
 1 

Transcriptome computational workbench (TCW): analysis of single 
and comparative transcriptomes 
 
Carol A. Soderlund 
BIO5 Institute, University of Arizona, Tucson AZ, USA 
E-mail: cas1@u.arizona.edu 
 
Abstract	
De novo transcriptome sequencing and analysis provides a way for researchers of non-model organisms to 
explore the differences between various conditions and species. The results are typically not definitive but 
will lead to new hypotheses to study. Therefore, it is important that the results be reproducible, extensible, 
queryable, and easily available to all members of the team. Towards this end, the Transcriptome 
Computational Workbench (TCW) is a software package to perform basic computations for transcriptome 
analysis (singleTCW) and comparative analysis (multiTCW). It is a Java-based desktop application that 
uses MySQL for the TCW database. The input to singleTCW is sequence and optional count files; the 
computations are sequence similarity, gene ontology (GO), open reading frame (ORF), and differential 
expression (DE). TCW provides support for searching with the super-fast DIAMOND program against 
UniProt taxonomic databases, though the user can provide other databases to search against. The ORF 
finder uses hit information, 5th-order Markov models and ORF length. For DE and GO enrichment, TCW 
interfaces with the R environment and an R script, where R scripts are provided for popular methods. The 
input to multiTCW is multiple singleTCW databases; the computations are homologous pair assignment, 
pairwise analysis (e.g. Ka/Ks) from codon-based alignments, clustering (bidirectional best hit, Closure, 
Best Hit, OrthoMCL, user-supplied), and cluster analysis and annotation. Both singleTCW and multiTCW 
provide a graphical interface for extensive query and display of the data and results. Example results are 
presented from two rhizome and one non-rhizome plant, where one of the rhizome plants has replicate count 
data from four tissues. The supplement describes how to reproduce all tables and figures. The TCW V4 
software is freely available at https://github.com/csoderlund/TCW; the package contains the jar files, 
external software, and demo files.  
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1 Introduction 
Given transcriptome sequences and read counts, there are various computations to be performed. There are 
also various computations to compare the transcriptomes of multiple species. These analyses are typically 
computed with various downloaded programs, web-based programs, spreadsheets and custom scripts. This 
‘ad hoc’ style of analysis can lead to lack of reproducibility, human error, loss of data and results, and is 
inadequate for extensibility. The results are typically not definitive so a good graphical interface is 
necessary for exploring the data. 

TCW is a desktop application that aids in creating reproducible and extensible results. It provides 
the standard computations for single transcriptome analysis (singleTCW) and for comparative analysis 
(multiTCW). TCW is written in Java and stores all data and results in a MySQL database. Both singleTCW 
and multiTCW provide interfaces for query and display, which allows the user to drill down to the details 
of the input data and results. TCW was first published in 2013 [1], but has been re-engineered and 
significantly enhanced since then. This publication discusses TCW V4. 

For singleTCW, the input is sequence and optional replicate count files; the computations are 
sequence similarity annotation, GO assignment, ORF computation and differential expression. The user 
provides the annotation databases for the similarity search, where UniProt [2,3] is given special support for 
obtaining and viewing the results. With the freely available super-fast DIAMOND [4,5], the searching is 
no longer a bottleneck. The GO information, along with Interpro [6], KEGG [7], Pfam [8] and Enzyme 
numbers (EC) [9], are extracted from the UniProt files. GO names and relations are extracted from the go-
basic.obo file. The ORF finder uses hit information, 5th-order Markov models and ORF length.  For DE and 
GO enrichment, TCW interfaces with the R environment and an R script, where R scripts for edgeR [10], 
DEseq [11] and GOseq [12] are provided, or the user can supply their own.  

For multiTCW, the input is one or more singleTCW databases; the computations are homologous 
pair assignment, clustering of homologous pairs, pairwise and cluster analysis. The clusters can be 
computed by best bidirectional hit (BBH), Closure, Best Hit, OrthoMCL [13], or loaded from a user-
supplied file of clusters. For pairwise analysis, the codon-based alignment is computed for each pair in a 
cluster, from which statistics such as CpG, ts/tv, and Ka/Ks [14] are computed. For the cluster analysis, the 
multiple sequence alignments (MSA) is computed using MAFFT [15], from which two MSA scores are 
computed. Additionally, the majority annotation is assigned to each cluster.  

To demonstrate the TCW analysis, the software is applied to the transcriptomes of two rhizome 
plant species (Oryza longistaminata and Nelumbo nucifera) and one non-rhizome species (Oryza sativa).  
The red rice (O. longistaminata) contigs were de novo assembled and have replicate counts from rhizome, 
root, stem and leaf [16]. The transcript files for sacred lotus (N. nucifera) and the cultivated rice (O. sativa) 
were downloaded from NCBI.  

2 Materials and Methods 

2.1 TCW requirements and overview 
TCW is available at https://github.com/CSoderlund/TCW. The package requires Java and MySQL (or 
MariaDB) to be installed. If differential expression will be computed, it requires R along with the necessary 
R packages for computing DE. The downloadable TCW package contains demo files and all necessary 
external software compiled for Linux and MacOS. 

Input details. TCW takes as input one or more FASTA files of nucleotide or amino sequences, 
where each sequence file may have an associated tab-delimited file of counts. TCW can be used with 
transcriptomes with replicate count data, and can also be used with proteomes with replicate spectra (count) 
data. The ability to use TCW with both transcriptome and proteome data is useful when there are dual RNA-
seq and peptide experiments, where the results can be equivalently analyzed with TCW, e.g. He et al. [17]. 
TCW has an assembly algorithm for Sanger ESTs [18], 454 data or a combination of these with pre-
assembled contigs [1]; the input sequence files may have associated files of quality values, which are used 
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in the assembly. TCW can take as input location information, which is useful with gene models. Due to its 
multiple types of input, TCW generically refers to the input as “sequences with optional counts”.   

Test machines. TCW uses the BLAST[19], DIAMOND and MAFFT programs, which use multi-
processors; all the TCW processing is single-process. TCW was tested on two machines: (i) Linux x86-64 
24-core 2.3Ghz AMD with 128 gigabytes of RAM (purchased 2011), which used  MariaDB 10.4.12.  (ii) 
Mac 10.9.5 with 3.2Ghz 6-core and 64 gigabytes of RAM (purchased 2019), which used MySQL v1.8. 
Timing results are presented in the Results section; S1 Suppl §3  provides more details about the test 
machines, detailed timings and memory usage. The necessary size of the machine all depends on the number 
of input sequences and annotation databases. Once the databases are built, they can be queried on any 
machine that has Java and MySQL. 

Demo files. The downloadable TCW package contains the following demo sets: (i) input sequences 
to be assembled, (ii) protein sequences with replicate counts, (iii) nucleotide sequences with replicate 
counts, and (iv) three datasets that have good homology for input to multiTCW. It also contains a subset of 
taxonomic UniProts and the go-basic.obo file to use for annotation. The TCW software can be experimented 
with by downloading the package, untar’ing it, entering the MySQL information in the HOSTs.cfg file, and 
running it on the demo datasets. Step-by-step instructions are provided at 
www.agcol.arizona.edu/software/tcw along with additional information. 

Overview. TCW has four graphical interfaces to build the single database (runAS, runSingleTCW, 
runDE) and multiple database (runMultiTCW). Table 1 shows the salient terminology. Figure 1 shows the 
workflow.  

Table	1.	Terminology	used	by	TCW.	
Term Description 
TCW-GOdb MySQL database created by runAS, which contains all GO terms from the go-basic.obo 

file and associated information from the downloaded UniProt .dat files. 
sTCWdb MySQL database created by runSingleTCW, which contains the input sequences, 

optional counts and the analysis results. 
mTCWdb MySQL database created by runMultiTCW, which contains the data from multiple 

sTCWdbs and the comparative analysis results. 
Sequence The input sequences to TCW, e.g. transcripts, proteins, gene models. 
annoDB Annotation database, which is a file of protein or nucleotide sequences to search 

against.  
SP-taxo  SP is SwissProt, taxo is the taxonomy, e.g. SP-plants is the SwissProt plants database. 

The same naming scheme is used for TR (TrEMBL).  
Hit A match between two sequences found by a search program (e.g. BLAST or 

DIAMOND). 
Annotated 
sequence 

A sequence that has one or more hits to any annoDB. 

Best Bits The annoDB hit for a sequence that has the best bit-score and E-value. 
Best Anno The annoDB best bit-score hit for a sequence where the hit description does not contain 

phrases such as “uncharacterized protein”. 
Rank=1 The annoDB best bit-score hit for a sequence to a given annoDB. 
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Figure 1. TCW programs and dataflow. (A) The steps for creating a singleTCW database. The only required input 
is the FASTA formatted sequence file(s). (B) The steps for creating a multiTCW database. The only required input is 
N (N≥2) sTCWdbs, where N is not a large number (recommended ≤ 4, though there is no TCW limit).  

2.2 Create annoDBs and TCW-GOdb (runAS) 
Multiple annotation databases (annoDBs) can be used for sequence similarity, where an annoDB is a protein 
or nucleotide FASTA formatted file. TCW offers specific support for the UniProt taxonomic databases with 
a graphical interface called runAS, which will download the desired UniProt .dat data files and create the 
corresponding FASTA file of sequences. RunAS will also create a subset SwissProt, which is the entire 
SwissProt minus all protein records from the downloaded taxonomic databases. The advantage of using the 
taxonomic databases is that the most relevant SwissProt and TrEMBL databases can be used and their hits 
can be queried by taxonomy using viewSingleTCW.  

The runAS interface is used to create the TCW GO database (TCW-GOdb). It loads from the go-
basic.obo file the GO terms, names, relations, and GO Slims, where it only considers ‘is_a’ and ‘is_part’ 
relations. RunAS also loads the relevant information from the downloaded UniProt databases. The UniProt 
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.dat files contain for each record the  GO “direct” assignments with their evidence code, InterPro [6], 
KEGG[7], Pfam [8] and Enzyme Commission (EC) [9], where these data items are loaded into the TCW-
GOdb.  

2.3 Build a singleTCW database (runSingleTCW) 
The runSingleTCW program provides a graphical interface to build the MySQL database (sTCWdb). The 
first step is to load the sequences and optional counts into the database. By default, TCW assign names, 
though the user can request that the original names be used (if the names are assigned, the original name is 
stored for display in viewSingleTCW). The replicate counts are summed and the Transcripts Per Million 
(TPM) calculated. The rest of this section describes the annotation process where the details are provided 
in the S2 Suppl.  

2.3.1 Sequence similarity annotations 
For similarity searching, TCW can use BLAST or DIAMOND. Given that DIAMOND is much faster than 
BLAST, it is the TCW default search program. From all hits for a sequence, a best bit-score hit (Best Bits) 
and best annotation hit (Best Anno) will be computed, where the Best Anno is the best hit with a meaningful 
description (e.g. not “Uncharacterized protein);  see S2 Suppl §2.1.1 for details. Figure 2 shows an example 
where the Best Bits hit is ‘uncharacterized’ and the Best Anno is the SwissProt “Ureidoglycolate 
hydrolase”.  
 

 
Figure 2. TCW alignment of Best Bits (bit-score) and Best Anno (annotation). A dynamic programming algorithm 
is used for the alignment, where the DIAMOND hit is highlighted in blue. The green marks are gaps, and the rest of 
the marks indicate different amino acids colored by their BLOSUM62 [20] score; red is BLOSUM < 0, pink is 
BLOSUM = 0, and dark blue is BLOSUM > 0. The purple T’s are stop codons. The gray areas at the ends are 
‘overhangs’. The top alignment has the higher bit-score of 890 whereas the bottom alignment has a lower bit-score of 
887 but the description is informative. The view can be changed to show the text alignment. 
 

Prune hits. Given the growing size of the UniProt taxonomic databases, there can be many protein 
hits with the same alignments and/or descriptions. For most uses, it is only necessary to keep the best hit 
per annoDB with a given alignment or description; an exception would be if the goal was to obtain all 
species that hit each sequence. TCW has an option to prune hits based on the same alignment, where it 
arbitrarily retains one of the hits. There is also an option to prune hits based on similar descriptions, where 
it retains the hit with the best bit-score and E-value.  

2.3.2 GO annotation  
For the UniProt hits in the sTCWdb, their associated data is copied from the TCW-GOdb to the sTCWdb, 
where the data is InterPro, KEGG, EC, Pfam and direct GO values. Each hit is assigned the direct GOs 
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along with all inherited GOs. If a GO is not directly assigned or inherited by a hit,  it will not be in the 
sTCWdb. 

As discussed by Rhee et al. [21], assigning levels to the GO terms is problematic because the GO 
structure is not uniform and each GO term can exist at multiple levels. Nevertheless, it is common to use 
levels since it provides the scientist an indication of where a given GO term is in the directed acyclic graph; 
therefore, TCW assigns the maximum level to each GO term. TCW also assigns to each GO term the 
number of sequences with at least one hit that is assigned or inherited the GO.  

2.3.3 ORF finding and GC content 
If a sequence has a best hit that passes the user-supplied E-value and similarity cutoff, the ORF finder will 
use the frame of the hit for the ORF. For the ORF coordinates, it uses the hit coordinates if the hit region 
ends with a valid start and stop codon, otherwise, it uses heuristics to extend the hit region to the best start 
and end for the ORF. If the sequence does not have a good hit, (i) the best ORF is found for each of the six 
reading frames and (ii) the best ORF from the six frames is selected. In both cases, the best ORF is selected 
based on the ORF length and Markov score. To compute the Markov score, the TransDecoder v5.5.0 [22] 
algorithm was translated from Perl to Java to be used in the TCW ORF finder. The 2000 longest sequence 
regions from the best hits are used to train the Markov model. ORF finding is complicated by transcripts 
with hits in multiple frames or with stop codons in the hit region, so the algorithm uses heuristics for these 
cases. These heuristics along with details of the algorithm are discussed in S2 Suppl §2.2. 

The computation of the GC content is performed on each sequence. For the overview, the average 
GC and CpG content are computed for the coding sequence (CDS) and untranslated regions (UTRs) derived 
from the computed ORF. 

2.3.4 Other features 
Self-search. There is an option to compare all input sequences, where the initial comparison uses BLASTn 
(NT), tBLASTx (6-frame), and/or BLASTp (translated ORFs); the highest scoring N pairs are aligned using 
dynamic programming, where N is a user-defined parameter. This feature is especially useful for evaluating 
de novo assembled contigs for highly similar sequences. 

User-supplied remarks. Transcriptome and proteome studies generally have additional 
computations that are problem-specific; for example, transcripts are often analyzed for simple repeats. To 
use data and results from the TCW database, a file of results can be exported from viewSingleTCW for 
input to other programs, and then the external results can be imported into the sTCWdb as user remarks 
using runSingleTCW. The user remarks can be searched and viewed in viewSingleTCW. Additionally, 
location data can be entered into the database for display. 

2.4 Differential expression (runDE) 
The TCW runDE program is used to compute the differential expression from the replicate counts and enter 
the results into the database. The user can select to have the sequences pre-filtered with either of the 
following (N and M are user-supplied values):  (i) the counts per million (CPM)  filter removes sequences 
that do not have CPM > N for ≥ M samples, where CPM = (count/sample size) * 1E06, (ii) the count filter 
removes sequences that do not have any sample with count > N.  To compute DE, runDE writes the 
necessary data to the R environment, runs an R script, and loads the results into the database. R scripts for 
edgeR [10] and DEseq [11] are provided; alternatively, the user can supply an R-script or a file of DE 
values. The results are entered into the sTCWdb with a user-supplied DE column name. 

The  runDE program provides the ability to compute enriched GOs for each DE column. Similar to 
running a DE script, it writes the necessary data to the R environment, runs the R script, and loads the 
results into the database. It allows any R script to be used, where by default it runs the GOseq [12] script. 
GOseq detects enriched GOs based on a binary vector representing the sequences with DE p-values < N 
(default 0.05) along with the sequence lengths.  
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2.5 Build a multiTCW database (runMultiTCW) 
The runMultiTCW program takes as input two or more sTCWdbs and builds the multi-species database 
(mTCWdb) (Figure 1B). Though there is no upper limit on the number of sTCWdbs to be compared, it is 
not meant for a large number (recommended ≤ 4). The input sTCWdbs can be built from nucleotide or 
protein sequences. The following will discuss an mTCWdb built from nucleotide sTCWdbs. When the 
mTCWdb is built, the nucleotide sequences, ORF coordinates, translated ORFs, TPM, DE, and top hits are 
copied from the sTCWdbs to the mTCWdb. The GC and CpG content are computed for the nucleotide 
sequence, and CpG Obs/Exp [23] is computed for the CDS and UTRs, where the CDS and UTRs are derived 
from the TCW computed ORF. Optionally, the GOs for the hits can be copied to the mTCWdb. The rest of 
this section describes the clustering and annotation process where the details are provided in the S3 Suppl. 

2.5.1 Pairs and clustering 
A self-search of all translated ORFs is performed along with an optional self-search of the nucleotide 
sequences. Either DIAMOND or BLAST can be used for the amino acid comparison; BLAST is required 
for the nucleotide comparison. The default TCW parameters are discussed in S3 Suppl §3.1. 

The self-search tabular files are parsed and the pairs are loaded into the database. The pairs are used 
as input to the following cluster algorithms: (i) BBH (bidirectional best hit), (ii) Closure, (iii) Best Hit, (iv) 
OrthoMCL [13]. The first three options are implemented within TCW and have the following parameters: 
minimum percent similarity and minimum percent coverage over one or both sequences. The fourth option 
executes the OrthoMCL code from within runMultiTCW and loads the results; this option has the one 
OrthoMCL parameter of ‘inflation’. A fifth option is available, which allows the user to provide a file of 
clusters. 

BBH is a common approach to use. Since more than two sTCWdbs may be compared, TCW 
provides N-way BBH, which first computes the 2-way BBH and then combines N-way BBH pairs. 
Alternatively, the user can select 2 datasets to use as input to the BBH algorithm. The Closure algorithm 
seeds the clusters with BBH hits, and then adds all sequences that (i) have a hit and (ii) pass the similarity 
and coverage rule with every other sequence in the cluster. The Best Hit option can form clusters on hitID 
or description substring; the similarity and coverage parameters are applied to both the hit and at least one 
sequence pair of the cluster. OrthoMCL builds a similarity matrix to normalize by species and uses Markov 
clustering.  

2.5.2 Cluster annotation and statistics 
After creating clusters, runMultiTCW annotates the clusters with the majority hit; that is, it finds the 
common description substring among the best annotation hits of the sequences of the cluster and then finds 
the most common hit identifier for that description. Each cluster is assigned a %Hit, which is the percent 
of sequences in a cluster that have the description substring in any of its assigned hit descriptions. 

The sequences of the clusters are aligned using the MSA program MAFFT [15] for N > 2 and the 
built-in dynamic programming alignment for N = 2. Each cluster is scored by sum-of-pairs and Wentropy 
[24]. Wentropy has been implemented within TCW, where it was translated from the mStatX program [25]. 
The user can request other scores from the mStatX program be computed in place of the sum-of-pairs and 
Wentropy. 

2.5.3 Pair annotation and statistics 
First, given that the input sTCWdbs have the same conditions, the Pearson Correlation Coefficient (PCC) 
is calculated on the TPM values between each pair of sequences. Second, runMultiTCW provides statistics 
for the pairs found in clusters that have a hit. Each pair is aligned using a dynamic programming algorithm 
of the two translated ORFs and then maps the results to the corresponding codon-based ORFs, resulting in 
a codon-based alignment; see Wernersson and Pedersen [26] for a discussion on why this is important. The 
statistics detailed in Table 2 are computed from each pair alignment; the description column of the table 
states whether gaps are included, but no statistics include the overhangs (illustrated in Figure 2). The aligned 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 2, 2022. ; https://doi.org/10.1101/733311doi: bioRxiv preprint 

https://doi.org/10.1101/733311
http://creativecommons.org/licenses/by/4.0/


 8 

pairs are written to file and a shell script is written for the user to run the KaKs_Calculator on the pairs. The 
shell script specifies the method name YN [27]; the reason for making YN the default is strictly because it 
is the fastest. By editing the shell script, the user can change to another method provided by the 
KaKs_Calculator, or provide results from alternative software. The Ka/Ks results are read into the 
mTCWdb. 
	
Table	2.	Pair	statistics.	The	following	statistics	are	computed	for	each	pair	that	is	in	a	cluster.		

Column(s)a Descriptionb  
5diff | 3diff % aligned bases in the 5’UTR | 3’UTR that are different, includes gaps  
Cdiff % aligned bases in the CDS that are different, includes gaps  
Cov1 | Cov2 % of the 1st | 2nd  CDS length that is covered with #aligned bases 
Align # aligned bases, includes gaps  
SNPs # base differences, excludes gaps 
Gap open # gap opens (open = start of string of gaps) 
Gap # gaps 
Calign #  aligned codons, excludes codons with gaps  
Cexact % aligned codons that are exact matches 
CnonSyn | Csyn % aligned codons that are nonsynonymous| synonymous 
C4d | C2dc % aligned codons that are 4-fold  | 2-fold degenerate  
Aexact % aligned amino acids that are exact matches 
Apos | Aneg % aligned amino acids that are substitutions with BLOSUM62 score > 0 |  ≤ 0 
Ka | Ksd Nonsynonymous | synonymous substitution rate 
KaKsd Selective strength (< 1 purifying, = 1 neutral, > 1 positive) 
p-valued Fisher exact test of KaKs value 
CpG Jaccard index  (#CpG in both codons)/(#CpG in either codon) 
GC Jaccard index  (#C + #G in both bases)/(#C + #G in either base) 
ts/tv #ts/#tv, where ts = transition, tv = transversion  

a The “|” indicates two different columns. 
b All statistics are scored from the CDS codon-based alignment with the exception of the UTRs. The descriptions 
specify whether gaps are included, however, no statistics include the overhang. 
c 4-fold and 2-fold degenerate are computed according to Lehmann and Libchaber [28]; N-fold are synonymous codons 
with N possible bases in the ith position. 
d Calculated by the KaKs_Calculator [14] using the method specified by the user (default “YN”). 

2.6 Query and display (viewSingleTCW and viewMultiTCW) 
ViewSingleTCW provides filters and displays of the sTCWdb content. Briefly, the user can filter on the 
data associated with the sequences (e.g. Best Bits, DE, etc.), which results in a table of sequences. The hits 
can be filtered, which results in a table of hits. The GOs can be filtered, which results in a table of GOs; the 
relations between the GOs, hits and sequences are complicated; to aid in understanding the relations, there 
are multiple ways to view these relations.  For both the hit and GO tables, the associated sequences can be 
view in the sequence table. From the sequence table, a sequence can be selected to show all information 
associated with it along with panels of the frame, GOs, and aligned hits. S1 and S2 Suppl provide snapshots 
of most of these tables, filters and panels. 

ViewMultiTCW provides filters and displays of the mTCWdb content. Briefly, the user can filter 
on sequences, pairs, clusters and hits which results in a table of the corresponding results. From the cluster 
table, a selected cluster can be viewed by its sequences, pairs or MSA. From the pairs table, the selected 
pair can be viewed by its sequences, clusters or pairwise alignment. From the sequence table, multiple 
selected sequences can be viewed by their clusters, pairs or MSA, or a single selected sequence can display 
its details. From the sequence detail panel, the frame, GOs, or pairwise alignment of it hits and pairs can be 
viewed. The pairwise alignment can be by nucleotide (full sequence, CDS, 5’UTR, 3’UTR) or amino acid. 
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From the CDS alignment panel, the text alignment can be viewed with any of the following annotations: (i) 
synonymous/nonsynymous, (ii) amino acid, (iii) degenerate, (iv) CpG, or (v) ts/tv.  S1 and S3 Suppl provide 
snapshots of most of these tables, filters and panels. 

Both viewSingleTCW and viewMultiTCW produce overviews of their results and processing 
information (e.g. the dates of the GO tables and UniProts used), which is the initial view when starting 
either program. For all tables of results described for both viewSingleTCW and viewMultiTCW, the user 
can select the columns to view, move columns, and sort columns. All tables provide statistics on the selected 
numeric columns. All tables can be copied and exported in various formats. TCW does not provide 
overview graphical plots since there are many existing programs to create graphs, e.g. the data can be 
exported to a tab-delimited file for input into Excel. Instead, TCW graphics specializes in the details of the 
results such as alignments. 

3 Results 
The results use real data, but the analysis is strictly to demonstrate the TCW capabilities and does not 
attempt to answer any biological questions. Detailed descriptions on how to reproduce the rhizome study 
results are given in the S1 Suppl. 

3.1 Rhizome study databases 
To demonstrate the TCW analysis, the software is applied to the transcriptomes of two rhizome and one 
non-rhizome plant species. The rhizome O. longistaminata is a published dataset that is de novo assembled 
from Illumina reads with 5 replicates from rhizome, root, stem and leaf [16]; for this example study, the 
number of sequences was reduced from 143k to 48k (see S1 Suppl §1). The rhizome N. nucifera and non-
rhizome O. sativa transcripts were downloaded from NCBI where they both have genome sequences [29] 
and [30], respectively. The three corresponding databases were named sTCW_OlR (O. longistaminata 
Rhizome), sTCW_NnR (N. nucifera Rhizome) and sTCW_Osj (O. sativa Japonica). 

The TCW databases were built on the Linux machine specified in §2.1. The UniProt databases were 
downloaded on 21-Dec-2021; the resulting annoDBs are shown in Figure 3, where SP-full_BFIPV is the 
full SwissProt minus the records from the 5 taxonomic databases. The downloaded go-basic.obo was dated 
Nov-2021. The runSingleTCW defaults were used for building all three sTCWdbs. The DE was computed 
for sTCW_OlR with the edgeR script and the CpM filtering defaults. The runMultiTCW program was run 
to build mTCW_pl from the three sTCWdbs. Clusters were created using Closure, OrthoMCL and BBH, 
where TCW defaults were used for all computations.  

 

 
Figure 3. Overview of the annoDBs used to annotate the 48,272 OlR transcripts. The following describes the 
columns. ANNODB: the first part is defined by the input file, for example, “SP” and “TR” stand for SwissProt and 
TrEMBL, respectively, and “TF” refers to the transcription factor database PlantTFDB [31]; the second part is the 
taxonomy or source (named by the user). ONLY: the number of sequences that were only hit by the annoDB. BITS 
and ANNO: the number of sequences from the annoDB assigned the Best Bits and Best Anno, respectively. UNIQUE: 
the number of unique identifiers for the annoDB. TOTAL: the number of sequence-hit pairs from the annoDB. AVG 
%SIM: the average percent similarity for the total sequence-hit pairs. Rank=1: The four numbers following this 
heading refer to the best hit to the annoDB for each sequence. HAS HIT: the number and percent of sequences with 
at least one hit to the annoDB. AVG %SIM: the average percent similarity of the Rank=1 hits. COVER ≥ N: the 
percent of  Rank=1 hits that have similarity ≥ N% and hit coverage ≥ N%. 
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The singleTCW results below use unpruned hits. However, when the OlR hits were pruned by 

alignment, the results had 11% reduction in sequence hits and 12% reduction in unique hits. When they 
were pruned by description, the results had 65% reduction in sequence hits and a 76% reduction in unique 
hits, yet all statistics shown in Figure 3 are similar except for the UNIQUE and TOTAL for the total hits 
(see S2 Suppl §2.1.2 for more details). 

3.2 Transcriptome analysis for rhizome study 
Table 3 provides summary statistics of the three datasets. Since N. nucifera (NnR) and O. sativa (Osj) are 
transcripts from genome sequence, it is expected that they would have transcripts that align well with the 
annoDB hits. Indeed, NnR has 99.2% and Osj has 99.0 transcripts with hits. O. longistaminata (OlR) had 
only 75.6% hit transcripts even though it is closely related to O. sativa; the lower number is partially due 
to them being assembled transcripts. Considering the species with the most hits, the top 8 species for the 
two Oryza databases were to Oryza species whereas none of the NnR top 8 species were to  Oryza species. 
All three sTCWdbs had Best Bits hits to the transcription factor sequences in PlantTFDB, where OlR had 
282, NnR had 118, and Osj had 222. 
 
Table 3. Transcript and hit statistics 

 #Seqs Average 
length 

Hita Uncharac 
terizedb 

TrEMBL plants 
  Has     
  Hitc 

Avg  
%Simd 

Cover 
≥50e 

Cover 
≥90e 

OlR 48,272 1,078 75.6% 10.8%  75.6% 90.7 47.3% 16.4% 
NnR 43,069 2,066 99.2% 3.2%  99.2% 98.5 96.7% 92.1% 
Osj 53,404 2,200 99.0% 6.2%  99.0% 95.5 90.6% 69.1% 

a The percent transcripts with at least one hit to any annoDB. 
b The percent transcripts with a Best Anno of ‘Uncharacterized protein’ (this phrase does not cover all non-informative 
descriptions, so this percent is a lower limit). 
c The percent transcripts with at least one hit to the TrEMBL plant annoDB. 
d Average similarity of the best hit to the TrEMBL plant annoDB. 
e Cover ≥ N is the percent transcripts that have a best hit with coverage ≥ N and similarity ≥ N. 

3.2.1 Open reading frames 
The average length of the ORFs for OlR, NnR and Osj was 578, 1375 and 1269 nucleotides, respectively. 
Table 4 provides a summary of their features.  
 
Table 4. Summary of ORFs 

Percent of transcripts OlR NnR Osj Exact hita OlR NnR Osj 
%Hit & Longest & Markov 43. 86.8 73.4 % Sim ≥ 90 92.9 99.9 98.2 
% Has hit 75.6 99.2 99.0 % Longest & Markov 73.7 90.6 80.2 
% Longest ORF 61.0 93.2 79.1 % Longest ORF 76.1 96.6  82.1 
% Markov best score 71.5 89.8 86.4 % Markov best score 92.8 92.2 94.8 
% ORF ≥ 300  50.1 92.8 91.2 % ORF ≥ 300 90.3 96.7 96.9 
% Exact hitsa 7.1 86.6 54.2  

a Exact Hit: An alignment to the entire protein ending with a ATG and stop codon; there may be mismatches or gaps 
(e.g. the hits in Figure 2 are exact). The exact hit counts are OlR = 3446, NnR = 37,294, Osj = 28,922. 
 

For the transcripts with genome sequence, the percentage of all transcripts with exact hits for NnR 
was 86.6% and Osj was 54.2%. When the Osj ORFs were computed allowing alternative start sites, the 
percentage of exact hits only increased to 54.7%. Computing the longest ORF often finds the correct ORF, 
but not always; for example, considering the NnR 37,294 exact hits, 96.6% were the longest. The Markov 
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score [22] is a excellent indication of coding, where 92.2% of the NnR exact hit ORFs had the best score. 
Putting the two features together, 90.6% were the longest with the best Markov score. The Osj had a much 
lower percentage for the longest (82.1%) and higher percentage for the Markov score (94.8%). 

ORF finding is complicated when there are multiple hit frames or stop codons within the hit region; 
the percentages of these two cases (multi-frame, stop-in-hit) was OlR (15.7%, 9.7%), NnR (8.1%, 5.4%) 
and Osj (24.3%, 14.7%). The sequences with multiple frames and stop codons within hits can be viewed in 
viewSingleTCW, which is demostrated in S2 Suppl §2.1.3.  

Comparison with TransDecoder v5.5.0. The TransDecoder software [22] is often used for finding 
ORFs, which also uses information from hits, length and the Markov score. S2 Suppl §2.2.1 compares 
results between TCW and TransDecoder (TD) for the task of finding the best ORF per sequence, where the 
results are summarized as follows: 15,000 sequences with a perfect hit (exact hit with 100% similarity) to 
TR-plants were used, of which 9000 had hits to SP-plants. The TCW and TD ORFs were computed using 
the SP-plants hits and the results compared to the TR-plant perfect hits. TCW produced an ORF for all 
sequences and TD produced results for all but 192 sequences. Of the 14,808 that had a TD results: TCW 
had 35 and TD had 50 wrong frames, TCW had 9 and TD had 3 non-overlapping coordinates, TCW had 
639 and TD had 2022 wrong starts. The greatest difference was with the start coordinate, where TCW 
performs much better because it directly uses the start coordinates of the SP-plant hit when it is a good hit.  

3.2.2 Differential expression 
To explore the differential expression, the OlR database was queried for transcripts that were preferentially 
expressed in the rhizome compared to the other tissues. Comparing rhizomes to root, stem and leaf using 
p-value < 1E-04, there were 483 down-regulated transcripts of which 21 had TPM ≥ 50 for rhizomes. There 
were 863 up-regulated transcripts of which 151 had TPM ≥ 50 for rhizome. Of the 151 transcripts, 9 were 
not annotated, which are shown in Figure 4. 
 

 
Figure 4. Unique rhizome transcripts that are up-regulated for rhizomes. Transcripts with no annotation, rhizome 
TPM ≥ 50 and up-regulated for rhizome compared to root, stem and leaf at p-value < 1E-04. The columns Rhiz, Root, 
Stem and OLeaf are the TPM values, the middle three are the DE columns, and the last three columns are the fold-
change. 

3.2.3 Gene ontology 
To explore the gene ontology, the OlR database was queried on Plant GO Slims, which resulted in 97 GO 
terms. This set was analyzed for enrichment of rhizome to root (RhRo), stem (RhSt) or leaf (RhOL), where 
32 GO terms were enriched using GOseq p-value < 1E-06; the graph is shown in Figure 5. 
 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 2, 2022. ; https://doi.org/10.1101/733311doi: bioRxiv preprint 

https://doi.org/10.1101/733311
http://creativecommons.org/licenses/by/4.0/


 12 

 
Figure 5. GO enrichment of Plant GO Slims for OlR rhizomes. Rhizomes were compared to root (RhRo), stem 
(RhSt) and leaf (RhOL) using p-value < 1E-06 for any of the three. 
 

The following demonstrates using TCW results with other programs. There were 162 total GOs 
enriched for rhizomes at p-value < 1E-06. The GO terms were from levels 2-10, with 100 biological process, 
57 cellular component and 5 molecular function. The data was input into REVIGO [32] where the values 
associated with each GO term were the number of DE transcripts; the 57 cellular component GOs were 
reduced to 30 and shown graphically (see S2 Suppl §4). WEGO [33] reduced the entire set to 29 GO terms 
from WEGO’s level 3 and shown graphically (see S2 Suppl §4). 

3.2.4 Timing results 
The following execution times are from the Linux machine described in §2.1. It took 7 minutes to build the 
sTCW_OlR database of 48,272 sequences with 20 replicate counts per sequence. Table 5 shows the 
annotation times, where the second row has 4 additional TrEMBL taxonomic database (invertebrate, fungi, 
virus, bacteria). The execution time for row 1 is further broken down in S1 Suppl §3.2 along with times for 
description pruning annotation (Total 2h:09m on Linux and 51m on MacOS). 

Table	5.	SingleTCW	annotation	times	on	Linux	for	48,272	sequences.	
Row AnnoDBsa Largest AnnoDB runASb runSingleTCW Annotate 

Add Annoc Add GO Totald 
1   8: 6 SP, 1 TR, 1 Tf   5.1Gb TR-plants   1h:17m 1h:06m 1h:03m 2h:28m 

2 12: 6 SP, 5 TR, 1 Tf 32.5Gb TR-bacteria 22h:23me 4h:22m 2h:02m 6h:37m 
a SwissProt (SP), TrEMBL (TR), and PlantTFDB (Tf) 
b Includes download times. 
c Includes search times, but not the times to build the DIAMOND databases. 
d Includes Add Anno, Add GO and ORF-finding. 
e 17h:20m was for TR-bacteria (6h:36m download, 2h:21m create FASTA, 8h:23m load GOdb) 
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There were 75.6% annotated sequences using the 8 annoDBs and 75.8% using the 12 annoDBs. Given that 
the difference in annotated sequences is small, it is generally not worth including the large TrEMBL 
databases except for the most relevant.  

3.3 Comparative analysis for rhizome study 
The mTCW_pl comparative database was created from sTCW_OlR, sTCW_NnR, and sTCW_Osj. Table 
6 displays the number of clusters for BBH, Closure and OrthoMCL.  
 
Table 6. Summary of clusters 

 Clusters Cluster pairsd 

Methoda =2 3-5 6-15 >15 #Seqs Shared 

Descb 
Avg 

Wentc 
Avg 
Ka 

Avg 
Ks 

NnR-OlR (Bnl)  5,056 0 0 0 7.0% 90.5% 0.58 0.188 6.928 
NnR-Osj  (Bns) 6,473 0 0 0 8.9% 91.1% 0.65 0.198 7.009 
OlR-Osj   (Bls) 13,424 0 0 0 18.5% 96.4% 0.77 0.024 0.271 
CL 11,770 10,322 4,181 284 70.2% 90.0% 0.76 0.125 4.118 
OM 5,692  7,936 5,509 1,217 80.0% 80.0% 0.69 0.260 6.044 

a The first three methods are BBH; CL is Closure; OM is OrthoMCL. 
b The percentage of the clusters where all sequence share an annotation description. 
c Wentrophy scores are between 0 and 1 where 1 is the most conserved. 
d Average Ka (nonsynomymous rate) and Ks (synonymous rate). 
 

CL has more total clusters than OM (26,557 versus 20,558), yet it uses less sequences (70.2% 
versus 80.0%). As shown in Table 6, CL has a higher number of clusters where all sequences share an 
annotation hit compared to OM, higher Wentrophy  and lower Ka and Ks.  This would imply that the CL 
clusters are more conservative. If OM was run with the less stringent inflation of 1.5, the differences would 
be greater.  

TCW specializes in exploratory graphics, where the scientist can view the details of a cluster. For 
example, if the scientist was interested in the “HORMA domain-containing protein”, Figure 6A shows that 
the two Orzya species have perfectly aligned amino acid sequences and NnR has some substitutions. Figure 
6B shows that the two Oryza sequences have four mismatches for the nucleotide sequence that result in 
synonymous codons, as shown in Figure 6C. 
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Figure 6. MSA and Pairwise alignments. (A) The MSA of a cluster where the first two amino acid sequences are 
identical, the third one has some differences.  The green marks are gaps, and the rest of the marks indicate a difference 
in amino acid, where blue marks are BLOSUM62 > 0, pink are BLOSUM62 = 0, red are BLOSUM62 < 0. (B) For 
the identical amino acid sequences, the CDS nucleotide alignment shows 4 mismatches (red marks). (C) The top 
portion of the CDS text alignment states that the mismatches correspond to synonymous codons (the 4 mismatches 
are shown on the full text alignment). 

3.3.1 Rhizome specific clusters 
Clusters with at least one transcript from the two rhizome datasets OlR and NnR, and no transcripts from 
the non-rhizome Osj dataset are potential rhizome-specific proteins. From the Closure clusters, there were 
243 candidate rhizome clusters where all of them were annotated, one had the description “uncharacterized” 
and 201 (82%) shared the same annotation description. Figure 7 shows the top 10 clusters sorted by 
Wentrophy (Score2) score. From this cluster set, NnR had an average of 1.64 transcripts per cluster and 
OlR has 1.11 transcripts per cluster. Further analysis of these clusters would be of interest to a scientist 
studying rhizomes, where the descriptions and GO assignments could elucidate important functionality of 
rhizomes.  
 

 
Figure 7. Top ten annotated rhizome Closure cluster. Only clusters where all members have the same shared 
annotation description (%Hit>=100) are shown, sorted on Score2. The conLen column is the consensus length and 
sdLen is the standard deviation of the aligned sequences lengths. Score2 is Wentrophy. The E-value is from the best 
hit. The OlR, NnR and Osj columns are the number of transcripts from each respective dataset. 
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3.3.2 BBH clusters 
Figure 8 shows the BBH statistics from the related OlR-Osj pairs and the more distantly related OlR-NnR. 
The 94.9% exact codons for OlR-Osj elucidates how closely related they are compared to the 33.9% for 
OlR-NnR. The BBH NnR-Osj statistics (not shown) have very similar values to the NnR-OlR. 

 
Figure 8. Pair statistics for BBH OlR-Osj and NnR-Osj. The explanation of each statistic is given in Table 2.  
 
Comparison with Galaxy BBH. S3 Suppl §4.1.1 has a comparison between TCW and Galaxy BBH, 
summarized as follows.  The following are handled differently in the two programs: (i) filter with or without 
rounding, (ii) filter before or after creating possible BBH pairs, (iii) handling of a tie between two pairs, 
(iv) how the self-search is performed. TCW and Galaxy agreed on 800 pairs, where TCW had 853 and 
Galaxy had 850 pairs. The difference are typically from the situation where A’s best hit is B, whose best 
hit is C, who has a bi-directional hit with D; the differences in handling can change this relation. The benefit 
of the Closure method is that it brings ABCD into the same cluster.  

3.3.3 Ka/Ks results 
Figure 9A shows the Ka/Ks summary for the BBH OlR-Osj pairs. As stated by Zhang et al. [14], the 
selection is neutral if Ka = Ka,  purifying if Ka < Ks, and positive (diversifying) if Ka > Ks. Either Ka or 
Ks may be NA (if Ka = NA, then KaKs = NA; if Ks = NA,  then KaKs = 0). Since it is rare for Ka to be 
exactly equal to Ks (mTCW_pl has 1pair), the TCW summary uses the following: Ka/Ks ~ 1 is (0.995 ≤ 
KaKs < 1.006), Ka/Ks < 1 is (KaKs < 0.995) and Ka/Ks > 1 is (KaKs ≥ 1.006).  

Filtering on coverage ≥ 98% for both sequences, no gaps and Ka/Ks < 1 results in 1964  pairs, 
where Figure 9B shows the the top 10 with the lowest Ks value. Using the same filter but with KaKs > 1 
results in 73 pairs, where Figure 9C shows the top ten. 
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Figure 9. Ka/Ks for BBH OlR-Osj top purified and diversified pairs. (A) The overview for the Ka/Ks results for 
the BBH OlR-Osj pairs. (B) Purifying: The ten pairs with the lowest Ks scores, coverage ≥ 98% and no gaps. (C) 
Diversifying: The ten pairs with the highest Ka/Ks scores, coverage ≥ 98% and no gaps.  

3.3.4 Timing results 
Table 7 shows the execution time on the Linux machine to build two multiTCW databases. The mTCW_rhi 
has two input sTCWdbs that were description pruned. S1 Suppl §3.3 shows a breakdown of times for the 
different processing steps on Linux and Mac.  

Table	7.	MultiTCW	build	times	on	Linux	
mTCW Sequences Clusters Pair  

Align 
Cluster 
MSA 

Total  
time 

pl 144,745 72,133 9h:47m 9h:24m 23h:18m    
rhi   74,957 16,620 15m 54m   2h:24ma 

a The total time on the MacOS was 1hr:02m. 
 
The step to add GOs can be omitted if they are not going to be used (viewMultiTCW has limited support 
for GOs); the time to add GOs for mTCW_pl was 1h:36m, which is part of the total time in Table 7. The 
MSA step can be omitted if it is sufficient to compute the MSA and scores per cluster on-the-fly in 
viewSingleTCW, but it is generally worth taking the compute time to have them pre-computed. 

4 Discussion 
The topic of reproducibility has been addressed in numerous publications. Peng [34] discusses how the 
introduction of computers to the analysis of biological data has introduced published computational results 
that are not reproducible. Stodden et al. [35] reviewed 204 Science publications and were able to reproduce 
the findings of only 26% of them. Garijo [36] provided reproducibility guidelines for authors, one of which 
was the importance of using published open source software whenever possible.  TCW provides easily 
reproducible results and is open source. The supplements provide instructions on how to reproduce the 
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results in the manuscript and the supplements. A significant benefit is that researchers can produce the same 
type of TCW results for their data; this saves time in figuring out how to generate the results and for writing 
detailed methods on how they were produced. 

The topic of reproducibility has drawn attention, but there are also the problems of loss of results, 
extensibility and accessibility. Bioinformatics often utilize many flat files (plain text files such as a FASTA 
file) of data and results, and it is complicated to keep such files organized. As discussed, TCW stores all 
data in a MySQL database and allows the input of external results, hence, keeping all results in one place 
and is easily accessible to all members of the team. 

Scientists explore transcriptomes through ingenious wet lab experiments; however, with large-scale 
data they must also be proficient at exploring the transcriptomes through computational approaches. The 
scientist should be able to have at their workbench a computer with multiple applications to aid in exploring 
this wealth of information. Since computational analysis is permanently part of the biology world, it should 
be routine for any lab that analyzes large-scale data to have a bioinformatics scientist as a member of the 
team, who can install the basic dependencies used by software such as TCW.  

TCW allows the viewing of all data and results, nothing is hidden, and the graphics allow the user 
to verify and understand the results. Some examples are as follows: Using viewSingleTCW, the user can 
view over-expressed GOs for a given p-value, and can then drill down to view all sequences that have a hit 
with a given GO term.  A hit E-value of 1E-100 could be a long match with mismatches and gaps or a short 
exact match, where observing the actual TCW alignment aids in understanding the characteristics of the 
match. With viewMultiTCW, the user can view the text alignment of a homologous pair along with the 
location of the different statistics listed in Table 2. In summary, allowing the scientist to view the details of 
the computation aids in clearly understanding the results. It identifies the ambiguities and difficulties and 
demonstrates why there is not a perfect algorithm to solve many of these problems. This in turn could lead 
to refinement of the wet lab experiments. 

TCW includes many different types of computations, and the objective was to use the most state-
of-the-art approach for each computation. New methods and algorithms will be added in the future along 
with enhanced graphics and queries. Computer scientists, biologists and bioinformaticians are welcome to 
directly add or request help in adding their methods to TCW. 

5 Supporting information 
S1 Suppl. Datasets, reproduce results, timings. §1. Details of the datasets used in the manuscript and 
supplements. §2. Instructions on how to reproduce the single and multi TCW results along with TCW 
snapshots. §3. Timing results for both single and multi TCW on a Linux and Mac machine. §4. External 
software and databases used by TCW. 
 
S2 Suppl. Build a singleTCW database. §1. Using runAS for downloading UniProts and GO for TCW 
annotation. §2. Using  runSingleTCW, which includes N. nucifera  multi-frame hits and hits with stop 
codons, the ORF finding algorithm with comparison to TransDecoder, GO levels,  adding external data. §3.  
RunDE for differential expression. §4.  GO results using REVIGO and WEGO. 
 
S3 Suppl. Build a multiTCW database. §1.  The runMultiTCW interface. §2. Building the database and 
adding GOs. §3. Search parameters and adding pairs. §4. Computing clusters, the BBH algorithm with 
comparison to Galaxy BBH, assigning annotation to cluster. §5. Run Stats: statistics for pairs and clusters. 
§6. GC, CpG, Ts/Tv computations. §7. TPM, DE and PCC.   
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