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Abstract: Urbanization and associated environmental changes are causing global declines in 

vertebrate populations. In general, population declines of the magnitudes now detected should 

lead to reduced effective population sizes for animals living in close proximity to humans. This 

is cause for concern because effective population sizes set the rate of genetic diversity loss due to 

genetic drift, the rate of increase in inbreeding, and the efficiency with which selection can 

spread beneficial alleles. We predicted that the effects of urbanization should decrease effective 

population size, which would in turn decrease genetic diversity and increase population-level 

genetic differentiation. To test for such patterns, we repurposed and reanalyzed publicly archived 

genetic data sets for North American birds and mammals. After filtering, we had usable raw 

genotypes for 41,023 individuals, sampled from 1,008 locations spanning 41 mammal and 25 

bird species. We used census-based urban-rural designations, human population density, and the 

Human Footprint Index as measures of urbanization and habitat disturbance. As predicted, 

mammals sampled in more disturbed environments had lower effective population sizes and 

genetic diversity, and were more genetically differentiated from those in less disturbed 

environments. There were no consistent effects for birds. This suggests that mammal populations 

continuing to live in close proximity to humans can generally be expected to have less capacity 

to respond to further environmental changes, and more likely to suffer from effects of 

inbreeding. 

 

Keywords: urbanization, genetic diversity, evolution, mammals 
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Significance statement: The leading cause of contemporary biodiversity loss at the level of 

populations and species is the wholesale transformation of natural environments by humans. In 

the span ~50 years vertebrate populations have declined by ~60% on average while the number 

of threatened and endangered species has increased. These systematic reductions in population 

size will likely have unintended effects on evolutionary change in animals. Here, we show that 

environmental degradation consistently erodes the genetic diversity of mammal populations 

living in close proximity to humans in ways that negatively affect their probability of 

persistence, compounding direct effects of habitat loss. 

 

Main Text:  

Introduction 

Human activities are among the most prominent and efficient drivers of contemporary evolution 

(1). In some cases, human-caused evolution in wild populations is well understood and 

predictable. For instance, we have a well-founded expectation that populations of pests and 

disease agents will respond adaptively to our attempts at controlling them (1). It is also clear that 

humans inadvertently alter evolutionary change in wild populations through land use and habitat 

degradation (2, 3). Whether the indirect effects of human activities on evolutionary change in 

species that are not directly targeted by our activities can cause predictable evolutionary 

outcomes is poorly understood. We hypothesized that urbanization and related land degradation, 

by limiting population size, could consistently alter the genetic composition of wild populations 

living near humans in ways that decrease the efficiency of selection and increase inbreeding risk. 

To test this prediction, we repurposed publicly archived molecular genetic data sets for North 
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American birds and mammals to test for general relationships between urbanization and the 

genetic compositions of populations.  

 

Urbanization is one of the most pervasive causes of habitat fragmentation and general landscape 

change. In addition to the ~700,000 km2 occupied by cities (4), nearly 75% of the Earth's land 

surface has been modified by humans, primarily in support of city dwellers (5). This human-

caused degradation of the planet’s land surface has consistently reduced its capacity to support 

wildlife (6). As a result, vertebrate populations have on average declined in size by ~60% 

between 1970 and 2014 (6). Reductions in population size at this level should increase the 

strength of genetic drift—allele frequency variation due to the random sampling of gametes from 

one generation to the next. While genetic drift is a neutral evolutionary process that operates 

independently of the selective value of alleles, it reduces the efficiency of deterministic 

evolutionary processes like selection by causing allele frequencies to randomly deviate from 

expected values. When drift is strong relative to selection, random gamete sampling becomes the 

predominant cause of allele frequency change. In addition, increased drift can eventually lead to 

reduced mean fitness in populations due to inbreeding depression. If wildlife populations living 

in close proximity to humans generally experience reductions in population size and 

connectivity, and thus increased drift, then they may systematically become less genetically 

diverse than those living in less disturbed environments. By altering a population’s genetic 

composition in this way, human-caused environmental change could make evolutionary 

responses to such change less efficient. 
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We tested for general relationships between the human modification of terrestrial habitats and 

the genetic composition of North American mammals and birds using archived microsatellite 

data from 41,023 individuals, sampled at 1,008 georeferenced sample sites, spanning 66 species 

(Table S1, Table S2). In particular, we studied the effects of urbanization and the human 

footprint (7). Our approach was made possible due to the accumulation of data in public data 

archives, and a still changing culture of open data in ecological and evolutionary research. 

Access to raw data originally generated for unrelated purposes allowed for a particularly 

powerful synthetic analysis: we could consistently calculate population genetic parameters of 

interest for our question, whether or not they were presented in the original publications, and 

these calculations are repeatable. In addition, the fact that these data were collected to address 

different questions reduces the likelihood that study system selection—perhaps a tendency to 

explore evolutionary responses to humans in systems where such responses are expected—

biased our findings.  

 

We developed our specific predictions for the effects of urbanization on wild populations based 

on basic population genetic theory (Fig. 1). Assuming a finite population of constant size with 

individuals that randomly mate, die out, and are completely replaced by their offspring each 

generation, populations will lose genetic diversity at a rate inversely proportional to population 

size. In reality, natural populations always deviate from these assumptions. Fortunately, we can 

substitute the concept of effective population size for census population size and the predictive 

utility of the theory holds. The effective population size is the size of an idealized population 

which conforms to the assumptions above and produces the same rate of drift as observed in the 

measured population. We can think of effective population size as a measure of the rate at which 
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genetic drift causes a population to lose genetic diversity. Nearly all violations of the above 

assumptions cause the effective population size to be much lower than the census population 

size, underscoring that drift plays a more important role in determining genetic diversity and the 

efficiency of selection than what might be expected from census population size alone. Given 

that urbanization reduces census population size and fragments populations, we predicted that 

the strength of genetic drift would increase with increasing proximity to environmental 

disturbances: this would produce smaller effective population sizes, decreased genetic diversity, 

and increased genetic differentiation.  

 

We chose to analyze data sets that used neutral microsatellite markers because microsatellites 

were the most common molecular marker type available in data repositories, and because the 

evolutionary processes that we are interested in are best measured with neutral markers.  

Although the number of loci surveyed in microsatellite studies is often small relative to surveys 

of genome-wide markers, the typical number of microsatellites used (~10 loci) in fact estimates 

genome-wide diversity well with little gain in accuracy with additional genotyping (8). While 

questions about adaptive genetic variation are interesting, adaptive diversity is currently more 

difficult to generally define and interpret than neutral genetic diversity, and there are still 

relatively few data sets suitable for this type of multi-population and multi-species analysis.  

 

We tested for effects of urbanization and the human footprint on estimates of four population 

genetic parameters calculated for each site (196 bird sites, of which 129 sampled non-migratory 

species and were reanalyzed separately, and 812 mammal sites, Figure 2; Table S1). We 

estimated contemporary effective population size of the parental generation using a single 
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sample linkage disequilibrium method to quantify genetic drift (9–11). Of available methods, this 

approach is one of the most accurate and is relatively robust to departures from underlying 

assumptions about population structure (12). Estimators of effective population size perform 

poorly when sampling error swamps signals of genetic drift, and this meant that effective 

population size was not estimable at some sites, which were excluded from analysis (see 

Methods for details). Gene diversity (13) is a measure of genetic diversity that accounts for the 

evenness and abundance of alleles, and it is not significantly affected by sample size or rare 

alleles (14). We calculated allelic richness, the number of alleles per locus corrected for sample 

size, as a second measure of genetic diversity.  To quantify genetic differentiation among sites, 

we estimated site-specific FST (15).  

 

We focused our analyses on the continental United States and Canada due to the historical and 

demographic similarities of cities and land-usage in this region (16), and to ensure that species 

have had broadly similar exposures to past climate variation (17). We chose three indices of 

urbanization and environmental disturbance. First, we classified a sample as coming from an 

urban or rural site based on United States Census Bureau (18) and Statistics Canada (19) 

classifications of urban areas and population centers. Second, we measured human population 

density at each site, which may capture aspects of the continuous nature of the effects of human 

presence that would not be apparent in the binary urban-rural classification. Lastly, we used the 

Human Footprint Index (7) as a measure of disturbance because it incorporates data from 

multiple land use types including human population density, built-up areas, nighttime lights, land 

cover, and human access to coastlines, roads, railways, and navigable rivers.  
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Finally, we had to account for factors other than human disturbance that could affect genetic 

diversity. Neutral genetic diversity varies with species-level life history traits (20), so when 

fitting models we allowed relationships to vary among species by treating species as a random 

effect in a generalized linear mixed modelling framework. Genetic diversity is also affected by 

regional historical contingencies which would be difficult to specifically identify without 

detailed knowledge of each species and region in our data set. Such events will, however, 

produce spatial patterns in our genetic measures. These spatial patterns are detectable and can be 

controlled for—even  if their causes are unknown—using distance-based Moran’s Eigenvector 

Maps (dbMEMs) (21–23). Briefly, dbMEMs are orthogonal spatially explicit eigenvectors that 

summarize spatial autocorrelation (Moran’s I) patterns in data across all scales. We used 

dbMEMs that described spatial variation in our measures of the genetic composition of sample 

sites in our regression models to explicitly account for processes causing spatial patterns in the 

data (22, 24).  

 

To test for relationships between genetic diversity and urbanization, we treated each of our four 

population genetic parameters (effective population size, allelic richness, gene diversity, and site-

specific FST) as dependent variables in a series of generalized linear mixed models. We first fit 

each population genetic parameter to each environmental variable (urban-rural, human 

population density, and Human Footprint) in separate models that also contained terms for 

species as a random effect, and spatial variables (dbMEMs) when they were important 

descriptors of spatial patterns in genetic data. Finally, we fit a null model to each population 

genetic parameter that contained the random effect for species and spatial variables only. We fit 

these models for bird and mammal data independently. Migratory behavior in birds may affect 
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spatial patterns in genetic diversity depending on where samples were taken, and whether they 

were sampled during the breeding season. Therefore, we also ran these models separately for 

non-migratory birds only (7 species, 129 sites; Table S1). 

 

Results and Discussion 

Relationships between all measures of urbanization and the genetic composition of mammal 

populations were statistically clear, consistent, and as predicted (see the position of parameter 

estimates and the breadth of 95% confidence intervals in Fig 3a). Effective population size, 

allelic richness, and gene diversity were each negatively related to the measures of urbanization, 

and sites sampled in more disturbed areas were the most genetically differentiated (Fig. 3a; Table 

1). Contrasting these clear relationships, we found no consistent evidence for effects of 

urbanization and the human footprint on the genetic composition of non-migratory bird samples 

when analyzed alone (Fig. 3b; Table 1), or when migratory and non-migratory species were 

combined for analyses (Fig. S1). When non-migratory birds were considered alone, there was a 

negative relationship between the effective population size at a site and the site’s Human 

Footprint Index. When considering both migratory and non-migratory birds together, there were 

positive relationships between allelic richness and the Human Footprint Index, and our binary 

urban-rural sample site designation. No other relationships within the bird data were detected. 

We note that (see Methods for details) our data structure allowed us to fit models with random 

slopes and intercepts for mammal species, whereas we could only fit random intercept models 

for birds.  Random intercept only models suffer from more false positives than random slope and 

intercept models. Thus, the consistent effects for mammals arise from more conservative model 
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fitting, while more care is needed when interpreting the statistical relationships detected for 

birds.    

 

To assess model fits we estimated marginal R2 (R2
m), the variance explained by the fixed effects, 

and conditional R2 (R2
c), the variance explained by both fixed and random effects (25). For 

mammals, all models containing indices of human disturbance explained more variation in the 

genetic composition of populations than null models (Table 1). Human population density 

explained the most variation in each measure of the genetic composition of mammal sample sites 

(effective population size: R2
m 0.27; R2

c 0.56; gene diversity R2
m 0.07; R2

c 0.81; allelic richness 

R2
m 0.06; R2

c 0.74; FST R2
m 0.17; R2

c 0.44; Table 1). Species level variation among both 

mammals and birds was important and well-captured by random effects, particularly for gene 

diversity and allelic richness (Table 1). 

 

The lack of consistent evidence for genetic effects of urbanization on birds could in part be due 

to differences in movement ability. Cities and their surrounding areas are characterized by 

disjoint patches of habitat interspersed among paved surfaces, buildings, and grassy or 

agricultural areas (26). Birds’ ability to fly may buffer against the effects of habitat 

fragmentation and allow for gene flow from undisturbed populations (27) in situations where 

mammal movements would be more restricted. Indeed, a global analysis of 57 mammal species 

found that the movements of individuals living in areas with a high Human Footprint Index were 

considerably reduced relative to those in less disturbed areas (28), which suggests that 

fragmentation could underlie the patterns we detect. Alternatively, it is also possible that the 

genetic effects of population declines may simply not yet be detectable for birds. North 
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American mammal populations have declined more quickly than bird populations (6, 29), and 

data were available for many fewer bird species. Finally, the life histories of bird species may 

vary in such ways that we should not expect consistent effects of urbanization across all species. 

The continued accumulation of data, and more in-depth analyses should resolve these issues. 

 

We currently know very little about the general spatial patterns of intraspecific genetic diversity. 

There have been some synthetic spatial analyses of raw mitochondrial DNA (mtDNA) sequence 

variation (30, 31), but to our knowledge there are no other syntheses of spatial patterns in nuclear 

DNA variation similar to ours. Both Miraldo et al. (30) and Millette et al. (31) reanalyzed raw 

mtDNA sequence data at global scales across multiple taxa and detected latitudinal patterns of 

variation in sequence diversity. We detected similar broad spatial patterns in our spatial variables 

and controlled for them. Both of these groups also explored relationships between measures of 

human disturbance and sequence diversity, but arrived at contradictory results. Miraldo et al. 

(30) explored both cytochrome b and cytochrome oxidase subunit I mtDNA sequence variation 

in relation to anthropogenic disturbance in mammals and found that cytochrome oxidase subunit 

I genetic variation increased in less disturbed environments, but cytochrome b variation was not 

obviously related to human disturbance. Millette et al.’s more recent work (31) spanned more 

taxa, including both birds and mammals, and examined variation across spatial scales as well as 

temporal variation in genetic diversity as measured at cytochrome c oxidase subunit I. 

Interestingly, they detected no overarching trend for a loss of genetic diversity associated with 

proximity to humans, measured by human population density, and no systematic decline in 

diversity through time. They found considerable spatial, temporal, and taxonomic variation in 

diversity trends.  
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How can we explain our results in light of this previous work? Millette et al. (31) describe the 

caveats associated with the use of mtDNA sequences well. Both of the mtDNA sequences used 

in the above described work are coding sequences and so do not evolve under neutrality, though 

they may often behave in a nearly neutral manner. Nevertheless, this means their variability does 

not necessarily reflect the consequences of habitat degradation on overall population genetic 

variability. In addition, mtDNA diversity does not accurately reflect population size (32). Habitat 

fragmentation and reduced population sizes are hypothesized to be the leading mechanisms 

causing reduced genetic diversity – if these processes are not captured well by these markers, the 

trend may be difficult to detect. Finally, the studies by Miraldo et al. (30) and Millette et al. (31) 

were global in scope. This is certainly a strength of their work, but underlying spatial differences 

may be harder to detect and control for at this scale. By focusing on North America, we 

attempted to control for variation in the timing and nature of disturbances that would otherwise 

be difficult at a global scale. Taken together, it is clear that there are interesting spatial trends in 

intraspecific genetic variation, and the exploration of their underlying causes warrants further 

study.  

 

Urbanization and the broader human footprint are leading causes of the current high rates of 

species and population-level biodiversity losses (33, 34). The population genetic patterns we 

detected reflect patterns in genome-wide nuclear genetic diversity that are ultimately the result of 

disturbances at the ecosystem, community, and population levels. The consistent effects for 

mammals across our three environmental measures of disturbance suggest that this pattern is not 

confined to just urban spaces – human land use is an issue for the genetic diversity of species in 
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general. This has considerable importance for understanding the current nature and future 

consequences of biodiversity loss. While monitoring individuals within populations is the best 

tool for detecting population trends and assessing risk, such direct monitoring of many species is 

not logistically possible. Our results suggest that calls for intraspecific genetic monitoring 

programs are warranted and feasible (35). A relatively small number of genetic markers reflects 

genome-wide diversity well (8) and is capable of detecting the effects of disturbance. In fact, 

publicly archiving data with publications, originally intended to ensure data posterity, safe-

keeping, and research reproducibility, could be better utilized for this task. Access to raw 

molecular data sets will continue to increase for the foreseeable future, and can be used for 

monitoring regardless of the original purpose. However, for this to be a useful component of 

genetic monitoring, more researchers will need to adhere to the standards and best practices for 

data sharing to maximize reusability (36, 37). This includes using standardized file and metadata 

formats that are clearly communicated in data package metadata, and including all relevant 

methodological information. In the data searches presented here, a majority (192/313 = 61%) of 

datasets were excluded because they did not meet our study criteria (Data S1). However, an 

additional 36 datasets were excluded for reasons associated with difficulty accessing or 

interpreting data (Data S1): for example, not being able to download files (i.e., only metadata 

was available, or only select datasets were deposited), or unclear methodological detail (i.e., no 

species designations, delineation between study groups was unclear, or lack of spatial reference). 

We were able to resolve such issues in many cases by contacting the authors, however this might 

not always be practical for larger studies and limits the ability to automate the data collection 

process.  
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Relative to populations in more natural environments, mammal populations in disturbed 

environments have a reduced capacity to spread beneficial alleles in response to selection 

pressures, have reduced genetic diversity which can reduce mean population fitness (38, 39), and 

are more genetically isolated from natural populations. We are extensively and irreversibly 

creating environmental change while simultaneously reducing the capacity of some populations 

to evolve in response. Reducing fragmentation and facilitating population connectivity are 

therefore key to preserving genetic diversity in mammals. Current estimates suggest that by 

2050, just 10% of the planet’s surface will be unaltered by humans (6). Land transformation 

processes are eroding genetic diversity in mammals, compounding direct effects of habitat loss in 

a way that threatens the long-term existence of populations that persist. 

 

 

 

Methods 

Microsatellite data compilation 

Our dataset was comprised of bird and mammal microsatellite data collected from publicly 

archived, previously published work (Table S2). To create this dataset, we conducted two 

systematic searches of online databases (Figure S3). We obtained a list of species names for 859 

birds and 450 mammals native to Canada and the United States from the IUCN Red List 

database which includes all species regardless of Red List status. We then queried the Dryad 

Digital Repository in February 2018 using a python script with the following search terms: 

species name (e.g. “Branta canadensis”), “microsat*”, “single tandem*”, “short tandem*”, and 

“str”. This search yielded 194 unique data packages associated with papers. A second search was 
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performed in May 2018, this time querying DataOne.org, a network which provides access to 

data from multiple repositories such as Dryad, the Knowledge Network for Biocomplexity 

(KNB), and the United States Geographic Survey (USGS). This search was conducted in R using 

the dataone package (40), a convenient method of querying the DataOne network. Using 

identical keywords, 237 unique results were generated, 121 of which overlapped with our first 

search (Figure S3, Data S1).   

All data sets were then individually screened for suitability, ensuring: location (Canada and the 

United States), taxon (native birds and terrestrial mammals), data type (neutral microsatellite 

markers), and georeferenced sampling (coordinates, maps, or place names). Studies with other 

factors which may have influenced genetic diversity (e.g. island sites, genetic rescue, 

translocation, managed or captive populations) were excluded. In total, data from 85 studies were 

retained for analysis. In a final step, we assured individual sample sites within datasets adhered 

to our study criteria, and removed those which did not. We maintained the same sample site 

delineations as in the original work. Criteria for removal from a dataset included island, 

managed, or captive populations; sites outside of Canada and the United States; and historical 

samples (where identified). Sites for which we were unable to extract geographic information 

were also removed, as well as sites with <5 individuals. Any non-neutral microsatellite markers 

in the data were removed. Next, unique names were assigned to each site, and all datasets were 

formatted as either STRUCTURE or GENEPOP files and read into R version 3.4.2 (41) using 

the adegenet package (42).  

 

Geographic site locations 
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Geographic coordinates provided by the authors were used when available (Table S2). Where 

spatial location was available for each individual sampled, coordinates were averaged. If site 

names were provided (e.g. “Yellowstone National Park”) with no coordinate reference, we 

performed a Google Maps search and noted the resulting coordinates. Where applicable, 

coordinate information was obtained by searching for site names in the Geographic Names 

Information System (GNIS) or GeoNames database, as was the case for a few datasets from the 

USGS.  In instances where only maps of sampling sites were available, site coordinates were 

extracted using a reference map in ArcMap version 10.3.1 (ESRI). When georeferencing map 

images, if sampling locations indicated regions rather than single points, centroid coordinates 

served as the site location. Centroid coordinates were also calculated as site location for data 

accompanied by polygon shapefiles as a spatial reference. All coordinates were recorded using 

the WGS84 (World Geodetic System 1984) coordinate system in decimal degrees, and 

transformed from other systems or map projections in ArcMap as needed. Finally, when site 

locations were offshore (42 sites), points were moved to the nearest terrestrial location using the 

Generate Near Table tool in ArcGIS. Offshore sites (those located in bodies of water) were 

moved to avoid generating null values for population density and the Human Footprint Index—

both of which are high-resolution terrestrial maps which do not extend far past the coast. In some 

instances, offshore sites were recorded as thus in the original publication, while other times they 

were generated during the process of obtaining a single location for a site (e.g. the average 

location of individual coordinates, or centroid location, was in a body of water). Polar bear sites 

in the Arctic Archipelago constituted half of all offshore sites, while the remainder were coastal 

species and species sampled near lakes or oceans. 
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Genetic diversity estimates 

We chose to measure gene diversity (13) and allelic richness for each site as measures of genetic 

diversity. Gene diversity uses allele frequencies to determine the probability that pairs of alleles 

drawn at random from a population are different, and accounts for both the number and evenness 

of alleles. This measure is minimally affected by sample size and rare alleles (14), and thus is 

convenient to use when sample sizes are variable, as is the case here. Gene diversity was 

calculated using the adegenet package (42). Allelic richness, the number of alleles per locus, is 

strongly influenced by sample size and effective population size. To account for differences in 

sample size, we used rarefaction as employed in the R package hierfstat (43) to standardize allele 

counts to the minimum sample size (n = 5 individuals) across sites (44). Values were then 

averaged across loci to obtain a single value per site.  

 

Effective population size estimates 

We estimated site-specific contemporary effective population sizes using the linkage 

disequilibrium method for single samples implemented in the software NeEstimator 2.1 (11). 

The presence of rare alleles produces an upward bias when estimating effective population size 

which is especially apparent at small sample sizes (45). We therefore set a conservative 

exclusion threshold (Pcrit) of 0.1, meaning estimates are made based only on alleles with 

frequencies higher than this value, which has been shown to markedly reduce bias (45). Linkage 

disequilibrium methods work well for estimating effective population sizes in small populations, 

however are less reliable for large populations (46). An estimate of infinity is returned when 

sampling error swamps detectable signals of genetic drift—which may be the case if too few 

individuals or loci were sampled to yield any useful information about effective population size. 
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In these instances, rather than replacing infinity values with arbitrary large values, we chose to 

exclude all sites for which we were unable to estimate effective population size. 

 

Population-specific FST 

To estimate levels of population differentiation in relation to human disturbance, we measured 

population-specific FST (15). In addition to returning an estimate of population structure for 

single populations, population-specific FST values (15) also take into account shared ancestry and 

inbreeding, which can otherwise confound FST estimates. Moreover, using a population-specific 

estimator of structure allows us to make comparisons between populations of different species. 

Population-specific FST was calculated in R using hierfstat (43), and values were averaged across 

loci. Additionally, we note that population-specific FST can only be calculated for species with 

two or more sample sites, thus sample size was slightly decreased when this condition was not 

met (Table 1). 

 

Measures of environmental disturbance and urbanization 

Urban-rural classification. Our next step was to define urban habitats in North America. The 

United States Census Bureau and Statistics Canada provide publicly available maps of urban 

areas and population centers, respectively (18, 19). According to the US Census Bureau, an 

urban area is defined as any densely developed territory with at least 2500 inhabitants. Statistics 

Canada defines a population center as any area with a minimum population of 1000, and a 

population density of 400 persons or more per square kilometer. We considered these 

international designations of urbanization to be comparable. Canadian and American urban area 

maps were downloaded as polygon GIS layers and merged into a single layer. Site coordinates 
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were transformed from WGS84 to the same projection as the urban area maps (GCS North 

American 1983) in ArcMap to ensure correct alignment. A spatial join was then performed 

between sites and the urban area layer in order to classify sample locations as “urban” or 

“nonurban”. The search radius parameter was set to 10 km to encompass the entire urban 

gradient, and account for sprawl. Periurban landscapes which are adjacent to cities may be less 

densely inhabited, however often encompass areas highly managed or disturbed by humans 

including farmland, parks, and golf courses; in larger cities, periurban landscapes may extend up 

to 10 km away from the city center (47).  Thus, any site located in, or within 10 km of, an urban 

area was considered “urban” for the purposes of this study. 

Human population density. Human population density was used as a proxy of urbanization and 

human effects on the environment. In contrast to our binary urban-rural designation of sample 

sites, human population reflects the continuous distribution of the effects of human presence, and 

thus should indicate the intensity of the effects of human activity on genetic diversity. A raster 

map of global population density per square kilometer was obtained for the most recent available 

year (2000) from NASA’s Center for Near Earth Object Studies 

(https://neo.sci.gsfc.nasa.gov/view.php?datasetId=SEDAC_POP). Next, the raster map and 

shapefile containing sites as point features were read into R (package rgdal and raster; Bivand et 

al. 2017, Hijmans 2017). Mean population density was calculated within a 10 km buffer zone 

around each site. 

Human Footprint Index. The Global Human Footprint Index (7, 50) quantifies human influence 

on a scale of 0 (most wild) to 100 (most transformed) at a 1 km2 resolution. It provides a more 

comprehensive assessment of the effects of humans than urban-rural designations or population 

density alone because it incorporates data from multiple sources of land use. In particular, it 
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captures human population density, human land use and infrastructure (built-up areas, nighttime 

lights, land use, and land cover), and human access (coastlines, roads, railways, and navigable 

rivers). As with the raster map of population density, the Human Footprint Index was imported 

to R and values per site (within a 10 km buffer zone) calculated using the same method. 

  

Statistical analysis 

We modelled birds and mammals separately because we expected them to respond to human 

disturbance in fundamentally different ways. Within birds, we further classified each species as 

migratory or non-migratory using information from species accounts in The Birds of North 

America (51). We then created a separate data subset comprised of only non-migratory species 

which was analyzed in parallel. Species with a mix of migratory and resident populations were 

counted as migratory and excluded, as were species with unknown migratory behavior. 

Current levels of genetic diversity will reflect many past processes in addition to urbanization 

and human-caused environmental degradation more generally. Such processes include exposure 

to Pleistocene glaciations as well as species-specific life history traits, such as body mass and 

longevity, each of which shape effective population size and thus genetic diversity. Because 

exposure to past environments (17, 52) and life history trait variation (53) vary spatially, we 

expect the effects of such processes to create spatial variation in genetic diversity. We can 

account for such spatial patterns by including variables describing spatial patterns in genetic 

diversity directly in our models, even when the variables themselves are unmeasured. This can 

be accomplished with distance-based Moran’s Eigenvector Maps, or dbMEMs (21–23). The 

dbMEM analysis we used (R package adespatial (54)) is a type of eigenanalysis based on 

principal coordinates analysis which produces a set of spatially explicit variables, dbMEMs, that 
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quantify spatial trends at multiple scales. Because they are orthogonal, dbMEMs can 

subsequently be included in regression analyses to explicitly model spatial patterns (54). The 

eigenvalues of the modified distance matrix generated in the first steps of dbMEM analysis are 

equivalent to Moran’s I coefficients of spatial autocorrelation multiplied by a constant (22, 55). 

Importantly, only positive eigenvalues are considered because negative eigenvalues generate 

complex principal coordinate axes (56). dbMEMs therefore correspond to positive values of 

Moran’s I, and can account for positive spatial autocorrelation present in the data. Positive 

spatial autocorrelation occurs when sites nearer to each other are more similar than sites further 

away, and violates the assumption of independence in our statistical tests. Before undertaking 

dbMEM, any linear trends in the response variables were removed. Although dbMEM analysis is 

capable of detecting linear spatial gradients, dbMEMs used to model such trends then cannot be 

used to recover other, potentially more interesting spatial patterns (21). dbMEM analyses were 

run in parallel for measures of genetic diversity (gene diversity and allelic richness), population-

specific FST, and effective population size. We were able to calculate gene diversity and allelic 

richness for all sites, however, removed sites where effective population size was infinite and 

sites where population-specific FST could not be computed. To capitalize on available data, we 

created subsets for genetic diversity, population-specific FST, and effective population size, 

omitting rows where the focal variable(s) had null values. For each taxon we thus had 3 data 

subsets: one for gene diversity and allelic richness, which included all sites; population-specific 

FST; and effective population size (Table 1). To select dbMEMs for inclusion in regression 

analyses, we used forward selection with a p-value criterion (alpha = 0.05) in the SignifReg 

package (57). 
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Testing effects of human disturbance on genetic diversity. To test for the effects of human 

disturbance on genetic diversity, and to determine whether alternate proxies of urbanization 

would yield similar results, we constructed four linear mixed models per response variable 

(effective population size, gene diversity, allelic richness, and population-specific FST). Three of 

these models included spatial dbMEMs and a measure of disturbance as explanatory variables: 

(1) urban-rural category, (2) human population density, and (3) Human Footprint Index. The 

fourth model consisted of dbMEMs only, or, where no dbMEMs were significant, was a null 

model (Table 1).  

Species was included as a random effect in all models to account for species-level variation in 

genetic diversity, effective population size, and population-specific FST. Where possible, the 

random species effect also accommodated potential variation in the level of species’ responses to 

human-caused environmental degradation (random slope models). The random species effect 

was estimated using restricted maximum likelihood (REML). Random effects account for non-

independence of samples within groups and increase the accuracy of parameter estimation (58). 

Allowing for variation between group means (random intercepts) and effect sizes (random 

slopes) additionally reduces Type I and Type II error rates (59). However, fitting both random 

intercepts and slopes requires large sample sizes for groups, and for samples within groups. 

Among our datasets this was possible for mammals, for which we had substantially more data 

than birds. We therefore fit all mammal models with random slopes and intercepts, and bird 

models with both where possible, or else with random intercepts only (Table 1). Random 

intercept models do not reduce Type I and II error rates to the same extent as models with both 

random intercepts and slopes, however provide better estimates than models without random 

effects at all (59).  
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To evaluate and compare model fits, we computed marginal and conditional R2 values following 

the method of Nakagawa and Schielzeth (25) for mixed models using the R package MuMIn 

(60). Marginal R2 represents the variance explained by fixed factors, while conditional R2 is the 

variance explained by both fixed and random factors (Table 1). 
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Figure and table legends 

 

Figure 1. Urbanization is expected to cause smaller effective population sizes, lower genetic 

diversity, and increased population differentiation in comparison to natural habitats (a). As 

habitats become increasingly urbanized, they experience greater fragmentation (b), resulting in 

smaller patch sizes with lower connectivity. Smaller patches limit supportable population sizes 

wherein genetic drift becomes the predominant evolutionary force and movement between 

patches in urbanized areas (black circles) becomes difficult, reducing gene flow. 

 

Figure 2. Map of 1,008 sample sites for the 66 mammal and bird species native to North 

America examined in this study. 812 sites were mammals (black points) and 129 birds (white 

points). Using microsatellite markers, we calculated effective population size, gene diversity, 

allelic richness, and population-specific FST for each site. 

 

Figure 3. GLMM coefficients for fixed urban and disturbance effects in mammals (top), and 

non-migratory birds (bottom; for bird results including migratory species, refer to SI Fig. 1 and 

SI Table 2). Open circles represent coefficient estimates, bold lines are 90% confidence intervals, 

and narrow lines are 95% confidence intervals. Sample size differed between variables, i.e. sites 

where effective population size was not calculable were excluded, and calculation of population-

specific FST for all sites within a study required at least two sample sites. Mammals: effective 

population size n = 639; gene diversity and allelic richness n = 812; FST n = 795. Birds (non-

migratory): effective population size n = 87; gene diversity and allelic richness n = 129; FST n = 

128. 
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Table 1. Model summaries for mammals, non-migratory birds, and all birds. Four models were 

constructed per response variable, each including one of three proxies of urbanization: urban-

rural category, human population density (popden), and Human Footprint Index (HFI). The 

fourth model did not include any measure of urbanization and had only dbMEMs as fixed effects 

(spatial model), or, where no dbMEMs were selected, a null model. Coefficient of variation, R2, 

values are an indicator of model fit; marginal R2 describes the proportion of variation explained 

by fixed effects, while conditional R2 is the variation explained by both fixed and random effects. 

Random effects are specified in the R package ‘lme4’ format, where variables preceding the 

vertical bar (|) indicate random slopes, and two vertical bars (||) indicate uncorrelated random 

slopes and intercepts.  
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Figure 1 
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Figure 2 
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Figure 3 
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Table 1 

 

Class variable sites 
Fixed effects 

coefficient 
95% CI 

Marginal R2 Conditional R2 
dbMEMS covariate lower upper 

Mammals effective population size 639 5             

    urban-rural -0.52 -0.85 -0.19 0.03 0.25 

    popden -1.00 -1.62 -0.39 0.27 0.56 

    HFI -0.27 -0.46 -0.08 0.04 0.27 

    none -- -- -- 0.00 0.24 

 gene diversity 812 13     
  

    urban-rural -0.19 -0.31 -0.07 0.02 0.79 

    popden -0.30 -0.50 -0.10 0.07 0.81 

    HFI -0.12 -0.21 -0.03 0.02 0.80 

    none -- -- -- 0.02 0.79 

 allelic richness 812 21     
  

    urban-rural -0.15 -0.34 0.04 0.05 0.73 

    popden -0.16 -0.27 -0.06 0.06 0.74 

    HFI -0.13 -0.22 -0.04 0.05 0.75 

    none -- -- -- 0.05 0.73 

 FST 795 10     
  

    urban-rural 0.20 0.04 0.36 0.08 0.34 

    popden 0.35 0.11 0.59 0.17 0.44 

    HFI 0.16 0.05 0.27 0.10 0.37 

    none -- -- -- 0.08 0.33 
          

Birds (non-
migratory) 

effective population size 87 0             

    urban-rural -0.17 -0.81 0.48 0.00 0.21 

    popden -0.19 -0.52 0.15 0.02 0.17 

    HFI -0.37 -0.71 -0.04 0.07 0.20 
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    none -- -- -- 0.00 0.21 

 gene diversity 129 3     
  

    urban-rural -0.02 -0.30 0.25 0.01 0.88 

    popden 0.09 -0.02 0.21 0.01 0.89 

    HFI 0.02 -0.13 0.18 0.01 0.88 

    none -- -- -- 0.01 0.88 

 allelic richness 129 0     
  

    urban-rural 0.20 -1.14 1.54 0.00 0.28 

    popden -0.25 -0.72 0.22 0.01 0.20 

    HFI 0.32 -0.17 0.80 0.02 0.30 

    none -- -- -- 0.00 0.23 

 FST 128 2     
  

    urban-rural -0.10 -0.48 0.28 0.04 0.12 

    popden -0.02 -0.22 0.17 0.04 0.11 

    HFI -0.04 -0.24 0.16 0.04 0.12 

    none -- -- -- 0.04 0.11 

          

Birds (all) effective population size 125 1          

    urban-rural -0.20 -0.75 0.34 0.06 0.13 

    popden -0.21 -0.48 0.05 0.09 0.12 

    HFI -0.19 -0.46 0.08 0.08 0.14 

    none -- -- -- 0.06 0.13 

 gene diversity 196 2     
  

    urban-rural -0.04 -0.16 0.08 0.00 0.93 

    popden 0.04 -0.03 0.10 0.00 0.94 

    HFI -0.01 -0.08 0.05 0.00 0.93 

    none -- -- -- 0.00 0.93 

 allelic richness 196 1     
  

    urban-rural 0.84 0.20 1.47 0.04 0.32 

    popden -0.10 -0.43 0.23 0.01 0.30 
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    HFI 0.35 0.01 0.69 0.04 0.33 

    none -- -- -- 0.01 0.30 

 FST 190 1     
  

    urban-rural 0.01 -0.29 0.31 0.01 0.03 

    popden 0.03 -0.11 0.18 0.01 0.03 

    HFI 0.07 -0.08 0.21 0.02 0.03 

    none -- -- -- 0.01 0.03 
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