 (25 mM), 1 µL dNTPs (40mM total, 196 

10mM each), 0.25 µL Amplitaq Gold polymerase, 1 µL 515 forward barcoded primer (10 µM), 1 197 

µL 806 reverse primer (10 µM), and 1 µL DNA template (10 ng/µL). Thermocycler conditions for 198 

PCR reactions were as follows: initial denaturation (94 °C, 3 minutes); 30 cycles of 94 °C for 45 199 

seconds, 50 °C for 30 seconds, 72 °C for 90 seconds; final elongation (72 °C, 10 minutes). 200 

Triplicate PCR reactions were combined for each sample and cleaned according to the Axygen® 201 

AxyPrep Magnetic Bead Purification Kits protocol (Corning Life Sciences). Following cleaning, 202 

PCR product were quantified using Quant-iT dsDNA BR (broad-range) assay (Thermo Scientific, 203 

Waltham, MA, USA). Libraries were pooled in equimolar concentration of 5 ng/µL after being 204 

diluted to a concentration of 10 ng/µL. The Indiana University Center for Genomics and 205 

Bioinformatics sequenced the pooled libraries using the Illumina MiSeq platform using paired-end 206 

reads (Illumina Reagent Kit v2, 500 reaction kit).  207 
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 Following sequencing, we processed raw sequences using a standard mothur pipeline 208 

(v1.40.1) (Schloss et al. 2009, Kozich et al. 2013). Contigs were assembled from paired end reads 209 

and quality trimmed using a moving average quality score (minimum score of 35 bp). Sequences 210 

were aligned to the SILVA rRNA gene database (v.128) (Quast et al. 2013) and chimeric 211 

sequences were removed using the VSEARCH algorithm (Rognes et al. 2016). Formation of 212 

operational taxonomic units (OTUs) involved dividing sequences based on taxonomic class and 213 

then binnned into OTUs with a 97% sequence similarity level. OTUs were classified using the 214 

SILVA database (Yilmaz et al. 2014, Glöckner et al. 2017). 215 

 216 

Statistical analyses  217 

All statistical calculations were completed in the R environment (R v3.6.3, R Core 218 

Development Team 2020). Decomposition was measured through mass loss of buried tea bags. 219 

Initial and final tea bag weights were used to determine percent of loss. We ran a linear mixed 220 

effects model with ‘source’, ‘treatment’, and ‘ditch proximity’ as fixed effects and ‘block’ as a 221 

random effect using the lmer() function in the lmerTest package (Kuznetsova et al. 2017). For the 222 

mass loss response variable, a linear mixed model was fit by REML and produced type II analysis 223 

of variances tables (ANOVA) tables based on the Kenward-Roger's denominator degrees of 224 

freedom method using the lmerModLmerTest() function. Calculations of decomposition rate (k) 225 

and stabilization factor (S) for each tea bag were accomplished according to formulas found within 226 

the TBI protocol. Decomposition rate, k, is a parameter representing short-term dynamics of new 227 

input decomposition, while stabilization factor, S, is a parameter characterizing long-term carbon 228 

storage. These values were used to draw comparisons between k and S values found within the 229 

WRC wetland ecosystem to those of global ecosystems submitted to the Tea Bag Index protocol 230 
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(Keuskamp et al. 2013). Outcomes of these calculations were plotted on a graph, and locations of 231 

groupings were compared to those of the larger multi-ecosystem index (Keuskamp et al. 2013).  232 

For the bulk soil factors measured and the computed diversity (OTU richness, Shannon 233 

Diversity, Simpson’s Evenness) metrics for soil and tea litter associated bacterial communities, we 234 

ran a series of linear mixed models. We ran linear mixed effects models with ‘source’, ‘treatment’ 235 

and ‘ditch’ as fixed effects and ‘block’ as a random effect and fitted by the REML criterion using 236 

the lmer() function in the lmerTest package (Kuznetsova et al. 2017). Statistical inferences for 237 

fixed effects were calculated from type II ANOVA tables and the Kenward-Roger's degrees of 238 

freedom method using the anova() function. 239 

To visualize the community responses to fertilization and litter type, we used principal 240 

coordinates analysis (PCoA) of bacterial community composition based on the Bray-Curtis 241 

dissimilarity. We used a permutational multivariate analysis of variance (PERMANOVA) to 242 

examine among-treatment differences in bacterial communities. We also include a comparison of 243 

the bulk soil and tea litter associated bacterial communities (PERMANOVA, PCoA ordination) 244 

but focused on the specific tea litter associated microbiome patterns. To identify which bacterial 245 

species were most representative of each litter type, we ran an indicator species analysis. For the 246 

indicator species analysis, we only included bacterial taxa with a relative abundance greater than 247 

0.05 when summed across all plots. We performed PERMANOVA using the adonis() function in 248 

the vegan package (Oksanen et al. 2017) and the indval() function in the indicspecies package 249 

(Caceres and Jansen 2016).  250 

To examine structure-function relationships between the tea-associated bacterial 251 

community and the mass loss of the tea litter, we ran a linear regression to measure the relationship 252 

between mass loss as a function of bacterial diversity (mass loss ~ OTU richness + Shannon 253 
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Diversity + Simpson’s Evenness). In addition, we conducted a distance-based partial least squares 254 

regression (dbplsr) measure how much variation in mass loss of litter (function) was explained by 255 

the tea-associated bacterial community composition (structure) (mass loss ~ bacterial community). 256 

We used the Bray-Curtis dissimilarity matrix and the generalized cross-validation estimate of the 257 

prediction error (‘gcv’ method). We performed a distance-based partial least squares regression 258 

analysis using the dbplsr() function in the dbstats and pls packages (Boj Del Val et al. 2007, Boj 259 

et al. 2017, Mevik et al. 2019). 260 

 261 

RESULTS 262 

 Long-term fertilization strongly influenced abiotic and biotic factors within this nutrient-263 

limited wetland environment. Both fertilization and ditch effects influenced soil pH, soil C:N ratio, 264 

extractable nitrate concentrations, and water extractable phosphorus (Table S1A, Table S2B). A 265 

subset of soil factors was distinct between fertilized and unfertilized soils in the mowed plots. Total 266 

and water extractable phosphorus concentrations, extractable nitrate concentrations, soil C and N 267 

content, moisture, and pH were higher in fertilized compared to unfertilized soils (Table S1B). In 268 

addition, soil moisture, C:N ratio, and water extractable phosphorus were higher in wetter soils 269 

away from the ditch compared to drier soils adjacent to the ditch (Table S1C). Finally, nitrate 270 

concentrations were detectable only in wetter soils away from the ditch with higher concentrations 271 

in fertilized soils compared to unfertilized soils while nitrate was below detection limits in all soils 272 

near the ditch (Table S1A). These differences in fertilized compared to unfertilized soils and soil 273 

moisture due to ditch proximity related to litter decomposition rates and altered bacterial 274 

community structure.  275 
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 To examine how litter type and nutrient addition influenced decomposition rates, we 276 

measured mass loss of green (low C:N litter) and rooibos (high C:N litter) tea bags. Following an 277 

111-day incubation, there was a significant litter type (source) × fertilization treatment interaction 278 

(P=0.05) (Fig. 2, Table S2). The mass loss of green tea litter was ~24% higher than the overall 279 

mass loss of rooibos tea litter (Fig. 2, Table S2), averaged across fertilized and unfertilized soils. 280 

Both fertilization and proximity to drainage ditch also increased the rate of mass loss (Fig. 2, Table 281 

S2). Across all tea types and drainage ditch proximities, fertilized soils showed an average mass 282 

loss of ~7.5% more than that of unfertilized soils. Tea bags buried in closer proximity to the 283 

drainage ditch had ~6% more mass loss averaged across all litter and treatment types.  284 

 We also compared the decomposition rates (k) and stabilization factors (S) from the long-285 

term fertilization experiment to a broader context of ecosystems (Keuskamp et al., 2013). The most 286 

variable S and k values were measured in the wetter, fertilized plots (Fig. 3). The unfertilized 287 

compared to fertilized samples were generally higher along the stabilization factor (S) axis. 288 

Samples that were buried in the wetter, fertilized plots clustered along the higher end of the 289 

stabilization factor (S), while litter buried in the drier plots (fertilized and unfertilized) had lower 290 

estimated stabilization factor (S) (Fig. 3). Upon comparison with other ecosystems, a large number 291 

of fertilized treatment samples grouped near the grassland-ambient ecosystem in Iceland and the 292 

forest ecosystem in the Netherlands (Keuskamp et al. 2013). However, the unfertilized treatment 293 

samples grouped near the peat-disturbed and peat-undisturbed ecosystems of Iceland and the peat 294 

ecosystem of the Netherlands (Keuskamp et al. 2013). Within this coastal plain wetland system, 295 

long-term nutrient enrichment shifted decomposition rates that were representative of grassland 296 

and forested ecosystems (fertilized plots) or peatlands (unfertilized plots) (Fig. 3). 297 
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Fertilization effects on soil physicochemical properties and decomposition rates were 298 

related to shifts in bulk soil and litter-associated bacterial communities. Fertilization effect, tea 299 

type, and proximity to ditch (i.e., wetter vs. drier plots) influenced bacterial diversity in various 300 

ways. Specifically, tea type (R2=0.130, P=0.001) influenced bacterial community composition the 301 

most, while the interaction of tea type and proximity to ditch affected bacterial community patterns 302 

to a lesser degree (R2=0.060, =0.002) (Fig. 4, Table S3) (see circle vs triangle). The proximity to 303 

ditch (proxy for hydrology) also altered bacterial community composition (R2=0.110, P=0.001) 304 

(Fig. 4, Table S3) (see opened vs filled). Within tea type, fertilization treatment influenced 305 

bacterial community composition (R2=0.070, P=0.003) (Fig. 4, Table S3) (see green vs gray). For 306 

the drier, ditched plots, bacterial communities associated with high C:N ratio litter (rooibos) 307 

overlapped despite fertilization treatment, while bacterial communities were distinct between 308 

fertilization treatments in the wetter plots (Fig. 4). When the bulk soil and tea-associated bacterial 309 

communities were analyzed together, bulk soil or tea most strongly influenced bacterial 310 

community composition (source: R2=0.490, P=0.001) (Fig. S1, Table S4). In addition to these 311 

observed patterns, OTU diversity was generally higher in fertilized compared to unfertilized plots, 312 

especially in the drier plots associated with the drainage ditch (Fig. 5, Table S5). Specifically, OTU 313 

richness values were highest in bulk soil compared to tea types (Fig. 5A, Table S5A), and Shannon 314 

diversity values were highest in bulk soil compared to tea type in fertilized plots (Fig. 5B, Table 315 

S5B). Lastly, bacterial evenness was similar across fertilization treatment, source type, and 316 

proximity to ditch (Fig. 5C, Table S5C).  317 

To further examine bacterial associations with litter decomposition, we used indicator 318 

species analysis to identify a subset of bacterial taxa that represented each of the bulk soil or tea 319 

associated microbiomes. The unclassified OTU within the class Spartobacteria and another OTU 320 
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within the order Acidobacteria Gp1 represented the unfertilized bulk soil bacterial community, 321 

while an unclassified OTU within the order Solirubrobacterales represented bulk soils in the 322 

fertilized, dry plots. In wetter plots, an unclassified OTU within the order Rhodospirillales 323 

represented unfertilized plots while unclassified taxa within the orders Acidobacteria Gp1, Gp2, 324 

and Gp6 signified fertilized bulk soils (Tables S6, S7). In addition, the unclassified OTU within 325 

the Acidobacteria Gp3 and Dongia spp. represented the green tea-associated (low C:N litter) 326 

bacterial communities in the unfertilized, dry plots while Conexibacter spp. were represented in 327 

the fertilized, dry plots. In the wetter plots, Phenylobacterium spp. represented green tea-328 

associated bacterial communities in unfertilized plots and Legionella spp. in fertilized plots. The 329 

OTUs Acidisoma spp. in unfertilized plots and Dyella spp. in fertilized characterized rooibos tea 330 

associated bacterial communities in the dry plots. Lastly, the OTU Lacibacterium spp. represented 331 

mowed plots, while Dokdonella spp. and an unclassified OTU within the genus Microbacteriaceae 332 

represented rooibos tea associated communities in the wet plots (Tables S6, S7). 333 

When examined together, the link between bacterial community structure and 334 

decomposition function was relatively weak. No relationship between litter mass loss and bacterial 335 

diversity was detected (R2adj = -0.038, P = 0.574). However, when the total bacterial community 336 

was considered, the tea-associated bacterial community accounted for ~64 % of the variation in 337 

litter mass loss (dbplsr, Component 1 R2adj = 63.56, Component 2 R2adj = 87.09, Component 3 R2adj 338 

= 93.96) (Table 1).  339 

 340 

DISCUSSION 341 

Litter composition, fertilization, and ditch effects on soil moisture influenced bacterial 342 

community structure-function relationships in unexpected ways. In this study, increases in litter 343 
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mass loss were greater in fertilized compared to unfertilized soils, especially in drier versus wetter 344 

plots. Surprisingly, distinct microbial communities associated with different litter chemical 345 

qualities. Litter mass loss following the field incubation indicates that similar bacterial 346 

communities are capable of decomposing higher C:N ratio litter (rooibos tea) more quickly in 347 

fertilized compared to unfertilized plots, particularly in drier compared to wetter plots.  However, 348 

lower C:N ratio litter (green tea) decomposition rates were similar among fertilized and 349 

unfertilized plots, although slightly higher in drier compared to wetter plots but were represented 350 

by distinct bacterial communities. As expected, the low C:N ratio litter provides a N source to 351 

microbes regardless of external soil nutrient conditions, whereas the high C:N ratio litter is reliant 352 

on N from the fertilized soil in order to support increased rates of litter decomposition  (Duddigan 353 

et al. 2020). These results suggest that shifts in microbial community composition are partly due 354 

to differences in litter chemical quality and nitrate availability in soils.  355 

 The comparative results from the TBI-based decomposition experiment indicate that the 356 

tea litter bags buried in the unfertilized treatment had decomposition rates (k) and C stabilization 357 

factor (S) values similar to that of peatland ecosystems (Keuskamp et al. 2013). Lower 358 

decomposition rates occurred in unfertilized plots (i.e., the ambient state of this nutrient-poor 359 

habitat). When looking specifically at high C:N ratio litter, less mass was lost to decomposition. 360 

This provides some evidence that C storage potential within these plots resembles that of peatlands 361 

(Hill et al. 2018). Wetland ecosystems that are disconnected and isolated from pulses of nutrients 362 

due to natural processes or agricultural or urban runoff are more commonly nutrient limited by N 363 

and P (Vitousek et al. 2010). The plant species that are adapted to these low-nutrient ecosystems 364 

can maintain positive population growth and contribute to organic C additions to soils. Further, 365 

flooded environments, such as wetlands, are also known to support anaerobic microbial processes, 366 
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which result in slower rates of decomposition (Collins et al. 2015). Taken together, low nutrient 367 

environments can be sites of high plant biodiversity leading to organic C inputs and balanced with 368 

slower decomposition rates, which contribute to long-term C storage in soils (Hooper et al. 2005, 369 

Kleber et al. 2011). These results reflect the coastal plain wetland environment in this study, which 370 

offers some evidence that wetland environments store a disproportionate amount of C compared 371 

to other ecosystems (Sutfin et al. 2016, Nahlik and Fennessy 2016). However, this C storage 372 

capacity can be disrupted by nutrient enrichment. The fertilized plots, however, had k and S values 373 

that grouped closer towards grassland and forest ecosystems (Riggs et al. 2015), which have lower 374 

C storage potential because more available nutrients and oxic environments support aerobic 375 

respiration and higher decomposition rates. Results from this study provide support that nutrient 376 

enrichment can have a lasting influence on plant-soil-microbe interactions that affect C storage 377 

potential of wetland ecosystems (Lambers et al. 2009, Allison et al. 2014, Hartman et al. 2017). 378 

Patterns in bacterial community composition (i.e., beta diversity) but not the combined 379 

OTU richness, Shannon diversity, Simpson’s evenness diversity metrics, significantly explained 380 

decomposition rates. Further, litter composition followed by the fertilization and ditch effects 381 

determined bacterial community composition. A trend of higher decomposition rates was 382 

associated with high bacterial diversity, especially in the fertilized compared to unfertilized plots. 383 

Higher diversity has been associated with higher decomposition rates across different ecosystems 384 

(Lange et al. 2015, Trivedi et al. 2016). Shifts in plant and microbial communities can fuel 385 

decomposition rates and ultimately C losses from historically low nutrient ecosystems that 386 

experience atmospheric nutrient deposition (Sardans and Peñuelas 2012, Wieder et al. 2015). 387 

When bulk and tea-associated microbiomes were considered together, the bulk soil 388 

bacterial communities were very distinct from the tea-associated bacterial communities. Within 389 
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the bulk soil, bacterial communities were distinct across fertilized and unfertilized dry plots, and 390 

indicator taxa were phylogenetically distinct at the phylum level (Proteobacteria vs. 391 

Acidobacteria). While results revealed similarity in bulk soil bacterial composition in the fertilized 392 

and unfertilized wet plots, the indicator taxa also represented distinct phyla (unfertilized: 393 

Verrucomicrobia + Acidobacteria, fertilized: Actinobacteria). In contrast, the indicator taxa for 394 

tea-associated bacterial communities that overlapped in composition were similar at the phylum 395 

level. Specifically, similar bacterial assemblages of rooibos tea-associated (high C:N litter) 396 

microbiomes in the fertilized and unfertilized, dry plots were associated with Proteobacteria (Table 397 

S6, unfertilized: Lacibacterium spp., fertilized: Dokdonella spp.). Indicator bacterial taxa 398 

representing high C:N ratio litter-associated microbiomes in fertilized, dry plots were Dokdonella 399 

spp. (Proteobacteria phylum) and unclassified Microbacteriaceae (Actinobacteria phylum). The 400 

genus Dokdonella has been involved in heterotrophic denitrification (Figueroa-González et al. 401 

2016, Palma et al. 2018), while members of the family Microbacteriaceae have been 402 

predominantly found in terrestrial and aquatic ecosystems with putative functions related to plant 403 

pathogenicity (Glöckner et al. 2000, Young 2008, Lory 2014). Indicator taxa within the order 404 

Alphaproteobacteria represented the similar bacterial communities of the high C:N litter-405 

associated microbiomes in unfertilized (indicator OTU Acidisoma spp.), wet plots and low C:N 406 

litter-associated microbiomes in unfertilized, dry plots (indicator OTU Phenylobacterium spp.). In 407 

addition, the community similarity between low C:N litter-associated microbiomes in unfertilized, 408 

wet plots and high C:N litter-associated microbiomes in fertilized, wet plots were represented by 409 

taxa within different Proteobacterial classes. Specifically, Dongia spp. (within 410 

Alphaproteobacteria class) and Dyella spp. (within Gammaproteobacteria class) are similar in at 411 

least some life history traits. Representative isolates were cultured from soils (Dyella) and wetland 412 
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sediments (Dongia) and were found to be aerobic, Gram-negative, and motile (Xie and Yokota 413 

2005, Baik et al. 2013). Further, these assemblages also overlapped with green tea-associated 414 

microbiomes in the fertilized, dry plots, which were represented by Legionella spp. (within class 415 

Gammaproteobacteria). Legionellae are found in aquatic and other moist environments with their 416 

free-living protozoan hosts (Barker and Brown 1994). In the wetland soil environment, they can 417 

persist but are unlikely existing under optimal conditions.  418 

The interaction between source (litter type) and fertilization treatment influenced mass loss 419 

of litter but hydrologic setting and soil nitrate altered litter-associated microbiomes to varying 420 

degrees. The ditch-derived hydrologic differences at this wetland resulted in different structure-421 

function relationships for high C:N ratio litter-associated microbiomes only. Under the relatively 422 

dry plots (i.e., near drainage ditch), microbiomes associated with high C:N ratio litter were similar, 423 

but mass loss of litter was higher in fertilized compared to unfertilized plots. In all other instances, 424 

distinct, fertilized microbiomes were associated with higher decomposition rates compared to 425 

unfertilized plots. In the case that community structure is the same and decomposition rates 426 

increase, this pattern provides some evidence of more severe N limitation in drier compared to 427 

wetter plots, where soil nitrate concentrations are below detection limits (Table S1B). This result 428 

was only observed under high C:N ratio litter context since the low C:N litter provided much 429 

needed N to litter-associated microbes. While soil ammonium levels are similar in this case, it is 430 

possible that N mineralization is occurring without limitation, but nitrification processes could be 431 

slowed due to low soil pH, resulting in differences in extractable soil nitrate but not ammonium 432 

concentrations (Hinckley et al. 2019). 433 

In this study, nutrient enrichment and hydrologic status resulted in distinct bacterial 434 

communities associated with litter and bulk soils. Drier conditions and nutrient enrichment 435 
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increased decomposition rates until N limitation constrains microbial community structure. This 436 

study provided the opportunity to compare the extent that community composition matters to 437 

decomposition rate – using model litter. In these nutrient poor wetland soils undergoing nutrient 438 

enrichment, the fertilization increased bacterial diversity the potential for increased C losses 439 

through decomposition is observed and is expected to increase as wetlands are drained and 440 

fertilized. 441 
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Tables 637 

Table 1. Summary of distance-based partial least squares regression (dbplsr) representing how 638 

much variation in decomposition rate is explained (%) by each component (Comp) derived from 639 

a tea-associated bacterial community Bray-Curtis distance matrix. 640 

 641 

 Comp 1 Comp 2 Comp 3 Comp 4 Comp 5 Comp 6 
R2 64.96 88.08 94.65 98.12 99.32 99.77 
adjusted R2 63.56 87.09 93.96 97.78 99.16 99.70 
gvar 31.50 41.62 50.10 56.93 61.21 66.39 
crit 2.47 0.91 0.44 0.17 0.07 0.03 

gvar = total weighted geometric variability; crit = value of criterion defined in method 642 
 643 

 644 

 645 

 646 

 647 

 648 

 649 

 650 
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 652 

 653 

 654 

 655 
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Figures 657 

Figure 1 658 

 659 

Figure 1. Experimental design of a long-term ecological experiment to test the effects of fertilizer 660 

and disturbance by mowing on plant and microbial communities at East Carolina University’s 661 

West Research Campus (WRC), Greenville, NC, USA. The decomposition protocol for this 662 

experiment was adapted from the Tea Bag Index Protocol (Keuskamp et al. 2013)(Keuskamp et 663 

al., 2013) and applied within the eight-replicate fertilized and unfertilized plots of the WRC. In 664 

one quadrat per replicate plot, three bags of LiptonÔ green tea and three bags of LiptonÔ rooibos 665 

tea were buried and retrieved after 111 days. Bulk soil was sample as a composite sample 666 

representing two soil cores from three permanent quadrats per plot.  667 

 668 
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Figure 2. 669 

 670 

Figure 2. Boxplots representing cumulative mass loss of green (low C:N ratio litter) and rooibos 671 

(high C:N ratio litter) tea in fertilized (green) and unfertilized (gray) plots. Symbols represent 672 

individual data points. 673 

 674 

 675 

 676 

 677 

 678 

 679 

 680 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 2, 2020. ; https://doi.org/10.1101/732883doi: bioRxiv preprint 

https://doi.org/10.1101/732883
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 
 

Koceja et al. – 32 

Figure 3 681 

 682 

Figure 3. Initial decomposition rate k and stabilization factor S for different tea bags within the 683 

long-term fertilization experiment. Tea bags from unfertilized plots are indicated in grey, while 684 

tea bags from fertilized plots are indicated in green. Open symbols represented drier plots that were 685 

closer to the drainage ditch, while closed symbols represented wetter plots that were further from 686 

the ditch. 687 
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Figure 4 693 

 694 

 695 

Figure 4. Ordination based on a Principal Coordinates Analysis depicting bacterial community 696 

composition according to tea type. Symbols are colored according to fertilization treatment (gray 697 

= unfertilized, green = fertilized) and tea source (circles = low C:N ratio green tea, triangles = high 698 

C:N ratio rooibos tea) at drier mowed plots situated close to the drainage ditch (open symbols) 699 

compared to wetter mowed plots (closed symbols). 700 
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Figure 5 705 

 706 

Figure 5. Boxplots depicting of bacterial diversity metrics (OTU richness, Shannon Diversity 707 

Index Hʹ, and Simpson’s Evenness) associated with source (bulk soil, low C:N ratio green tea, 708 

high C:N ratio rooibos tea). Boxplots and symbols are colored according to fertilization treatment 709 

(gray = unfertilized, green = fertilized) at drier mowed plots situated close to the drainage ditch 710 

compared to wetter mowed plots. Symbols represent data points for individual plot samples. 711 
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