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ABSTRACT  

Background: The individual disease evolution of multiple sclerosis (MS) is very different 

from one patient to another. Therefore, the prediction of long-term disability evolution is 

difficult based on only clinical information. Magnetic resonance imaging (MRI) provides a 

very efficient tool to distinguish between healthy and abnormal brain tissue, monitor disease 

evolution, and help decision-making for personalized treatment of MS patients. 

Objective: We aim to develop a patient-specific model to predict individual disease evolution 

in MS, using demographic, clinical, and imaging data that were collected at study onset. 

Methods: The study included 75 patients tracked over 5 years. The latent class linear mixed 

model was used to consider individual and unobserved subgroup variability. First, the clinical 

model was established with demographic and clinical variables to predict clinical disease 

evolution. Second, the imaging model was built using the multimodal imaging variables. 

Third, the imaging variables were added one by one, two by two, and all three together to 

investigate their contribution to the clinical model. The clinical disability is measured with the 

Expanded Disability Status Scale (EDSS). The performances of the clinical, imaging, and the 

combined models were compared mainly using the Bayesian Information Criterion (BIC). 

The mean of the posterior probabilities was also given as the secondary performance 

evaluation criterion. 

Results: The clinical model gave higher BIC value than imaging and any combined models. 

The means of the posterior probabilities given by the three models were over 0.94. The 

clinical model clustered the patients into two latent classes: stable evolution class (n=6, 88%) 

and severe evolution class (n=9, 12%).  

Conclusion: The latent class linear mixed model may provide a well-fitted prediction for the 

disability evolution in MS patients, thus giving further information for personalized treatment 

decisions after thorough validation with a larger and independent dataset. 

 

Keywords: Multiple sclerosis, predictive model, latent class linear mixed model, magnetic 

resonance imaging, long-term disability, individual trajectory 
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INTRODUCTION 

Multiple sclerosis (MS) is the most frequent disabling neurological disease in young adults. 

While its etiology remains unknown, MS is a demyelinating, inflammatory, and chronic 

disease of the central nervous system. The evolution of the disease and the risk of developing 

permanent disability are very different from one patient to another [Goldenberg, 2012]. Thus, 

today neurologists’ challenge is to predict the evolution of individual disability using clinical, 

biological, and imaging data. 

MS patients have very different clinical evolution profiles. Further, these profiles may 

change over time. Clinical impairment is measured with the Expanded Disability Status Scale 

(EDSS) and its evolution over time is classified currently in four clinical subtypes: clinically 

isolated syndrome (CIS), relapsing-remittent (RR), primary-progressive (PP), and secondary-

progressive (SP). Few patients are early diagnosed as CIS during their first clinical 

examination. Then, CIS patients may shift to RR that represents 85% of patients. RR patients 

can shift afterward to SP with or without superimposed relapses [Lawton et al., 2015]. 

According to Lublin [Lublin, 2014]., 15% of MS patients start with PP that is characterized 

by continuous worsening of symptoms without relapses since diagnosis period. 

In addition to clinical examination, magnetic resonance imaging (MRI) helps in 

diagnosing MS and monitoring MS evolution. Conventional MRI (such as T1-weighted and 

T2-weighted imaging) is very sensitive in detecting pathological tissue damage and obtaining 

valuable predictive information on disease evolution [Filippi, 2001; Fisniku et al., 2008].  

Lesion load (LL) and grey matter volume are important markers in evaluating the 

demyelination level, also axonal and neuronal damage [Peterson et al., 2001; Minneboo et al., 

2009]. However, advanced MRI techniques, such as Diffusion Tensor Imaging (DTI) and MR 

Spectroscopic Imaging, have a better sensitivity and specificity in detecting white. Matter 

(WM) microstructural damages than conventional imaging [Ge et al., 2004; Sbardella et al., 

2013] because of the complementary information based on diffusion and metabolic alterations 

[Filippi et al., 2001; Filippi, 2001; Filippi, 2001]. Besides, DTI performs well to distinguish 

MS subtypes because MS patients from different subtypes show specific diffusivity patterns 

[Sbardella et al., 2013]. Thus, we propose to use DTI data jointly with conventional imaging. 

Among DTI measurements, fractional anisotropy (FA) measure was chosen because it is very 

sensitive in detecting microscopic changes related to inflammation [Hannoun et al., 2012]. 

MS affects white matter tissue and lesions appear mostly around ventricles in 

periventricular white matter. The floor of the lateral ventricles forms a region called Corpus 
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Callosum (CC), one of the regions that is frequently affected by MS lesions [Barnard, 1974; 

Gean-Marton et al., 1991; Ge et al., 2006]. The lesions are found in CC in 93% of patients 

[Gean-Marton et al., 1991]. Moreover, CC is the largest myelinated bundle of the brain 

providing the connection between the two brain hemispheres. For this reason, the clinical 

impact of CC lesions is usually more severe compared to other WM lesions. Several studies 

demonstrated that callosal changes, measured with DTI, were correlated with cognitive and 

physical disability [Sigal et al., 2012, Yaldizli et al., 2010; Rimkus et al., 2010; Llufriu et al., 

2012]. FA measurements were significantly lower in rostrum, body, and splenium parts of CC 

in MS patients compared to a control group [Hasan et al., 2005; Rueda et al., 2008; Warlop et 

al., 2008]. The association between EDSS and the atrophy in CC (as measured by 

conventional MRI) was found in some studies [Hasan et al., 2005; Rueda et al., 2008; Warlop 

et al., 2008; Schreiber et al., 2001]. However, no significant correlation was found between 

the disability and callosal atrophy that is measured with the conventional imaging in RR 

patients [Barkhof et al., 1998]. This contrast can be the result of an insufficiency of 

conventional imaging of CC; thus, the measurements of CC measured with advanced imaging 

may be more efficient in MS patients. For this reason, the FA measured in CC was used in the 

present study. 

Several studies have used logistic regression to predict the presence or absence of 

progression (at least one-point increase in EDSS) or ordinal logistic regression to predict the 

EDSS changes in ordinal categories [Sastre-Garriga et al., 2005; Minneboo et al., 2008, 

Khaleeli et al., 2008]. Also, linear regression method was performed to investigate the 

predictors of the clinical disability using clinical and imaging data. [Minneboo et al., 2009; 

Furby et al., 2010; Bodini et al., 2011; Enzinger et al., 2011; Popescu et al., 2013]. In addition 

to these methods, the multilevel approach is performed to consider individual alteration 

during disability progression to consider heterogeneity among individuals [Di Serio et al. 

2009; Lawton et al., 2015]. However, the individual disability evolution in MS does not show 

a single mean evolution profile; thus, it would be interesting to consider heterogeneity that 

originated from different mean evolution profiles. 

The main objective of the present study is to develop a generalizable predictive model 

of disability evolution in MS patients, considering unobserved subgroups (different mean-

evolution profiles). Therefore, the latent class linear mixed model was used to predict EDSS 

trajectories over 5 years, using clinical, biological and imaging data collected at the study 

onset. 
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Materials and Methods 

Patients  

Eighty patients fulfilling the Mac Donald criteria were included in a standardized clinical and 

MRI protocol within the frame of the AMSEP project at Lyon Neurological Hospital. This 

population was divided into 4 groups depending on the MS clinical form: CIS (n=12), RR 

(n=27), SP (n=16), and PP (n=25). The patients with known ages and disease duration were 

given after a standardized clinical and MRI examinations every six months during the first 

three years than at one-year intervals during two years. The clinical examination included 

EDSS and the Multiple Sclerosis Functional Composite (MSFC) with its three dimensions 

(Timed 25 Foot Walk [T25FW], 9-Hole Peg Test [9HPT], and Paced Auditory Serial 

Addition Test (PASAT)). Five patients were excluded from the AMSEP cohort because one 

or more MSFC component(s) could not be measured at study onset. This left 75 patients for 

analysis. 

 

Image Acquisition and Processing 

Patients with MS underwent an MR examination on a 1.5T Siemens Sonata system (Siemens 

Medical Solution, Erlangen, Germany) using an 8-channel head-coil. The MR protocol 

consisted of in the acquisition of a sagittal 3D-T1 sequence (1 � 1 �  1 mm3, TE/TR = 4/2 

000 ms) and an axial 2D-spin-echo DTI sequence (TE/TR = 86/6900 ms; 2 � 24 directions of 

gradient diffusion; b = 1000 s.mm-2, spatial resolution of 2.5 � 2.5 � 2.5 mm3 oriented in the 

AC-PC plane). 

The lesion load was measured with FLAIR sequence and white and grey matter 

volumes (GMVs) were measured with T1 imaging without a gadolinium contrast agent. 

 

The latent class linear mixed model 

In our study, the predictions of the individual disability progression were performed with the 

latent class linear mixed model (LCMM) [Proust-Lima et al., 2015] (See Supplementary 

Materials for further detail). A linear mixed model assumes that the population is 

homogeneous and the random effects are normally distributed. However, LCMM considers 

that the population is not homogeneous and consists of g subgroups (also called latent 

classes). Each latent class shows its distribution with a class-specific matrix of variance-

covariance. Each subject belongs to one latent class that maximizes the posterior probability 

and the sum of probabilities of being in various classes is equal to 1. The posterior probability 

and Bayesian Information Criterion (BIC) were used to measure the goodness-of-fit of the 
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model [Proust-Lima et al., 2015]. The higher the mean of the posterior probabilities that is 

obtained at each latent class, the better the classification is.  

 

Application of the latent class linear mixed model 

Function “hlme” in “lcmm” package of software R was used to implement the latent class 

linear mixed model. There are three main arguments of the “hlme” function: (1) the fixed 

argument contains the outcome (dependent variable) and the independent variable(s) which 

has (have) a common effect on all individuals overall latent classes, (2) the mixture argument 

indicates the variable(s) that have a specific effect on each latent class, and (3) the random 

argument contains the variable(s) that have a specific effect at the individual level. All 

statistical analyses related to the latent class linear mixed model were performed with “lcmm” 

package in R software version 3.4.0 (2017-04-21). 

The EDSS was used as the outcome in the models. The input variables of the models 

were the clinical (time, age, disease duration, T25FW, 9HPT) and the imaging information 

(grey matter volume, lesion load, and fractional anisotropy). The EDSS and time were used as 

longitudinal data. However, the values at study onset were used for the other demographic, 

clinical and imaging variables. 

Before fitting the model, the latent class mixed model requires setting the variable that 

determines the latent classes and the time function (linear, quadratic, or square root). Time, 

age, disease duration, T25FW, 9HPT, grey matter volume, lesion load, and fractional 

anisotropy were tested separately as the variable that determines the latent classes with the 

linear, quadratic, and square root of time and considering two latent classes. So, we 

established 24 models and these models were compared using BIC. The model with the lower 

BIC value provided the best combination of the variable that determines the latent classes and 

time function.  

All demographic, clinical and imaging variables were used in the fixed argument 

during the choice of the best combination. Besides, age at study onset was used as the variable 

that exerts the individual effect (in the random argument) in all models because there was a 

great inter-patient variability in terms of age at study onset. 

First, the clinical model was established with age, disease duration, T25FW, 9HPT at 

study onset, and time in the fixed argument. Second, the imaging model was established with 

GMV, LL, and FA in the fixed argument. Third, the imaging variables were added one by 

one, two by two, or all three together with the clinical variables into the clinical model to 

obtain the combined models. Finally, the clinical, imaging, and combined models were 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted August 19, 2019. ; https://doi.org/10.1101/733295doi: bioRxiv preprint 

https://doi.org/10.1101/733295


 

 

compared using the BIC criterion, knowing that a lower BIC indicates a better fit of the 

model. Further, AIC, log-likelihood and the mean of the posterior probabilities were also 

reported in this study to examine the goodness of fit and allow result comparisons with 

previous studies. 

 

Statistical analyses 

Because most data did not follow the normal distribution, medians, 1st, and 3rd quartiles were 

used to describe the data. Consequently, non-parametric statistical tests were used to examine 

differences in demographic, clinical, and imaging data among the patients of the four clinical 

subtypes. The Kruskal-Wallis test was used first to check whether the distributions of 

variables were significantly different. In case of significant difference, a Mann-Whitney U 

test was used to compare subtype medians two by two. Statistical significance was considered 

at p<0.05. 

 

RESULTS 

EDSS at study onset was significantly higher for PP and SP patients compared to CIS and RR 

patients (p-value <0.05). However, there was no significant difference between the EDSS of 

PP and SP patients (p-value= 0.61). PP patients were significantly older than other patients at 

study onset (p-value <0.05). The disease duration was similar for RR and PP patients (p-

value= 0.51) and was significantly greater for SP patients (p-value <0.05). T25FW was 

significantly different among all clinical subtypes, and PP patients had the greatest T25FW 

values at study onset. There was no significant difference between the 9HPT measurements of 

CIS and RR patients (p-value = 0.11), nor PP and SP patients (p-value =0.63). Also, the GMV 

was similar for CIS and RR patients (p-value = 0.42) as well as for PP and SP patients (p-

value = 0.21). However, the GMV was significantly greater for CIS and RR patients 

compared to PP and SP patients (p-value <0.05). There was no significant difference in LL 

between RR and PP patients (p-value=0.86). The LL was significantly lower for CIS patients 

and greater for SP patients (p-value <0.05). SP patients had the greatest FA value compared to 

the other clinical subtypes (p-value <0.05).  
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Table 1 - Patient demographics, clinical and imaging characteristic.  

Variable CIS RR PP SP 

EDSS 0.50 [0.00, 1.25] 2.00 [1.25, 4.00] 4.00 [4.00, 4.50] 4.50 [4.00, 5.00] 

Age 29.00 [28.00, 35.00] 26.50 [23.25, 34.00] 36.00 [32.50, 39.50] 32.00 [24.00, 

34.00] 

Disease 

Duration 

0.86 [0.27, 2.27] 4.69 [2.51, 7.76] 5.66 [4.67, 7.75] 11.18 [8.14, 15.35] 

T25FW 4.15 [3.95, 4.50] 5.00 [4.20, 6.37] 6.50 [5.00, 7.70] 5.90 [5.22, 7.42] 

9HPT 18.85 [17.55, 19.95] 20.52 [18.06, 23.12] 24.55 [21.43, 34.88] 27.23 [23.60, 

32.31] 

GMV 858.30 [845.70, 

882.20] 

841.10 [820.70, 

873.40] 

811.20 [781.90, 

822.90] 

822.00 [791.50, 

832.40] 

LL 6.64 [4.28, 8.43] 14.36 [6.53, 24.32] 14.33 [11.00, 27.69] 36.32 [20.31, 

41.51] 

FA 0.62 [0.60, 0.64] 0.60 [0.58, 0.62] 0.59 [0.57, 0.61] 0.54 [0.48, 0.59] 

The values at study onset of the demographic, clinical and imaging variables were given and 

expressed as Median [1st quartile, 3rd quartile]. 

 

The model with two latent classes that gave the lowest BIC value had 1) the time as 

the variable with a specific effect on each latent class (in the mixture argument), and 2) a 

linear time function (in the fixed argument) gave the lowest BIC value (see Appendix). 

Therefore, in the following sections, the models that included time in the mixture argument 

and age in the random argument will be discussed 

BIC results suggest that the clinical model offers a slightly better fit than the imaging 

and combined models. All models had mean posterior probabilities of over 0.9. Most of the 

combined models had a greater mean posterior probability than the clinical and imaging 

model. The log-likelihood ranged between -550 and -522. The model including the clinical 

and all imaging variables gave the best likelihood values. AIC values ranged between 1073 

and 1125, while the model including clinical and GMV variables had the lowest AIC value. 
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Table 2 - BIC, mean of posterior probabilities, log-likelihood, and AIC results with the 

clinical, the imaging and the combined models built with different combinations of imaging 

variables. 

Model BIC Mean posterior 

probability 

Log-likelihood AIC 

Clinical 1106.34 0.981 -525.10 1076.21 

Imaging 1153.61 0.941 -550.90 1125.80 

Clinical +GMV 1106.40 0.975 -522.98 1073.96 

Clinical +LL 1109.29 0.978 -524.42 1076.85 

Clinical +FA 1108.18 0.980 -523.86 1075.73 

Clinical +GMV+LL 1110.47 0.982 -522.85 1075.71 

Clinical +GMV+FA 1109.20 0.985 -522.21 1074.43 

Clinical + LL+FA 1112.44 0.977  -523.84 1077.68 

Clinical 

+GMV+LL+FA 

1113.39 0.989 -522.15 1076.31 

 

The clinical model will be presented hereafter as this model gave the best BIC result. 

The effect of all clinical was significantly different than zero in the clinical model. The 

parameter coefficient of the time was given for each latent class and it was significantly 

different from zero for one of the classes. Specifically, the more time elapsed, the greater the 

EDSS in Class 1. Also, the parameter coefficients of disease duration, age, T25FW, and 9HPT 

were positive, and this means that a unit increase of these variables at the study onset had an 

effect to increase EDSS at the study onset. 

 

Table 3 - The variables used in the fixed and mixture arguments of the clinical model.  

Variable Parameter 

coefficient 

Standard 

error 

Wald statistic p-value 

Disease duration  0.107 0.023 4.609 <0.05 

Age 0.080   0.019   4.204   <0.05 

T25FW 0.119   0.039   3.021   <0.05 

9HPT 0.064   0.017   3.792   <0.05 

Time in Class 1 0.046   0.00436  10.805   <0.05 
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Time in Class 2 0.002   0.00148   1.858   0.315 

 

Figure 1 shows the predicted points and observed mean trajectories obtained with the 

clinical model, and Table 4 gives the classification of the patients in the latent classes. The 

graph shows that the evolution of EDSS is stable for Class 2. However, Class 1 included all 

clinical subtypes except CIS and shows a severe evolution of the clinical score. Also, the time 

was significantly different than zero for this class. Moreover, the predicted points were closer 

to the observed mean trajectory for Class 2, and Class 1 contained a smaller number of 

patients compared to Class 2 (12% vs. 88%). The low number of patients in Class 1 might be 

the cause of the less accurate prediction and the higher difference between the predicted and 

observed mean trajectories. 

 

 

 

 

 

Figure 1 - Observed mean trajectories (solid lines) and predicted mean trajectories (dotted 

lines) of each class according to the clinical model. 
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Table 4 - Classification obtained with the clinical model and all MS subtypes. 

Clinical 

subtype 

Class 1 Class 2 

CIS 0 12 

RR 2 24 

PP 2 13 

SP 5 17 

 

 

The performance of the clinical model was also analyzed based on the prediction at 5 years 

after the study onset. The predicted and observed EDSS scores were presented in Figure 2. In 

concordance with the previous results, the patients in Class 1 showed higher predicted and 

observed EDSS scores compared to the patients in Class 2. The clinical model showed high 

accuracy with an R2 of 0.945 and RMSE of 0.534. The imaging and combined models gave 

similar results with an R2 over 0.9 and RMSE of less than 0.6. The prediction was poor for the 

patients with lower EDSS scores (i.e. lower than EDSS 4). The patients with lower EDSS 

scores might be classified in another group that would lead to a better prediction.  
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Figure 2 - Observed and predicted EDSS at 5 years after the study onset for Class 1 (red) and 

Class 2 (black) according to the clinical model. The blue line which was obtained with a 

linear regression model was also given on the figure. 

 

The patients in the two latent classes were compared based on EDSS, age, disease 

duration, T25FW, 9HPT, GMV, LL, and FA at study onset. Table 5 shows that the LL was 

significantly greater in the class, in which the patients show an aggressive disability 

progression (Class 1) (p-value<0.05). However, other demographic, clinical, and imaging 

variables were not significantly different between the two latent classes (p-value > 0.05 for all 

variables). Figure 3 demonstrates that the LL in Class 1 showed a normal distribution, 

whereas the LL was asymptotically distributed in Class 2. Most of the patients in Class 2 had 

less LL compared to Class 1. Also, the median of the LL in Class 1 was approximately two 

times higher than the median of LL in Class 2.  
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Table 5 - Clinical and imaging variables according to each latent class obtained with the 

clinical model.  

Variable Class 1 

N=9 

Class 2 

N=66 

p-value 

EDSS 4.00 [4.00, 4.50] 4.00 [2.00, 4.38] 0.31 

Age 40.510 [32.470, 

44.080] 

39.120 [30.410, 

42.850] 

0.64 

Disease duration 6.694 [4.991, 10.582] 5.798 [2.314, 8.813] 0.34 

9HPT 24.85 [20.10, 32.65] 22.10 [19.35, 26.34] 0.41 

25FW 5.050 [4.100, 7.000] 5.325 [4.500, 6.588] 0.60 

GMV 831.1 [799.8, 850.7] 825.4 [804.4, 859.5] 0.71 

LL 26.446 [15.052, 

35.412] 

14.296 [6.412, 32.469] <0.05 

FA 0.578 [0.556, 0.621] 0.599 [0.5796, 0.623] 0.48 

The values are expressed as Median [1st, 3rd quartile]. The p-value is the result of Kruskal-

Wallis test which was performed to compare the distribution of the variable values in two 

classes. 
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Figure 3 – The violin plot of LL which was observed in Class 1(red) and Class 2 (black). The 

classes were established by the clinical model. The violin plot shows the density, median, 1st 

and 3rd quartile of LL.  

 

Imaging and combined models 

Table 6 shows that the effect of the GMV was significantly different from zero (p-value 

<0.05) in the imaging model but not significant (p-value=0.062) in the combined model. Time 

in Class 1, as well as the demographic and clinical variables, were still significant in the 

combined model (p-value <0.05). However, the imaging variables did not have any 

significant effect, and the parameter coefficients of these parameters were not significantly 

different than zero (p-valueGMV=0.062, p-valueLL=0.723, and p-valueFA=0.231). The EDSS 

evolution trajectories and the classification of the patients that were found by imaging and 

combined models were similar to the results of the clinical model (See Supplementary 

Material). There was only one more SP patient classified in Class 2 (with stable evolution) 

instead of Class 1 (with severe evolution) in the combined model results. 
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Table 6 - The results of the imaging and combined models. 

Imaging Model     

Variable Parameter 

coefficient 

Standard error Wald statistic p-value 

GMV -0.020 0.004 -4.648 <0.05 

LL -0.008 0.016 -0.529 0.596 

FA -0.402 0.288 -1.394 0.163 

Time in Class 1 0.047 0.004 11.213 <0.05 

Time in Class 2 0.002 0.002 1.027 0.304 

 

Combined 

model 

    

Disease duration  0.103 0.023 4.491 <0.05 

Age  0.059 0.022 2.660 <0.05 

T25FW  0.124 0.036 3.396 <0.05 

9HPT  0.042 0.019 2.220 <0.05 

GMV  -0.008 0.005 -1.860 0.062 

LL -0.004 0.011 -0.354 0.723 

FA  -0.258 0.216 -1.196 0.231 

Time in Class 1  0.047 0.004 11.553 <0.05 

Time in Class 2  0.002 0.002 1.173 0.240 
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DISCUSSION  

The latent class linear mixed model was used to model the evolution of disability in patients 

with multiple sclerosis, and thus, to predict individual disability evolution as measured by the 

EDSS. To our knowledge, this is the first study that predicts long-term disability evolution 

considering unobserved classes of patients with multiple sclerosis from all clinical subtypes. 

First, the clinical and the imaging models were separately built with clinical and imaging 

variables, respectively. Then, multimodal imaging variables were added to the clinical model 

to obtain combined models. As per the BIC criterion, the clinical model had higher predictive 

accuracy in comparison with the imaging or the combined models. 

In the clinical and combined models, all clinical variables had a significant predictive 

effect on disease evolution. Previous studies also showed significant effects of age and 

disease duration in predictive modeling [Confavreux et al., 2003; Scalfari et al., 2011]. 

Besides, 9HPT and T25FW were considered two of the best measures across a wide range of 

indicators of MS disability [Kieseier & Pozzilli, 2011; Kraft et al., 2014]. However, 

no previous study had checked whether the 9HPT had a significant effect on disability 

evolution. On the other hand, an early change in T25FW was significant to the long-term 

EDSS evolution in progressive patients (PP and SP) [Bosma et al., 2012]. Our results 

confirmed that the effects of T25FW and 9HPT were significant in all clinical subtypes. 

Previous studies on predictive modeling of disability evolution in patients with 

multiple sclerosis used logistic regression models, Kaplan-Meier analyses, Markov models, 

multilevel modeling, and, mostly, linear mixed models [Popescu et al., 2013; Minneboo et al., 

2009; Bodini et al., 2011; Minneboo et al., 2007; Palace et al., 2014; Lawton et al., 2015; 

Confavreux et al., 2003; Confavreux et al., 2000]. A recent study that used latent class linear 

mixed models in PP patients to identify unobserved classes [Signori et al., 2017] selected the 

best model with the BIC criterion and identified three subgroups of PP patients. However, our 

study remains the first one to use latent class mixed models, consider unobserved classes, and 

include all clinical subtypes of MS.  

In our study, patients with multiple sclerosis were classified into two latent classes 

(stable and severe evolution over time). Most of the patients (88%) showed no progression of 

disability over five years after the study onset. This observation was not surprising as all 

patients were taking medication, which was effective in most cases. Further, MS is a long-

lasting disease, and the five-year study period might have been insufficient to show disability 

worsening. However, 12% of the patients were assigned to the class with severe disability 

progression. Assigning patients to either of these two latent classes (stable or severe) may 
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help treatment decisions. For example, patients with a probable severe evolution would 

benefit from second-line therapies. 

EDSS 4 is known to be the threshold of limited walking disability, even though a 

patient may be able to walk more than 500 m. The predicted EDSS values were around EDSS 

4 at the study onset in the three latent classes, and then each class evolved differently. Thus, 

our predictions were able to distinguish the patients who might have a severe, stable, or 

moderate evolution after reaching the threshold of limited walking disability. 

GMV had a significant role in the imaging model in our study. Indeed, previous 

studies have shown that GMV may constitute a good marker of the risk of increased 

disability in MS patients [Rovaris et al., 2006; Fisniku et al., 2008, Roosendaal et al., 2011; 

Sepulcre et al., 2006]. However, the effects of the multimodal imaging variables were not 

statistically significant in the combined models. Enzinger et al. have performed multivariate 

analysis and found that no MRI variable had a significant effect on disability evolution 

[Enzinger et al., 2011]. In contrast, Popescu et al. showed that the LL measured in grey and 

white matter was a strong predictor of the 10-year EDSS in MS [Popescu et al., 2013]. 

However, the white matter LL measured in our study did not play a significant role, neither in 

the imaging nor in the combined models. 

One limitation of the present work was the use of the LL measured in the whole 

WM rather than locally. The location and size of the lesion are very important markers of 

clinical disability. A future modeling study on the evolution of clinical disability may 

consider the focal LL in WM and GM. 

To conclude, the latent class linear mixed model allowed building a well-fitted 

predictive model for disability evolution in patients with MS, and this model showed 

highly accurate results. The model developed here is highly promising in predicting individual 

long-term disability evolution in all clinical subtypes of MS. 
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