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Abstract13

In the vicinity of a tipping point, critical transitions occur when small changes in an input condition causes14

sudden, large and often irreversible changes in the state of a system. Many natural systems ranging from15

ecosystems to molecular biosystems are known to exhibit critical transitions in their response to stochastic16

perturbations. In diseases, an early prediction of upcoming critical transitions from a healthy to a dis-17

ease state by using early warning signals is of prime interest due to potential application in forecasting18

disease onset. Here, we analyze cell-fate transitions between different phenotypes (epithelial, hybrid epithe-19

lial/mesenchymal (E/M) and mesenchymal states) that are implicated in cancer metastasis and chemoresis-20

tance. These transitions are mediated by a mutually inhibitory feedback loop microRNA-200/ZEB driven21

by the levels of transcription factor SNAIL. We find that the proximity to tipping points enabling these22

transitions among different phenotypes can be captured by critical slowing down based early warning sig-23

nals, calculated from the trajectory of ZEB mRNA level. Further, the basin stability analysis reveals the24

unexpectedly large basin of attraction for a hybrid E/M phenotype. Finally, we identified mechanisms that25

can potentially elude the transition to a hybrid E/M phenotype. Overall, our results unravel the early warn-26

ing signals that can be used to anticipate upcoming epithelial-hybrid-mesenchymal transitions. With the27

emerging evidence about the hybrid E/M phenotype being a key driver of metastasis, drug resistance, and28

tumor relapse; our results suggest ways to potentially evade these transitions, reducing the fitness of cancer29

cells and restricting tumor aggressiveness.30
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Significance Statement33

Epithelial-hybrid-mesenchymal transitions play critical roles in cancer metastasis, drug resistance, and tumor34

relapse. Recent studies have proposed that cells in a hybrid epithelial/mesenchymal phenotype may be more35

aggressive than those on either end of the spectrum. However, no biomarker to predict upcoming transitions36

has been identified. Here, we show that critical slowing down based early warning signals can detect sudden37

transitions among epithelial, hybrid E/M, and mesenchymal phenotypes. Importantly, our results highlight38

how stable a hybrid E/M phenotype can be, and how can a transition to this state be avoided. Thus, our39

study provides valuable insights into restricting cellular plasticity en route metastasis.40

Introduction41

Biological systems often display nonlinear dynamics and emergent complex behavior, and consequent multi-42

stability [1, 2]. This nonlinear behavior in many cases leads to ‘tipping points’ - threshold values at which43

the system abruptly shifts from one state to another, in response to small stochastic perturbations [3]. Such44

changes - referred to as critical transitions - have been observed in multiple instances of ecosystems, climate,45

financial markets [4, 5, 6], and more recently in many cases of health and disease [7, 1]. The consequences of46

critical transitions are often large and undesirable, for instance, the switch from a healthy state to a diseased47

state such as the onset of type-2 diabetes [8] or that of depression [9]. Moreover, these transitions are often48

difficult to reverse, potentially due to self-reinforcing positive feedback [10], thus, predicting the ‘tipping49

points’ can be crucial for preventing such catastrophic changes.50

A critical transition is usually identified after a tipping point and is difficult to predict beforehand,51

because the equilibrium state of the system stays relatively unchanged until the tipping point is reached52

[1]. Thus, static observations may not be sufficient to predict these abrupt transitions. Many indicators of53

changing system dynamics have been suggested as early warning signals (EWS) for the impending critical54

transitions and have been experimentally shown to predict transitions in alternative states in yeast cultures55

[11] and plankton chemostats [12]. The most important clues for EWS arise from critical slowing down of the56

system as it approaches the tipping point. At the onset of a tipping point, the rate of return of the system to57

the current equilibrium state upon a random disturbance decreases as the dominant eigenvalue approaches58

zero, and eventually, this equilibrium state is replaced by the alternative state. Thus, under conditions of59

critical slowing down, the state of the system at a given time becomes increasingly like that at a previous60

moment, leading to higher temporal autocorrelation. Similarly, due to moving into a shallower well closer61

to the bifurcation point, the variance in data is increased [6]. Hence, two canonical statistical measures that62

are mostly used as EWS to indicate the proximity of a system to a tipping point are increasing variance and63

temporal lag-1 autocorrelation - AR(1) [3]. Few other measures used as EWS are recovery rate/return time64

[13, 12], skewness [14], conditional heteroskedasticity [15], spectral reddening [16], likelihood ratio [17] and65

interaction network based indicators [18].66
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While EWS and critical transitions have been well-studied in ecological and climate systems, their appli-67

cation in predicting disease onset is relatively recent and remains largely conceptual [1, 10]. Particularly, in68

cancer, critical transitions have been predicted in metabolic reprogramming [19] - a hallmark of cancer [20].69

Here, we investigate critical transitions and EWS in another hallmark of cancer - invasion and metastasis.70

Metastasis - the spread of cancer cells from one organ to another - accounts for nearly all cancer related71

deaths in solid tumors [21]. Despite extensive genomic efforts, no specific mutational signatures have been yet72

identified for metastasis [22], thus limiting the druggable targets to restrict metastasis. Therefore, identifying73

tipping points for predicting and preventing metastasis can be beneficial in curbing tumor aggressiveness.74

Most solid tumors originate in epithelial organs where cells do not typically migrate or invade, rather75

maintain tight cell-cell adhesion and a specific tissue organization. Thus, to metastasize, they typically76

undergo a phenotypic switch known as epithelial-mesenchymal transition (EMT) where they lose cell-cell77

adhesion and gain the traits of migration and invasion [23]. Cells undergoing EMT get launched into the78

bloodstream, and also gain the ability to initiate new tumors at metastatic sites, gain resistance against79

multiple drugs [24], and evade attacks by the immune system [25]. Thus, EMT provides multiple survival80

advantages to disseminated cells that typically undergo a mesenchymal-epithelial transition (MET) to col-81

onize distant organs. Recent investigations, including ours, have identified that EMT and MET need not82

be binary processes, instead cells can undergo partial EMT/MET and stably maintain one or more hybrid-83

epithelial/mesenchymal (E/M) phenotype(s) [23]. Importantly, cells in hybrid-E/M phenotype(s), i.e. those84

that undergo partial EMT, may be even more aggressive than cells that have undergone full EMT [26, 27].85

However, no specific biomarker has been identified that can a priori predict the onset of transitions among86

epithelial, mesenchymal and hybrid-E/M states. Thus, identifying EWS for transitions among these cell87

states can be a valuable contribution towards restricting them.88

Here, we identify critical slowing down based EWS in a core regulatory network of EMT/MET. Three89

well known indicators - lag-1 autocorrelation, variance and conditional heteroskedasticity - work well to90

forewarn upcoming transitions among epithelial, hybrid-epithelial/mesenchymal, and mesenchymal states,91

thus opening the possibility of considering EWS as biomarkers to forewarn cancer metastasis. We also92

calculate the basin stability measure to evaluate the probability of occurrence of a particular state in various93

multistable regions. A higher basin stability measure corresponding to a particular state determines larger94

possibility of attaining the state in a multistable region. Complementing our basin stability measures with95

potential landscapes and phase diagrams for EMT circuit, we identify how a monostable hybrid E/M state96

can be maintained and thus suggest mechanisms to avoid it. Overall, our results highlight the ability to97

predict cellular transitions in metastasis before they occur and may provide a dynamic biomarker to gauge98

metastatic potential.99

Model100

We consider an analytical model of microRNA (miR) based chimeric circuit developed by Lu et al. [28]. The101

model incorporates the features of miR mediated regulation in the translation-transcription processes and102
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captures the formation of various miR-mRNA complexes by the binding/unbinding dynamics of miR and103

mRNA (see Fig. 1A). The deterministic equations of the circuit which govern the combined dynamics of miR104

(µ), mRNA (m) and TF protein (B) are given by:105

dµ

dt
= gµ −mYµ − kµµ, (1a)

dm

dt
= gm −mYm − kmm, (1b)

dB

dt
= gBmL− kBB, (1c)

where gµ and gm are the synthesis rates of µ and m, respectively, and gB is the translation rate of protein106

B for each m in the absence of µ. kµ, km and kB are the degradation rates of µ, m and B, respectively. Yµ,107

Ym and L are µ dependent functions [28] denoting various effects of microRNA-mediated repression.108

The corresponding chimeric tristable miR-200/ZEB circuit is modeled as:109

dµ200

dt
= gµ200

Hs(Z, λZ,µ200
)Hs(S, λS,µ200

)− Yµ200
− kµ200

µ200, (2a)

dmZ

dt
= gmZ

Hs(Z, λZ,mZ
)Hs(S, λS,mZ

)− YmZ
− kmZ

mZ , (2b)

dZ

dt
= L− kZZ, (2c)

where Hs is the Hill function (details are in SI Text, Sections 1 and 2).110

As a stochastic description of Eqs. (2) can accurately capture the dynamics of the system, we derive the111

corresponding chemical Master equation which follows from birth-death processes [29]. The Master equation112

is given by:113

∂p

∂t
= gµ200

(Z)
(
p(µ0

200 − 1,mZ , Z)− p(µ0
200,mZ , Z)

)
+ gmZ

(
p(µ0

200,mZ − 1, Z)− p(µ0
200,mZ , Z)

)
+ kmZ

(
(mZ + 1)p(µ0

200,mZ + 1, Z)−mZ p(µ
0
200,mZ , Z, µ0)

)
+ kZ

(
(Z + 1)p(µ0

200,mZ , Z + 1)− Zp(µ0
200,mZ , Z)

)
+ kµ200

(
(µ0

200 + 1)p(µ0
200 + 1,mZ , Z)− µ0p(µ

0
200,mZ , Z)

)
+ L(µ0

200,mZ)
(
p(µ0

200,mZ , Z − 1)− p(µ0
200,mZ , Z)

)
+

n∑
j=0

(
ΛjmZ

(µ0
200,mZ + 1)p(µ0

200,mZ + 1, Z)− ΛjmZ
(µ0

200,mZ)p(µ0
200,mZ , Z)

)
+

n∑
j=0

(
Λjµ200

(µ0
200 + j,mZ)p(µ0

200 + j,mZ , Z)− Λjµ200
(µ0

200,mZ)p(µ0
200,mZ , Z)

)
. (3)

where p(µ0
200,mZ , Z) is the grand probability function. The Eq. (3) is a birth-death process for the proba-114

bilities of the separate states specified by the values of (µ0
200,mZ , Z). All the terms appear in the equation115

as pairs: (i) birth of a state (µ0
200,mZ , Z) due to transition from other states (µ0′

200,m
′
Z , Z

′), and (ii) death116
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due transition from (µ0
200,mZ , Z) into other states. There are ten such processes associated with birth and117

death of miR, mRNA and ZEB in our model (see also SI Text, Section 3 for details). We have simulated118

this Master equation with Gillespie algorithm [30] to obtain the stochastic trajectory of the system (SI Text,119

Section 3A). The stochastic trajectory of the system identifies the occurrence of critical transition between120

different phenotypes and using critical slowing down based EWS we are able to forecast such transitions121

beforehand.122

Figure 1. (A) Schematic diagram of the microRNA-based chimeric circuit. (B) Bifurcation diagram depicting the changes
in ZEB mRNA levels with variations in the levels of SNAIL. E, hybrid E/M and M denote epithelial state, hybrid epithe-
lial/mesenchymal state and mesenchymal state, respectively: lowest levels of ZEB mRNA correspond to epithelial state, inter-
mediate levels to a hybrid E/M state, and highest ones to mesenchymal state, as shown by corresponding cartoons. (C-F) An
overview of critical transition in the circuit which has multistability. Schematic potential landscapes representing two stable
states (i.e. E and hybrid E/M) of deterministic system: (C) high resilience of the E state when it is far from the tipping
point, and (D) low resilience of the state close to a tipping point, when the system approaches a sudden shift from E to hybrid
E/M state. Stochastic time series of the system (2): (E) with S=197K (far from the tipping point) and (F) with S=207K
(close to the tipping point), respectively. (G, H) In the vicinity of a tipping point, due to decreasing resilience the system
has stronger memory for perturbation in comparison to that of far from a tipping point and that are characterized by larger
standard deviation (S.D.) and lag-1 autocorrelation (AR(1)). All other parameters for the circuit are given in SI.

Results and Discussion123

Bifurcation-induced tipping signs in epithelial-hybrid-mesenchymal transition124

A mutually inhibitory feedback loop between members of ZEB transcription factor and those of microRNA125

(miR)200 has been postulated to govern EMT/MET; ZEB can drive EMT by inhibiting cell-cell adhesion126
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and cell polarity, while miR-200 tend to maintain an epithelial phenotype [23]. Unlike mutually inhibiting127

feedback loops where both players are transcription factors, this loop is chimeric, i.e. it contains both tran-128

scriptional and translational regulation [28, 31]. First, we perform the bifurcation analysis of this determinis-129

tic tristable chimeric circuit Eqs. (2) with variations in the SNAIL concentration (S) (see Fig. 1B). The values130

of all the other model parameters of this circuit are presented in the SI Text, Table S1-S3. We denote three131

coexisting stable states: (high miR-200/low ZEB), (low miR-200/high ZEB), and (medium miR-200/medium132

ZEB). These states correspond to epithelial (E) and mesenchymal (M), and hybrid-epithelial/mesenchymal133

(E/M) phenotypes respectively [32, 23]. For increasing levels of S, the circuit first exhibits monostable E134

state; an increase in S leads to bistability between E and M states; a further increase enables tristability135

between E, hybrid-E/M and M states; then bistability between hybrid-E/M and M states, and finally a136

monostable M state. The existence of multistable regions includes the appearance of saddle-node bifurca-137

tions and hysteresis loops that triggers the possibility of occurrence of catastrophic critical transitions in the138

presence of intrinsic stochastic perturbations [33].139

Since this feedback loop exhibits tristability, it may pass through two critical points (or tipping points)140

and, therefore can reach two alternative states, one after another. A systematic analysis of such critical141

transition is commonly done by analysing stochastic trajectory. In Fig. 1, we have presented a brief overview142

of critical transition in the EMT circuit from pure E to hybrid-E/M phenotype transition with variations in143

the levels of protein SNAIL, when the system is far from or close to a tipping point (see Figs. 1C,D). More144

specifically, larger variance and increased lag-1 autocorrelation determine the proximity to a tipping point145

(see Figs. 1G,H). With increasing SNAIL value the system may experience two subsequent transitions, one146

from E to hybrid-E/M state and another from hybrid-E/M to M state. However, while decreasing SNAIL147

value results in a direct transition from M to E state which bypasses the hybrid-E/M state.148

Early warning signals for transitions among epithelial, hybrid-E/M and mesenchymal states149

We began our search for signals of critical slowing down by calculating EWS of critical transitions in data150

sets obtained from stochastic simulations (see Materials and Methods section) of the chimeric circuit. The151

stochastic trajectory (time series) representing ZEB mRNA levels, with continuously increasing SNAIL value,152

exhibits sudden transitions from E state to hybrid-E/M state and further hybrid-E/M state to M state (See153

Fig. 2A). The trajectory is generated with time varying signal SNAIL. The SNAIL level starts at 150K154

molecules at day 0 and then increases upto 250K molecules at day 20. This increase in SNAIL levels can155

drive EMT in a cell, i.e. moving from monostable epithelial region to a monostable mesenchymal region156

(Fig. 1B), and the timescale over which SNAIL levels are varied are commensurate with those over which157

EMT is observed [34, 35].158

6

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 13, 2019. ; https://doi.org/10.1101/733006doi: bioRxiv preprint 

https://doi.org/10.1101/733006
http://creativecommons.org/licenses/by-nc/4.0/


 0.1

 0.2

1 2.8 4.6 6.4 8.2 10

A
R

(1
)

Time (days)

E
 7

 7.5

 8

      

V
a

ri
a

n
c
e

D

-20

 0

 20

      

R
e

s
id

u
a

ls

C

 40

 60

 80

      

Z
E

B
 m

R
N

A

B

 0

 400

 800

 1200

0 4 8 12  20

Z
E

B
 m

R
N

A
 (

m
o

le
c
u

le
s
)

A

16

E
E/M

M

 0

 400

 800

 1200

160 180 200 220 240

SNAIL (10
3
 molecules)

 0

 40

 80

 120

-1 -0.5 0 0.5 1

 

O
c
c
u

rr
e

n
c
e

Kendall τ estimates

I

AR(1)

B
a

n
d

w
id

th

Rolling window

H

K
e

n
d

a
ll 

τ

325 475 625 775

5

25

50

75

100

-1

-0.5

 0

 0.5

 1

B
a

n
d

w
id

th

Rolling window

F

K
e

n
d

a
ll 

τ

325 475 625 775

5

25

50

75

100

-1

-0.5

 0

 0.5

 1

 0

 50

 100

 150

 200

-1 -0.5 0 0.5 1

 

O
c
c
u

rr
e

n
c
e

Kendall τ estimates

G

Variance

Figure 2. Critical transitions between different cell states of the regulatory circuit that are driven by forward change in the
control parameter SNAIL, and indicators of critical slowing down. (A) Transitions from E state to hybrid E/M state and hybrid
E/M state to M state. (B) Stochastic time series segment of the system before the transition to hybrid E/M state (a segment
as indicated by the boxed region in (A)). (C) Residual time series after applying Gaussian filter (red curve in (B) is the trend
used for filtering). EWS calculated from the filtered time series after using a rolling window of 60% of the data length: (D)
variance and (E) AR(1). (F-I) Sensitivity analysis of the filtering bandwidth and the rolling window size used to calculate the
EWS. Contour plots reveal the effect of variable rolling window size and filtering bandwidth on the observed trend in the EWS,
(F) variance and (H) AR(1), for the filtered data as measured by the Kendall-τ value. The triangles indicate the rolling window
size and bandwidth used to calculate the EWS. Frequency distributions of Kendall-τ values for (G) variance and (I) AR(1).

First we evaluate the effectiveness of different EWS to positively alarm an impending sudden catastrophic159

transition from E state to hybrid-E/M state, by tracking the values of ZEB mRNA. For EWS analysis, we160

consider a time series segment before the transition to hybrid-E/M state (see Fig. 2B). To filter possible161

non-stationarities in the data we subtracted a Gaussian kernel smoothing function across the time series162

segment and used the remaining residuals (Fig. 2C) for EWS analysis [36]. We calculate the variance and163

lag-1 autocorrelation (AR(1)) (see SI Text, Section 4) values with a rolling window having a length of 60%164

the length of the residual time series segment and found both the variance and AR(1) value to be increasing165

(see Figs. 2D-E). A concurrent increase in the EWS is an well known indicator of an upcoming critical166

transition [3, 5]. The performance of EWS is in general known to be sensitive to the choice of the filtering167

bandwidth used in Gaussian kernel smoothing and also on the rolling window size [37, 38]. The bandwidth of168

kernel smoothing determines the degree of data smoothing without filtering the low frequencies from the data169

and the choice of rolling window size depends on a trade-off between data resolution and reliability of the170
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estimation of EWS. Therefore, rather than choosing arbitrary values, here we perform sensitivity analysis, of171

the filtering bandwidth and rolling window size (see Figs. 2F-I). For sensitivity analysis the rolling window172

size was varied from 25% to 75% of the data length in increments of 15 points, together with variations in173

the filtering bandwidth ranging from 5 to 100 in increments of 10. For all possible combinations of these two174

parameters, the observed trends in variance and AR(1) were quantified using the non-parametric Kendall’s175

τ rank correlation coefficient. A positive Kendall’s τ determines increasing trend in the EWS prior to a176

critical transition. To maximise the estimated trends for the EWS, we have used the sensitivity plot to select177

a particular filtering bandwidth and window size (see Fig. 2F for variance and Fig. 2H for AR(1)) (for details178

see SI Text, Section 4B). The frequency distributions of the Kendall’s trend statistic for the variance and179

the AR(1) are presented in Fig. 2G, I, respectively.180
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Figure 3. Critical transition between different cell states of the regulatory circuit that is driven by backward change in the
control parameter SNAIL, and indicators of critical slowing down. (A) Transition from M state to E state that bypasses the
hybrid E/M state. (B) Stochastic time series segment of the system before the transition to E state (a segment as indicated
by the boxed region in (A)). (C) Residual time series after applying Gaussian filter (red curve in (B) is the trend used for
filtering). EWS calculated from the filtered time series after using a rolling window of 80% of the data length: (D) variance and
(E) AR(1). Contour plots reveal the effect of variable rolling window size and filtering bandwidth on the observed trend in the
EWS, (F) variance and (H) AR(1), for the filtered data as measured by the Kendall-τ value. The triangles indicate the rolling
window size and bandwidth used to calculate the EWS. Frequency distributions of Kendall-τ values for (G) variance and (I)
AR(1).

The EWS work well for capturing the transition from hybrid-E/M state to M state (see SI Text, Section 5),181
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suggesting that transitions in the forward direction (i.e. increase in SNAIL) can be captured by stochastic182

time series of ZEB mRNA. We generate the stochastic time series of ZEB mRNA from the probabilistic183

model through the Monte Carlo simulations [30] which incorporates intrinsic cellular noise. We vary both184

the time and the parameter (the number of SNAIL molecules) together, which carries the signature of critical185

slowing down while shifting to an alternative stable state. We carried out our simulations for a period of 0186

to 20 days along with the simultaneous variations in the number of SNAIL molecules, that varies from 150K187

to 250K molecules.188

Next, we investigated whether these EWS can also be observed in backward transitions, i.e. with decreas-189

ing value of SNAIL (Fig. 3). Due to the hysteresis and asymmetry in transitions in both directions (E to M190

vs. M to E), we observe sudden direct transition from M to E state (see Fig. 3A) bypassing the hybrid-E/M191

state. We consider a time series segment prior the transition to E state (Fig. 3B) and further used the192

residual time series for EWS analysis (Fig. 3C). Importantly, both the EWS markers - variance and AR(1)193

- shown an increasing trend closer to the tipping point for this transition from M to E (see Figs. 3D-E).194

Reinforcing our previous analysis, these EWS were evaluated with specific choices of detrending bandwidth195

and rolling window size to maximise their trends. Put together, these results highlight that the transitions196

among E, hybrid-E/M and M states can be predicted before they occur, using EWS variance and AR(1).197

Further, for the aforementioned three transitions, E to hybrid E/M, hybrid E/M to M and M to E state,198

we evaluate the robustness of EWS trends to all the rolling window sizes depicted as the distribution of199

the Kendall-τ statistic around their median, for both the ’original’ and ’surrogate’ time series (see SI Text,200

Section 6 and SI Fig. S2). In the case of ’original’ data sets, most of the trends for AR(1) and variance are201

robust to rolling window sizes as majority of the associated box-plots stays above the y-zero axes [39].202

Conditional heteroskedasticity applied as early warning signals203

To evaluate robustness of the predictions made by the EWS variance and AR(1), we calculate conditional204

heteroskidasticity - one of the other measures known to forewarn critical transitions [15]. Conditional het-205

eroskidasticity is indicated by the persistence in the conditional variance of the error term in time series206

models [40]. The advantage of this indicator over others is that it minimizes the chance of the occurrence207

of false positive signals in time series that does not have any critical transition. To calculate conditional208

heteroskidasticity, time series is modelled as an auto-regressive process and the residuals are obtained. The209

persistence of the conditional variance of the residuals then determine the conditional heteroskidasticity210

(see SI Text, Section 4C for details of the procedure). Prior to a critical transition, significant conditional211

heteroskidasticity is expected to be visible in the time series [15].212

We consider the time series segments before the critical transitions for both the cases; E to hybrid-E/M213

transition and M to E transition (see Fig. 2B and Fig. 3B). Figure 4A presents the squared residuals from an214

auto-regressive lag-1 model applied to the time series segment of E to hybrid-E/M transition (Fig. 2B) plotted215

with the residuals at the next time step. The slanted line is the regression line. The positive correlation216

between the squared residuals at time step t and time step t+ 1 indicates conditional heteroskidasticity. We217
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Figure 4. (A, C) Squared residuals from an autoregressive lag-1 model plotted with the next squared residuals and (B, D)
cumulative number of significant Lagrange multiplier test (C), both applied to the data presented in Fig. 2B (for A, B) and
Fig. 3B (for C, D), respectively. In (A, B), the black slanted lines are fitted regression lines at lag-1.

also apply the cumulative number of significant Lagrange multiplier test (C) to the time series (Fig. 4B).218

The cumulative increases prior to the critical transition indicating that significant number of tests shows219

conditional heteroskedasticity in the time series. For the transition to M to E state, we get similar result220

(Fig. 4C, D).221

Stochastic potential and basin stability analyses reveal relative stability of the three cell states222

For a dynamical system, a potential well represents the existence of a steady state. Here, we projected the223

stochastic potential of the system in ZEB mRNA – µRNA200 plane for different values of the parameter224

SNAIL (Fig. 5). The lowest value of the potential corresponds to the existence of a deep well and hence225

subsequently the existence of a steady state. Here, for different SNAIL values, the stochastic potentials clearly226

exhibit bistable/multistable states. Consistent with the deterministic dynamics of the system (Fig. 1B), we227

note the co-existence of E and M states (Fig. 5A), the co-existence of all the three E, hybrid-E/M and M228

states (Fig. 5B), and the co-existence of hybrid-E/M and M states (Fig. 5C). The details of the method used229

to calculate the stochastic potentials are given in the SI Text, Section 7.230

Given that the hybrid-E/M state has been proposed to be the ’fittest’ for metastasis [41] and that we231

observed a relatively larger region denoting the stability of hybrid-E/M in the tristable region (Fig. 5), we232

investigated the probability of attaining the hybrid-E/M state in a tristable region in the presence of random233

perturbations. This probability can be calculated by performing basin stability measure [42].234

For a complex system, basin stability is a measurement of the stability/resilience of a steady state in a235

probability sense which pivots on the volume of the basin of attraction. In other words, it measures the236

likelihood of return to a steady state after random, non-small perturbations. Thus, for a high-dimensional237
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Figure 6. Pie diagrams representing basin stability of the system for different values of SNAIL (S): (A) S=188K, (B) S=200K,
(C) S=213K and (D) S=220K. The percentage of 104 simulations with random initial conditions reaching to a particular steady
state in a bistable/multistable region. Blue, red and yellow regions correspond to the % of simulations reaching to any one of
the E, hybrid-E/M and M states, respectively.

multistable system, it is a powerful tool to measure the basin volume (see SI Text, Section 8). For our238

system, we observe multistability for different parameter values of SNAIL(S). For S=188K (see Fig. 1B), the239

system has coexisting E and M states. Basin stability measures that for a sufficiently large set of random240

initial conditions, E and M states have probabilities 0.91 and 0.09 of return to their original state, i.e. among241

all random initial conditions 91% and 9% trajectories will reach E and M states (Fig. 6A), respectively. For242

S=200K, system have probabilities 0.1, 0.76 and 0.23 of reaching to E, hybrid-E/M and M states (Fig. 6B),243

respectively from a set of random initial states. Similarly for S=213K, the corresponding probabilities of244

return to hybrid-E/M state and M state are 0.62 and 0.38 (Fig. 6C), respectively. Further, increase in the245

levels of SNAIL at S=220K reduces the probability of attaining hybrid-E/M state which becomes 0.52 and246

remaining 0.48 is the probability of attaining the M state (Fig. 6D), indicating that as we proceed from a247
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Figure 7. The phase diagram and corresponding bifurcation diagrams of the genetic circuit. (A) The phase diagram of the
genetic circuit with variations in SNAIL and miR-200/ZEB levels. Each phase corresponds to either any of the monostable state
or coexisting bistable/multistable states. For example, in E the epithelial state is stable, in {E, hybrid-E/M} both epithelial
and hybrid-epithelial mesenchymal states coexist. (B-F) Bifurcation diagrams of mRNA with variations in the level of SNAIL
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monostable region for hybrid-E/M state increases.

bistable M- E/M phase to a monostable M phase, the basin stability of E/M decreases, being conceptually248

consistent with the mean residence time analysis for this circuit [43].249

Hence, the basin stability results suggest that an E state is more stable in bistable region containing both250

E and M states, but the hybrid E/M state is more stable for the two later cases. Thus, in the (miR-200/ZEB)251

loop, chances of getting a hybrid E/M state seems relatively very high compared to the other two states252

(see SI Fig. S3). This result is reminiscent of mean residence times calculations for E, hybrid-E/M and M253

states [43], and suggests that hybrid-E/M state is not perhaps as ‘metastable’ as was initially postulated254

experimentally [23].255

Identifying mechanisms to evade the transition into aggressive hybrid E/M state256

Next, we sought after mechanisms to evade transition to a hybrid-E/M state, given its association with higher257

aggressiveness and worse patient survival. We first identified what mechanisms can lead to stabilized hybrid-258

E/M state. So far, our results have identified monostable E, monostable M, and other bistable and tristable259

regions, but not a monostable hybrid-E/M state. Including other factors such as GRHL2, NUMB in the260

network can enable the existence of a monostable hybrid-E/M region [27]. Here, we analyzed the parameter261

space of the miR-200/ZEB feedback loop to identify regions enabling the existence of a hybrid-E/M state as262
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a monostable phase, without adding more components in the network. We varied the levels of SNAIL, and263

the threshold (half-maximal concentration) value of ZEB in the shifted Hill function corresponding to ZEB264

inhibiting miR-200, and calculated the phase diagram shown in Fig. 7. The different phases in the diagram265

are separated by four saddle-node bifurcation curves. We could identify a large parameter region in which the266

monostable hybrid-E/M phase appears - high levels of both SNAIL and the threshold of ZEB (see Fig. 7A).267

This result suggests that as the strength of inhibition of miR-200 by ZEB is weakened, the progression to a268

complete EMT may be halted and cells can stably occupy a hybrid-E/M state for higher values of SNAIL269

(Fig. 7A). Conversely, as this inhibition is made stronger, the stability of the hybrid-E/M state gradually270

decreases (Fig. 7C) and eventually the hybrid-E/M state disappears (Fig. 7B). Here, the hybrid-E/M state271

disappears when the systems response curve changes from ’folded’ to ’smooth’, in response to the variations272

in the input condition. In fact the folded response curve looks like a typical first-order (i.e. abrupt) or273

discontinuous transition (Fig. 7C), however contains two unstable states and one stable hybrid-E/M state274

which in general shows two stable and one unstable states in most of the studies on critical transitions275

[44, 45]. The smooth response curve corresponds to second-order (i.e. continuous) phase transition that has276

only one unstable state here (Fig. 7B), in contrast to a bistable system which has a stable state. Therefore277

the dynamical mechanism behind the disappearance of the hybrid-E/M state is the changeover from first-278

to second-order phase transition in the systems response curve.279

Similarly, we also varied the levels of SNAIL and the threshold of self-activation of ZEB (see SI Text,280

Section 9). Reduced threshold, i.e. stronger self-activation, enable a monostable hybrid E/M phase at281

lower SNAIL values, while it disappears with increased threshold, i.e. weaker self-activation of ZEB (see SI282

Fig. S4). Increasing SNAIL values and weakening self-activation drive the system towards a bistable E, M283

phase, i.e. disappearance of E/M state. These results suggest that a balance between strengths of mutual284

inhibition and self-activation can enable the existence of a hybrid E/M phenotype [31].285

Discussion286

Anticipating critical transitions remains an extremely challenging task in multiple scenarios including eu-287

tropication of lakes, crash of financial markets, and more importantly, in onset of disease. The system288

typically displays almost no sign of the impending transition until it happens, thus using early warning sig-289

nals (EWS) such as variance, autocorrelation and conditional heteroskedasticity can be used to forecast the290

critical transitions which are often catastrophic. Here, we show that these EWS can capture the transitions291

among epithelial, mesenchymal and hybrid epithelial/mesenchymal phenotypes. This phenotypic plasticity292

drives cancer metastasis and drug resistance in cancer - the cause of almost all cancer-related deaths. Given293

that no unique mutational signature has been yet identified for metastasis, despite extensive genomic efforts,294

these EWS that can predict the onset of these cellular transitions that govern metastasis can serve as poten-295

tially important dynamic biomarkers. Recent efforts have focused on identifying such dynamic biomarkers296

in the context of pulmonary metastasis of hepatocellular carcinoma [46]. With more single-cell dynamic297

data emerging in the context of epithelial-hybrid-mesenchymal transitions [47], using EWS signals can help298
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predict the tipping point of metastasis initiation.299

Cancer metastasis has been long thought to be driven solely by individual cell migration (i.e. a mes-300

enchymal state), however, recent studies have questioned this dogma, highlighting that not only clustered301

cell migration can be possible during metastasis, but also it can be the predominant driver of metastasis302

[48, 49]. These clusters, typically 5-8 cells large, can pass through capillaries by arranging themselves tran-303

siently into a single-file chain [50], and can contain non-cancerous cells that can facilitate metastasis [51].304

A hybrid-E/M phenotype has been associated with such collective/clustered cell migration [52, 53], thus,305

our analysis identifying the relatively high basin stability of the hybrid-E/M phenotype can help explain the306

ability of cancer cells to form clusters of circulating tumor cells.307

Here, our analysis focused on temporal dynamics of a gene regulatory network for EMT; however, EWS308

have also been identified in spatiotemporal dynamics, particularly in ecology [54, 55]. Thus, EWS can also309

be potentially identified in a spatially extended regulatory networks for EMT, for instance, investigating310

the varying extents of EMT induction in different parts of a tissue [56, 57] or identifying critical transitions311

in cancer-immune interplay [58]. Further, besides EMT, there are other axes of phenotypic plasticity in312

cancer, such as metabolic plasticity, switching back and forth between a cancer stem cell (CSCs) and a313

non-cancer stem cell. With recent developments in identifying the multistable dynamics of the networks314

regulating these transitions [59]. EWS analysis can be applied to these networks to identifying promising315

novel dynamic biomarkers. However, an open question remains: can we identify the strongest and most316

robust signal of critical transition, among many which might show EWS? For instance, during metastasis,317

players involved in EMT, CSCs, and metabolic plasticity may all show EWS and vary dynamically, but318

which among these interconnected axes can be considered as the Achilles’ heel of metastatic potential needs319

to be identified rigorously?320

Majority of the critical slowing down based EWS used to predict critical transitions in natural systems321

involves saddle-node bifurcation under the presence of white noise (temporally uncorrelated noise) that per-322

turbs the abundance of the system [60]. For a large class of systems that exhibit other type of bifurcations323

apart form the saddle-node, the effectiveness of EWS remains largely unknown. For different type of bi-324

furcations (e.g. transcritical, pitchfork, supercritical Hopf bifurcation) with diverse noise (e.g. coloured325

(temporally correlated) noise) EWS do not always work reliably to forecast sudden critical transitions [61].326

They found to be very sensitive to the length of pre transition time series data, and also to other decisions327

like filtering bandwidth and rolling window size [38]. There also exist systems in which bifurcations occur328

without critical slowing down, such as in a structured consumer resource model where the upper point equi-329

librium coexists with a lower limit cycle [62], occurrence of basin boundary collisions [63] and as a result in330

these systems EWS do not work properly. In fact in general EWS work well for the situations when critical331

transition and critical slowing down co-occur [61]. Although robustness of EWS have been successfully shown332

in some cases [3, 60], a detail analysis of their effectiveness is still an open challenge [17, 64, 61].333

In summary, our analysis strongly indicates the presence of EWS during epithelial-hybrid-mesenchymal334
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transitions - a central motor of cellular plasticity during cancer metastasis and emergence of therapy resis-335

tance [65]. We show that many robust measures of EWS - increased variance, autocorrelation and conditional336

heteroskedascity - vary dynamically as cells transition among these three phenotypes. Our results also iden-337

tify increased basin stability of a hybrid-E/M phenotype - considered to be the ’fittest’ for metastasis - and338

suggests ways how to elude transitions into the hybrid-E/M state, potentially restricting cancer spread.339

Materials and Methods340

Numerical simulations and bifurcation diagrams of the deterministic system341

We have used Matlab (R2015b) for numerical simulations of the deterministic system (Eq. 2). The codimension-342

one bifurcation diagrams involving two or more saddle-node bifurcation points were obtained using the343

continuation package MATCONT [66]. The two parameter bifurcation diagram (i.e. the phase diagram)344

with variations in the parameters SNAIL and miR-200/ZEB was obtained through the calculations of mul-345

tiple codimension-one bifurcations points. Later, the bifurcation curves separating monostable, bistable346

and tristable existence regions of the steady states were presented by connecting multiple codimension-one347

bifurcations points.348

Stochastic system and Monte Carlo simulations349

The time series of ZEB mRNA levels was generated from the probabilistic model through Monte Carlo350

simulations [30] which incorporates the intrinsic cellular noise. The algorithm considers each of the reaction351

events as individual realisations of Markov process. The time and species numbers are updated stochastically352

by choosing a random reaction event. The miR(µ) based chimeric tristable miR-200/ZEB circuit is simulated353

by realising ten reaction events as a function of the number of SNAIL molecules. The reaction events are354

listed in the SI Table S4. All biochemical parameters are based on [32] and those are listed in the SI355

Table S1, S2 and S3 for completeness. Both the time and the parameter (number of SNAIL molecules) are356

varied together to obtain the time series of ZEB mRNA levels that carries the signature of critical slowing357

down while shifting to an alternative stable state. In particular, we perform our simulations for a period of358

20 days along with the simultaneous variations in the number of SNAIL molecules, that ranges from 150K359

to 250K molecules. The chosen time period and and the range of SNAIL molecules are in consistent in the360

context of epithelial to mesenchymal transition period [32]. More details of the simulation is presented in361

the SI Text, Section 3.362

Statistical analysis of CSD indicators363

In the stochastic time series analysed here, we first visually identified shifts between E to E/M state and M364

to E state. Then we took time series segments (the regions marked with boxes in Figs. 2 and 3) prior to a365

critical transition and examined them for the presence of EWS. For stationarity in residuals, we used Gaussian366

detrending before performing any statistical analysis of the data. The residuals were then used to calculate367

the EWSs variance, lag-1 autocorrelation and conditional heteroskedasticity. The time series analysis have368

been performed using the “Early Warning Signals Toolbox” (http://www.early-warning-signals.org/). A369
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concurrent rise in the varaince and/or lag-1 autocorrelation forewarn an upcoming regime shift. The indicator370

conditional heteroskedasticity also works similarly (for details see SI Text, Section 4).371

Author contributions372

S.K.S., H.L., M.K.J., and P.S.D designed research; S.S., S.K.S., M.K.J., and P.S.D. performed research; S.S.,373

S.K.S., H.L., M.K.J., and P.S.D. analyzed data; and S.K.S., M.K.J., and P.S.D. wrote the paper.374

Acknowledgements375

S.S. acknowledges the financial support from DST, India under the scheme DST-Inspire (IF160459). S.K.S.376

is supported by SERB, Department of Science and Technology, Government of India (ECR/2018/000514).377

M.K.J. is also supported by Ramanujan Fellowship awarded by SERB, Department of Science and Technol-378

ogy, Government of India (SB/S2/RJN-049/2018).379

References380

[1] C. Trefois, P. M. Antony, J. Goncalves, A. Skupin, and R. Balling, “Critical transitions in chronic381

disease: transferring concepts from ecology to systems medicine,” Current Opinion in Biotechnology,382

vol. 34, pp. 48–55, 2015.383

[2] D. Angeli, J. E. Ferrell, and E. D. Sontag, “Detection of multistability, bifurcations, and hysteresis in384

a large class of biological positive-feedback systems,” Proceedings of the National Academy of Sciences,385

vol. 101, no. 7, pp. 1822–1827, 2004.386

[3] M. Scheffer, J. Bascompte, W. A. Brock, V. Brovkin, S. R. Carpenter, V. Dakos, H. Held, E. H. Van Nes,387

M. Rietkerk, and G. Sugihara, “Early-warning signals for critical transitions,” Nature, vol. 461, no. 7260,388

p. 53, 2009.389

[4] R. M. May, S. A. Levin, and G. Sugihara, “Complex systems: Ecology for bankers,” Nature, vol. 451,390

pp. 893–895, 2008.391

[5] M. Scheffer, S. R. Carpenter, T. M. Lenton, J. Bascompte, W. Brock, V. Dakos, J. Van de Koppel,392

I. A. Van de Leemput, S. A. Levin, E. H. Van Nes, et al., “Anticipating critical transitions,” Science,393

vol. 338, no. 6105, pp. 344–348, 2012.394

[6] T. M. Lenton, “Early warning of climate tipping points,” Nature Climate Change, vol. 1, no. 4, p. 201,395

2011.396

[7] K. S. Korolev, J. B. Xavier, and J. Gore, “Turning ecology and evolution against cancer,” Nature397

Reviews Cancer, vol. 14, no. 5, p. 371, 2014.398

[8] H. Li, “Toward better understanding of artifacts in variant calling from high-coverage samples,” Bioin-399

formatics, vol. 30, no. 20, pp. 2843–2851, 2014.400

16

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 13, 2019. ; https://doi.org/10.1101/733006doi: bioRxiv preprint 

https://doi.org/10.1101/733006
http://creativecommons.org/licenses/by-nc/4.0/


[9] I. A. Van de Leemput, M. Wichers, A. O. Cramer, D. Borsboom, F. Tuerlinckx, P. Kuppens, E. H. van401

Nes, W. Viechtbauer, E. J. Giltay, S. H. Aggen, et al., “Critical slowing down as early warning for the402

onset and termination of depression,” Proceedings of the National Academy of Sciences, vol. 111, no. 1,403

pp. 87–92, 2014.404

[10] Y. Sharma, P. S. Dutta, and A. Gupta, “Anticipating regime shifts in gene expression: The case of an405

autoactivating positive feedback loop,” Physical Review E, vol. 93, no. 3, p. 032404, 2016.406

[11] L. Dai, D. Vorselen, K. S. Korolev, and J. Gore, “Generic indicators for loss of resilience before a tipping407

point leading to population collapse,” Science, vol. 336, no. 6085, pp. 1175–1177, 2012.408

[12] A. J. Veraart, E. J. Faassen, V. Dakos, E. H. van Nes, M. Lürling, and M. Scheffer, “Recovery rates409

reflect distance to a tipping point in a living system,” Nature, vol. 481, no. 7381, p. 357, 2012.410

[13] S. Carpenter, W. Brock, J. Cole, J. Kitchell, and M. Pace, “Leading indicators of trophic cascades,”411

Ecology Letters, vol. 11, no. 2, pp. 128–138, 2008.412

[14] V. Guttal and C. Jayaprakash, “Changing skewness: an early warning signal of regime shifts in ecosys-413

tems,” Ecology Letters, vol. 11, no. 5, pp. 450–460, 2008.414

[15] D. A. Seekell, S. R. Carpenter, and M. L. Pace, “Conditional heteroscedasticity as a leading indicator415

of ecological regime shifts,” The American Naturalist, vol. 178, no. 4, pp. 442–451, 2011.416

[16] S. R. Carpenter, J. J. Cole, M. L. Pace, R. Batt, W. Brock, T. Cline, J. Coloso, J. R. Hodgson, J. F.417

Kitchell, D. A. Seekell, et al., “Early warnings of regime shifts: a whole-ecosystem experiment,” Science,418

vol. 332, no. 6033, pp. 1079–1082, 2011.419

[17] C. Boettiger and A. Hastings, “Quantifying limits to detection of early warning for critical transitions,”420

Journal of the Royal Society Interface, vol. 9, no. 75, pp. 2527–2539, 2012.421

[18] G. Tirabassi, J. Viebahn, V. Dakos, H. A. Dijkstra, C. Masoller, M. Rietkerk, and S. C. Dekker,422

“Interaction network based early-warning indicators of vegetation transitions,” Ecological Complexity,423

vol. 19, pp. 148–157, 2014.424

[19] A. Kianercy, R. Veltri, and K. J. Pienta, “Critical transitions in a game theoretic model of tumour425

metabolism,” Interface Focus, vol. 4, no. 4, p. 20140014, 2014.426

[20] D. Hanahan and R. A. Weinberg, “Hallmarks of cancer: the next generation,” Cell, vol. 144, no. 5,427

pp. 646–674, 2011.428
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of the National Academy of Sciences, vol. 112, no. 15, pp. E1828–E1836, 2015.489

[46] B. Yang, M. Li, W. Tang, W. Liu, S. Zhang, L. Chen, and J. Xia, “Dynamic network biomarker indicates490

pulmonary metastasis at the tipping point of hepatocellular carcinoma,” Nature Communications, vol. 9,491

no. 1, p. 678, 2018.492

[47] S. V. Puram, I. Tirosh, A. S. Parikh, A. P. Patel, K. Yizhak, S. Gillespie, C. Rodman, C. L. Luo,493

E. A. Mroz, K. S. Emerick, et al., “Single-cell transcriptomic analysis of primary and metastatic tumor494

ecosystems in head and neck cancer,” Cell, vol. 171, no. 7, pp. 1611–1624, 2017.495

19

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 13, 2019. ; https://doi.org/10.1101/733006doi: bioRxiv preprint 

https://doi.org/10.1101/733006
http://creativecommons.org/licenses/by-nc/4.0/


[48] M. K. Jolly, K. E. Ware, S. Gilja, J. A. Somarelli, and H. Levine, “Emt and met: necessary or permissive496

for metastasis?,” Molecular Oncology, vol. 11, no. 7, pp. 755–769, 2017.497

[49] K. J. Cheung and A. J. Ewald, “A collective route to metastasis: Seeding by tumor cell clusters,”498

Science, vol. 352, no. 6282, pp. 167–169, 2016.499

[50] S. H. Au, B. D. Storey, J. C. Moore, Q. Tang, Y.-L. Chen, S. Javaid, A. F. Sarioglu, R. Sullivan,500

M. W. Madden, R. O?Keefe, et al., “Clusters of circulating tumor cells traverse capillary-sized vessels,”501

Proceedings of the National Academy of Sciences, vol. 113, no. 18, pp. 4947–4952, 2016.502

[51] B. M. Szczerba, F. Castro-Giner, M. Vetter, I. Krol, S. Gkountela, J. Landin, M. C. Scheidmann,503

C. Donato, R. Scherrer, J. Singer, et al., “Neutrophils escort circulating tumour cells to enable cell cycle504

progression,” Nature, vol. 566, pp. 553–557, 2019.505

[52] A. F. Sarioglu, N. Aceto, N. Kojic, M. C. Donaldson, M. Zeinali, B. Hamza, A. Engstrom, H. Zhu, T. K.506

Sundaresan, D. T. Miyamoto, et al., “A microfluidic device for label-free, physical capture of circulating507

tumor cell clusters,” Nature Methods, vol. 12, no. 7, p. 685, 2015.508

[53] M. K. Jolly, M. Boareto, B. G. Debeb, N. Aceto, M. C. Farach-Carson, W. A. Woodward, and H. Levine,509

“Inflammatory breast cancer: a model for investigating cluster-based dissemination,” NPJ Breast Can-510

cer, vol. 3, no. 1, p. 21, 2017.511
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