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The response of microbes to external signals is mediated by biochemical networks with intrinsic
timescales. These timescales give rise to a cellular memory that plays a pivotal role in controlling cel-
lular behaviour. Here we study the role of cellular memory in Escherichia coli chemotaxis. Using an
agent-based model, we show that cells with memory navigating rugged chemoattractant landscapes
can enhance their drift speed by extracting information from the correlations in their environment
beyond local gradients. The improvement is maximal when the cellular memory is comparable to
the timescale of the fluctuations perceived during swimming. We then extend coarse-grained popu-
lation models and derive an analytical approximation for the drift velocity in rugged landscapes that
includes the relevant time and length scales. Our model explains the improved velocity, and recovers
standard Keller-Segel gradient-sensing results in the limits of no cellular memory, no ruggedness of
the landscape, and when memory and fluctuation timescales are well separated. Our numerics also
show that cellular memory can be used to induce bet-hedging at the population level by developing
distinct sub-populations in response to heterogeneous chemoattractant landscapes.

I. INTRODUCTION

Many microbes navigate rugged attractant landscapes
in search of nutrients and stimulants in a process called
chemotaxis. This process is mediated and governed by
specialised biochemical pathways that sense changes in
stimulant concentration, transduce those signals, and in-
duce subsequent adjustments to the locomotion of the
cell [1]. Such pathways have characteristic dynamic re-
sponses with intrinsic timescales, which are used by cells
to resolve changes in chemoattractant concentrations,
i.e., to perform local gradient-sensing [2, 3]. In addi-
tion, the dynamic response of the biochemical circuits
can filter out the high frequencies of noisy signals, so as
to enhance gradient-sensing [4–6].

The timescales of such responses can also be viewed as
the basis for a cellular memory, over which signals are
processed. Indeed, microbes sample continuously their
chemical environment along their swimming trajectory,
and recent work has shown that the biochemical memory
can be dynamically tuned [7] from seconds to minutes [8]
in response to environmental statistics. Hence, in addi-
tion to evaluating the stimulant gradient, cells could ex-
tract informative features of the heterogeneous environ-
ment from the fluctuations they perceive as they swim.

We study the effects of cellular memory in the con-
text of Escherichia coli chemotaxis, a model system for
the navigation of microbes [9], worms [10], and eukary-
otes [11], as well as an inspiration for the motion of swarm
robots [12, 13] and random search algorithms [14]. E.
coli chemotaxis entails a run-and-tumble strategy: ’runs’
(i.e., stretches of linear motion at constant velocity) in-
terrupted by ’tumbles’ (i.e., random stops with reorien-
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tation onto a random direction). To generate a drift to-
wards high chemoattractant concentrations, cells reduce
their tumbling rate upon sensing a favourable gradient,
thus lengthening the up-gradient runs [15] (Fig. 1).

The tumble rate is regulated by a chemotactic path-
way with a bi-lobed temporal response (Fig. 1) with a
characteristic timescale γ, which we denote the cellular
memory. Input signals are convolved with this temporal
response, with the effect that recent samples are weighed
positively whereas signals in the past are given a nega-
tive weighting [16]. It has been shown that this response
yields an estimate of the local temporal gradient [3, 4].

The capability of cells to compute local gradients is the
basis for several coarse-grained models (drift-diffusion
equations). The classic example is the linear Keller-Segel
(KS) model [17, 18], which describes the behaviour of a
population of cells whose mean velocity aligns instan-
taneously with the local gradient. The KS model suc-
cessfully reproduces a variety of chemotactic phenomena,
including experimentally observed steady-state distribu-
tions [19]. Yet KS fails to recapitulate situations away
from steady-state, when cells do not have time to adapt
to environmental fluctuations, both in experiments [20]
and in agent-based simulations [21]. These shortcomings
suggest the need to consider additional timescales that
play a role in chemotactic transient responses [22]; specif-
ically, the intrinsic memory of the chemotactic pathway
processing incoming stimuli [23, 24].

Here, we study how bacteria use their cellular mem-
ory as they swim across a rugged chemoattractant land-
scape to extract spatio-temporal information from the
perceived signal so as to improve their chemotactic navi-
gation. To shed light on the role of memory, we carry out
simulations of an agent-based (AB) model containing an
input-output response function of the E. coli chemotac-
tic pathway [25–27] and compare its predictions to the
KS model, which is based on memoryless local gradient
alignment. The KS agrees well with the AB numerics
for constant gradients, yet it underestimates the drift ve-
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locity of the population when the ambient concentration
has spatial correlations, consistent with cells taking ad-
vantage of correlations in addition to local gradients.

Motivated by these numerical findings, we derive an
analytical formula for the drift velocity in terms of the
cellular memory and the length scale of the spatial cor-
relations of the attractant landscape. Our model pre-
dicts the numerical results and recovers KS in various
limits, thus elucidating the conditions in which cellular
memory provides a chemotactic advantage over mem-
oryless local gradient-sensing. We also show that our
results are consistent with optimal information coding
by the chemotaxis pathway [26, 28], yet cells are band-
limited by their tumbling rate. Our work thus extends
the gradient-sensing viewpoint in chemotaxis, and pro-
vides insight into the role of memory in navigating het-
erogeneous landscapes.

II. THE CLASSICAL VIEWPOINT OF
CHEMOTAXIS: LOCAL GRADIENT-SENSING

A classical setup for chemotaxis is represented
schematically in Fig. 1. Cells swim following a run-and-
tumble motion: ballistic motion (‘runs’) at constant ve-
locity v0, interrupted by random re-orientations (‘tum-
bles’) occurring at random times governed by a Poisson
process with rate λ(t) [29]. As cells swim along their tra-
jectory x(t) (taken here to be one-dimensional for sim-
plicity), they are exposed to an attractant concentration
S(x(t)). Assuming initial adaptation to the ambient at-
tractant concentration, the cells modulate their Poisson
tumbling rate according to [23, 30]:

λ(t) = 1− Λ(t)

with Λ(t) =

∫ t

−∞
K(t− u)S(x(u))du .

(1)

Throughout, we use variables non-dimensionalised with
respect to the characteristic length and time scales:

x =
x̃

`0
, t = λ0t̃, λ =

λ̃

λ0
, S =

S̃

Stot
,

where Stot is the total attractant concentration, λ0 =
1 s−1 is the basal tumbling rate, and `0 = v0/λ0 = 10µm
is the average run length (see Fig. 1) [15].

In Eq. (1), K(t) is the chemotactic memory kernel,
measured through impulse response experiments [16],
which has a bi-lobed shape for some attractants in E.
coli [31, 32] (Fig. 1). A typical form for K(t) is given by:

K(t) =
β

γ
e−t/γ

(
t

γ
− t2

2γ2

)
, (2)

where β is a dimensionless signal gain, and γ = λ0γ̃ is
the cellular memory, a (dimensionless) relaxation time,
as seen by the fact that the crossing point of the bi-lobed
response is t = 2γ (Fig. 1). Note that the amplitude of

Tumble
Run

S(x(t)) S(t) λ(t)

0 5 10
t

-0.5

0

0.5

1

K
(t)

/K
m
ax

2γ

Figure 1. Setup of the agent-based (AB) model and sim-
ulation framework. Cells navigate a chemoattractant land-
scape S(x) using a run and tumble strategy with character-
istic scales and variables as represented in the picture. The

simulations are run in a long domain of length L̃ � `0 over

long times T̃ � λ−1
0 . The swimming cell senses the attrac-

tant concentration along its trajectory x(t) and modulates its
tumbling rate λ(S(x(t))) by the chemotaxis transduction (1)
with dynamic response mediated by the kernel K(t) (2).

the response kernel is Kmax = (
√

2−1)e
√
2−2β/γ. Hence

an increase in memory decreases the overall response.
The kernel (2) can be understood as a linear filter with
three states (Sect. S1A,B in SI), with a topology that is
known to achieve perfect adaptation [33, 34], which in
the present context is fulfilled since

∫∞
0
K(t)dt = 0.

At long timescales involving many runs and tumbles
(t � 1), the swimming behaviour may be approximated
by a drift-diffusion process [18, 21, 35]. In this regime, the
time evolution of the population density of cells ρ(x, t)
from an initial state ρ(x, 0) is described by a Fokker-
Planck partial differential equation:

∂ρ

∂t
− 1

2

∂2ρ

∂x2
+

∂

∂x
(ρv) = 0, (3)

where v(x, t) = ṽ(x, t)/v0 is the drift velocity of the cells,
and the diffusion coefficient D = `20λ0 drops out as part
of the non-dimensionalisation. Equivalently, ρ(x, t) is the
probability of finding a cell at x after time t from a start-
ing position x0 drawn from ρ(x, 0).
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Typically, derivations in the literature [29, 35, 36] con-
sider the regime of long memory (compared to the aver-
age run) and shallow perceived gradient (i.e., the attrac-
tant does not vary appreciably over the memory):

1� γ �
(
β
∂S

∂x

)−1
. (4)

Under these assumptions, the drift velocity v(x, t) can be
shown [30] to align with the local gradient (see Sect. S2
in SI):

v(x, t) = χ
∂S

∂x
=: vKS(x), (5)

where the chemotactic response coefficient χ follows from
the kinematics and the memory kernel (2):

χ =
2βγ

(1 + 2γ)3
. (6)

Equation (3), together with (5) and (6), defines the clas-
sic linear Keller-Segel (KS) equation for the time evolu-
tion of the population density under a landscape S(x).
We denote the solution to this equation as ρKS(x, t; S).

However, the KS model is actually valid under the
weaker condition [21]

|Λ| � 1 (small response), (7)

i.e., the tumbling response remains close to the adapted
value. It can be shown that timescale separation (4) im-
plies small response (7), but the converse is not necessar-
ily true. Hence KS can still be valid in the realistic situa-
tion when (4) breaks down because the cellular memory is
commensurate with environmental fluctuations [5, 6, 26],
as long as (7) holds. Below, we consider a broad span of
memory values (from the well separated to the commen-
surate) but always in the small response regime (7), so
that Keller-Segel is applicable.

III. AGENT-BASED NUMERICS:
CHEMOTAXIS OF CELLS WITH MEMORY

We consider cells with memory swimming in a rugged
environment with spatial correlations, leading to a tem-
porally fluctuating input perceived along their trajecto-
ries. To study the effect of memory, we performed agent-
based (AB) simulations of run-and-tumble motion as in
Refs. [25, 26] coupled to a cellular response (1)–(2) with
memory (see Sect. S1B,C in SI for details).

Our rugged landscape is a simple linear attractant con-
centration profile with additive spatial noise [26]:

Sη(x) = αx+ η(x), (8)

where η(x) is a random spatial variable described by the
stochastic harmonic oscillator Langevin equation:

d

dx
η(x) = θ(x)

m
d

dx
θ(x) = − 1

µ
η(x)− θ(x) + ση

√
2

µ
ξ(x).

(9)

Here ξ(x) is a unit white noise, and

α =
`0
Stot

α̃, ση =
σ̃η
Stot

, m =
m̃

`0
, µ =

µ̃

`0

are non-dimensionalised parameters corresponding to:
attractant gradient, noise variance, inertia, and spatial
correlation length, respectively. This random landscape
has two desirable properties. First, Sη(x) with m > 0 is
continuous and differentiable, so that〈

∂Sη
∂x

〉
ξ

= α+

〈
∂η

∂x

〉
ξ

= α, (10)

where 〈·〉ξ denotes averaging over independent reali-
sations of η(x). Second, (9) is a regularised spatial
Ornstein-Uhlenbeck (OU) process (Fig. S5 in SI): as
m → 0, η converges to an OU process η0(x) which has
exponential correlations with characteristic length µ:

〈η0(x)η0(x′)〉ξ = σ2
ηe
−|x−x′|/µ =: Cη(|x− x′|). (11)

The OU limit is used below to facilitate our analytical
calculations.

A. Chemotaxis in constant shallow gradients is
well described by the Keller-Segel model

We first consider the landscape with zero ruggedness:

S0 = αx, (12)

which corresponds to ση = 0 or, alternatively, to the
limit µ → ∞, when the correlation length diverges. In
this case, it has been shown [18, 36] that the condition

βα� 1 (shallow perceived gradient) (13)

guarantees that the small response condition (7) also
holds. Hence we expect the AB numerics to be well de-
scribed by the KS equation.

To test this prediction, we used the AB model to sim-
ulate N = 105 independently generated cell trajectories
{xAB(t; S0); t ∈ (0, T )}, where T = 4× 103, from which
we obtain population snapshots, ρAB(x, t; S0). All the
simulations were run in the regime of small βα and the
results are summarised in Fig. 2. In Fig. 2a, we show that
the statistics of the AB simulations are well captured by
the continuum KS solution:

ρAB(x, t; S0) ≈ ρKS(x, t; S0).

We also compared the drift velocity of the KS solution to
the average velocity of AB cells (computed over the long
simulation time T ):

vAB(S0) :=

〈
xAB(T ;S0)− xAB(0;S0)

T

〉
AB

vKS(x;S0) = χ
∂S0

∂x
= χα,

(14)
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where 〈·〉AB denotes averaging over the ensemble of AB
cells. Fig. 2b shows that the average velocity of the AB
population matches the drift velocity of the KS model
for varying memory γ.

Maximising (6) shows that the drift velocity vKS

achieves a maximum at an optimal memory:

v ∗KS := max
γ

vKS(S0) at γ∗KS = 1/4, (15)

Hence a cell with optimal memory γ∗KS has a kernel K(t)
with a zero crossing at t = 1/2, i.e., halfway through
the expected length of a run (see Fig. 1). KS thus pre-
dicts that the drift speed is maximal when the gradient
is measured along a single run, when the cell can take an
unbiased measurement while moving in a straight line.
For the zero-ruggedness landscape, our AB simulations
(Fig. 2b) also display a maximum in the average velocity
of the population when the cells have memory γ = γ∗KS.

Fig. 2c confirms that the simulations are in the regime
of small response (7) where KS is expected to hold. As
βα is increased, and the small response condition (7) is
violated, the correspondence between the AB and KS
solutions gradually breaks (see Fig. S6 in SI).

B. Chemotaxis of cells with memory in rugged,
correlated landscapes

The kernel K(t) with intrinsic memory γ has been
shown to filter high-frequency input noise [6, 26]. How-
ever, cells could also use this memory to their advantage
as they process the correlated fluctuations that they en-
counter as they traverse a rugged landscape.

To test this idea, we carried out AB simulations of cells
with memory navigating the spatially correlated land-
scape (8) and compared it to the predicted KS behaviour.
To ensure that the differences between AB and KS are
a direct consequence of the correlated spatial fluctua-
tions, all our simulations are run in the small response
regime (7) where KS holds, while keeping a large signal-
to-noise ratio (see Sect. S3B in the SI):

α� ση (large signal-to-noise ratio), (16)

Fig. 3 shows that the AB cell population travels faster
than predicted by KS going up the gradient of the rugged
landscape. Fig. 3a (top) presents simulated AB trajec-
tories for a particular realisation of the landscape Sη(x),
and Fig. 3a (bottom) compares the time evolution of the
KS solution 〈ρKS(x, t; Sη)〉ξ to the empirical distribution
from the AB numerics 〈ρAB(x, t; Sη)〉ξ, both averaged
over 100 independent realisations of the landscape Sη(x).
Our numerics show that the AB distribution propagates
faster: 〈vAB(Sη)〉ξ > vKS, i.e., the average cell velocity of
the AB simulations (defined as in (14)) averaged over re-
alisations of the landscape (blue solid line) is larger than
the corresponding KS drift velocity (dashed line).

We have examined this enhanced chemotaxis as a func-
tion of the length scale of the landscape. We show
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Figure 2. a) Top: Sample trajectories of the AB model
in the deterministic S0(x) landscape. Bottom: The popula-
tion dynamics of the AB model (ρAB(x, t; S0), histogram) is
well captured by the time-evolution of the KS equation (3)
(ρKS(x, t; S0), dashed line). The solid blue line indicates
the average velocity vAB, which is indistinguishable from the
KS drift vKS. The KS model (3) is integrated numerically
using a first-order in time, second-order in space forward-
Euler scheme (∆x = 10−4, ∆t = 1). The AB model is
used to produce N = 105 cell trajectories over T = 4 × 103

(∆x = 5 × 10−5, ∆t = 5 × 10−3) with perceived gradient
βα = 0.1. b) The average cell velocity from the AB model
(vAB, squares) ) is well predicted by the KS drift velocity (5)
(vKS, dashed blue line). c) The small response condition (7) is
met for all the simulations. The cyan bands indicate standard
deviation of the simulations.

in Fig. 3b that for correlation lengths around the run
length (µ ≈ 1), the KS drift velocity vKS underestimates
the average velocity 〈vAB(Sη)〉ξ of cells with memory
γ ≥ γ∗KS = 1/4.

As expected, the average velocity of the AB cells is well
approximated by the KS solution in the limits of both
vanishingly small and infinitely large correlation length:

||〈vAB(Sη)〉ξ − vKS|| → 0 as µ→ {0, ∞}, (17)

which correspond to an uncorrelated landscape or a zero-
ruggedness, constant gradient, respectively. Also ex-
pected, (17) holds in the memoryless limit γ → 0. In this
limit, the kernel K(t) computes the temporal derivative
of the signal (see Sect. S1A in the SI), and the tumble
rate (1) is λ(t) ' 1 − βdS/dt, so that the drift velocity
is given by (5) (see Sect. 2.3 in Ref. [35]). This result
is consistent with fast adaptation dynamics approaching
gradient-sensing [25, 35].

Note that the system is in the small response regime
(7) where KS is applicable (compare Fig.3c with Fig. 2c).
Our AB numerics show that cells with memory can drift
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Figure 3. Same as Fig. 2 but for a rugged landscape Sη (8).
a) Top: Some representative cell trajectories of the AB model
in the rugged landscape. Note that average speed of the
AB cells (solid blue line) is faster than the KS drift (dashed
black line). Bottom: The population density of the KS model
(〈ρKS(x, t; Sη)〉ξ, dashed line) generally fails to capture the
AB population dynamics (〈ρAB(x, t; Sη)〉ξ, histogram). Pa-
rameters: µ = 1, m = 5 × 10−3, βα = 0.05, βση = 10−3,
γ = 0.5. b) The cell velocity of the AB model (〈vAB(Sη)〉ξ,
circles) is well described by our approximation (23) (Vµ, red
solid line) for all values of µ, but the numerics are not well
captured in general by the KS drift (vKS, black dashed line).
c) For all γ and µ, the response amplitude remains small (as
in Fig. 2c), indicating that the KS model holds, yet it does
not capture the drift velocity in the rugged landscape. All
parameters of the simulations as in Fig. 2. Averages over the
landscape based on 102 realisations of Sη(x).

faster than predicted by mere gradient sensing (KS) when
navigating environments with spatially correlated fluctu-
ations, thus indicating a role for cellular memory in using
spatial information beyond local gradients.

IV. THE EFFECT OF MEMORY ON
CHEMOTACTIC NAVIGATION IN RUGGED

LANDSCAPES

To capture the numerically observed enhancement of
AB chemotaxis in rugged landscapes, we extend de
Gennes’ analytical derivation of the drift velocity to in-

corporate the interaction of memory with the landscape
fluctuations. To facilitate our analysis, in the rest of this
section we work in the OU limit of the landscape, i.e.,
m→ 0 in (9).

Consider a population of cells navigating the rugged
landscape Sη(x). Under chemotaxis, the average dura-
tion of runs up the gradient 〈t+〉AB is larger than the
duration of runs down the gradient 〈t−〉AB. Follow-
ing de Gennes [30, 31], it can be shown that the (non-
dimensionalised) average velocity of the cells is:

vAB(Sη) =
〈t+〉AB − 〈t−〉AB

〈t+〉AB + 〈t−〉AB

=
〈
t+
〉
AB
− 1, (18)

where we use the fact that 〈t+〉AB + 〈t−〉AB = 2, i.e., the
sum of the average duration of one up-hill and one down-
hill run is equal to two runs. Equation (18) just states
that the average cell velocity is the excess duration of
the average up-gradient run beyond the duration of an
average run.

Using the ergodicity of the run-and-tumble process, the
expectation over AB trajectories becomes a time integral:

〈t+〉AB =

∫ ∞
0

s p(s |x(t)) ds =

∫ ∞
0

e−
∫ s
0
λ(t)dt ds, (19)

where p(s |x(t)) = λ(s) exp(−
∫ s
0
λ(t)dt) is the condi-

tional probability density of Poisson tumble times given
the path x(t). In the small response regime (7), we can
expand the exponential to second order to obtain

〈t+〉AB ' 1 +

∫ ∞
0

e−s
[∫ s

0

Λ(t)dt+
1

2

(∫ s

0

Λ(t)dt

)2
]
ds.

We now depart from de Gennes’ derivation and con-
sider the cell velocity (18) averaged over realisations of
the landscape Sη:

〈vAB(Sη)〉ξ '
∫ ∞
0

e−s
〈∫ s

0

Λ(t)dt

〉
ξ

ds

+
1

2

∫ ∞
0

e−s

〈(∫ s

0

Λ(t)dt

)2
〉
ξ

ds, (20)

where the first term does not depend on the spatial noise:〈∫ s

0

Λ(t)dt

〉
ξ

=

∫ s

0

∫ ∞
0

K(u) 〈Sη(x(t− u))〉ξ dudt

=

∫ s

0

∫ ∞
0

K(u)S0(x(t− u))dudt, (21)

and the second term contains the effect of the spatial cor-
relations as a result of the overlap between the memory
kernel and the spatial covariance (11):〈(∫ s

0

Λ(t)dt

)2
〉
ξ

=

(∫ s

0

∫ ∞
0

K(u)S0(x(t− u))dudt

)2

+

∫ ∞
0

K(w)

∫ s

w

∫ 0

w−t̂

(∫ ∞
0

K(u)Cη(x(τ − u)) du

)
dτdt̂ dw.

(22)
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Here τ = t − t̂ + w represents the delay between the
input η0(x(t− τ)) and the output Λ(t), and the limits of
integration reflect causality.

Collating (19)–(22) and integrating, we obtain our ap-
proximation of the drift velocity in rugged landscapes:

〈vAB(Sη)〉ξ ' vKS + ∆vµ =: Vµ, (23)

where (21) gives rise [30] to the KS drift velocity (5):

vKS = βα
2γ

(1 + 2γ)3
, (24)

and (22) leads to the correction due to spatial correla-
tions:

∆vµ =
β2σ2

η

2

γ2µ
[
2γ3(1 + µ) + (1 + γ)3µ2 + 6γ2µ− 2µ2

]
(1 + γ)6(1 + µ)(γ + µ)3

(25)

For further details, see Sections S2 and S4 in the SI.
Our approximation Vµ recovers the KS drift velocity in

different limits: for deterministic and uncorrelated land-
scapes (∆vµ → 0 as µ → {0, ∞}); in the zero and infi-
nite memory limits (∆vµ → 0 as γ → {0, ∞}); as well as
in the limit of vanishing gradient (Vµ → vKS as α → 0),
since (16) is required to derive ∆vµ.

A. The effect of memory on the average drift speed

Our approximation (23) makes explicit the fact that
cells use both the local gradient (through vKS) and the
spatial correlations (through ∆vµ) to navigate rugged
landscapes. Fig. 3b shows that, in contrast to the KS
drift, our Vµ predicts the enhanced cell velocity in the
AB simulations, 〈vAB(Sη)〉ξ, and its dependence on the
landscape lengthscale µ for a broad range of memory, γ.

Fig. 4 compares the predicted maximal velocity and
the optimal memory at which it is achieved,

V ∗µ = max
γ

Vµ attained at γ∗µ (26)

with the numerical simulations. As expected, we recover
the KS behaviour in both limits of deterministic (µ→∞)
and uncorrelated (µ → 0) landscapes, when there is no
advantage in using memory to use the statistical correla-
tions of the environment. The optimal memory γ∗µ thus
emerges as a balance between filtering and tumbling: for
γ > γ∗µ, cells improve their noise filtering [26] but lose
orientation due to the larger number of tumbles taken
account in their history; on the other hand, for γ < γ∗µ,
cells are less likely to tumble, but filtering of environ-
mental noise becomes suboptimal. Our results in Fig. 4a
show that the velocity of cells with optimal memory is
always larger than the gradient-sensing KS drift velocity
(i.e., V ∗µ (µ) ≥ v ∗KS, ∀µ), with the largest improvement
at µ ' 1/2, the point where the lengthscale of the envi-
ronmental correlations are on the order of one half of a

1

1

1.1

1.15

1.05

-2 -1 0 1 2

b)

1.3

1.4

1.2

1.1

a)

Figure 4. a) The maximum cell velocity from the AB nu-
merics (circles) is well predicted by our approximation (solid
line) for different correlation lengths, µ, It exceeds the max-
imum KS drift in rugged gradients for all µ, and approaches
the KS prediction in the white noise (µ → 0) and constant
gradient (µ → ∞) limits. b) The memory at which the cell
velocity is maximised is always larger than the optimal KS
value: γ∗ ≥ γ∗KS = 1/4. The longest optimal memory oc-
curs for µ = 1, when the correlation length coincides with the
expected run length.

run length. As seen in Fig. 4b, the corresponding opti-
mal memory is also always larger than the KS memory:
γ∗µ ≥ γ∗KS = 1/4. Our calculations show that it is advan-
tageous to increase the memory when the correlations are
of the same order as the length of the run (µ = 1); yet for
correlations longer than one run (µ ≥ 1), the presence of
random tumblings erode this advantage and the optimal
memory returns to the KS value..

This behaviour is consistent with models of tethered
cells receiving noisy temporal stimuli [26]. In particular,
the mutual information between input and output with
a delay τ is maximised when maximising the correlation

RηΛ(τ) :=
〈η0(t− τ)Λ(t)〉ξ

σησΛ
=

1

σησΛ

∫ ∞
0

K(u)Rη(τ − u) du ,

(27)

which is a normalised version of the integral in brack-
ets in the second term of (22). It was shown [26, 37]
that (27) is maximised for a memory corresponding to
optimal filtering, and, consistently, our results reflect the
importance of noise filtering. For navigation, however,
the optimality of filtering is not the only criterion, and it
needs to be balanced with the random tumbling timescale
which imposes a threshold on the bandwidth of correla-
tions that are useful to improve drift speed.
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B. The effect of memory on the heterogeneity of
the population dynamics

Thus far, we have shown that our approximation pre-
dicts well the effect of memory on enhancing the cell ve-
locity in rugged landscapes, although, as seen in Fig. 3b,
it overpredicts the velocity of AB cells with short mem-
ory (γ < γ∗KS = 1/4) navigating mildly rugged landscapes
(0.05 < µ < 0.5). The origin of this discrepancy is in the
fact that cellular memory has an effect not only on the
average cell velocity but also on the heterogeneity of the
distribution of AB cells, an effect that is not captured by
our approximation (23).

To characterise this behaviour further, we carry out
additional numerical computations. Intuitively, we ex-
pect that cells with short memories will be more sensitive
to local irregularities, and hence more prone to becom-
ing disoriented in rugged landscapes. At the population
level, this could lead to the appearance of subpopula-
tions of propagating agents. On the other hand, cells
with long memory will average their responses over ex-
tended patches of the landscape, thus being less sensitive
to local fluctuations of the landscape and maintaining the
unimodality of the distribution.

A numerical illustration of this behaviour is presented
in Fig. 5a, where we show the long-term AB numerics of
two population of cells (one with long memories, another
with short memories) starting from an initial Gaussian
distribution and navigating a rugged landscape Sη. In
the KS model, it is known that a Gaussian population re-
mains Gaussian for all times [38]. Indeed, our AB numer-
ics show that when cells have relatively long memories
(γ = 1), the population does remain unimodal. However,
the population of cells with short memories (γ = 0.05)
goes from being Gaussian to multimodal (i.e., with sepa-
rate subpopulations), as time elapses. This behaviour is
persistent over long times.

To quantify the loss of unimodality, in Fig. 5b we
compute the L2 distance between the AB distribution
ρAB(x, t; Sη) and its best Gaussian fit G(x, t;Sη) after a
long simulation of T = 4× 103:

〈DG(ρAB, T )〉ξ = 〈||ρAB(x, T ; Sη)− G(x, T ; Sη)| |L2〉ξ .
(28)

As discussed above, for a rugged landscape with length-
scale µ, the AB distribution becomes increasingly Gaussian
for larger γ, converging to a Gaussian distribution (Fig. 5b-
c). For large γ, the standard deviation becomes largely in-
dependent of the landscape lengthscale µ (Fig. 5c). This is
consistent with the fact that randomness arises not from the
landscape but from tumbling, which is common to all cells,
thus yielding unimodal population distribution in this limit.
When the memory is short, on the other hand, cells use lo-
cal information and their trajectories depend strongly on the
starting positions, leading to distributions far from Gaussian.
This dependence on the starting positions is reduced for cells
with longer memory, which perceive and average overlapping
information of the landscape.

These numerical results suggest that cellular memory could
play a role not only in optimising long-term drift velocity

Long memory, γ = 1

1 2 3 4 5 6

Short memory, γ = 0.05

0 0.5 1

0

1

2

1 2 3 4 5 6

b)

c)

a)

0.9

1

1.1

1.2

1.3

Figure 5. The heterogeneity of the cell distribution grows for
small memory. a) Snapshots of the AB population density
ρAB(x, T ; Sη) in a rugged landscape Sη with µ = 1 measured
at T = 4 × 103 for two values of the memory γ (histogram)
shown with the best-fit Gaussian curves G(x, T ; Sη) (red line).
b) As γ increases, the population becomes increasingly uni-
modal Gaussian, as quantified by the L2 distance (28). c) For
large γ, the standard deviation of G(x, T ; Sη) becomes inde-
pendent of µ and γ, indicating that randomness arises only
from tumbling. Parameters as in Fig. 2.

(Fig. 4a) but also in controlling population level heterogene-
ity [39]. A trade-off between both objectives could then al-
low a more extended exploration of heterogeneous attractant
landscapes by the cell population.

V. DISCUSSION

Chemotactic navigation relies on the processing of sensory
information and the efficient transduction by the cellular re-
sponse mechanisms that control locomotion. Here we studied
the run-and-tumble motion of E. coli and investigated the
role of cellular memory, a characteristic feature of the chemo-
tactic response, in determining the ability of cells to navigate
rugged chemoattractant landscapes. To this end, we consid-
ered an agent-based (AB) model of swimming cells with a
history-dependent tumble rate, which is computed by each
cell from its trajectory through a signal-transduction model,
and compared it to the classical Keller-Segel (KS) model, in
which cells locally align their velocity to the chemoattrac-
tant gradient independently of their history. Our results con-
firm that the KS model accurately predicts the behaviour of
the AB population when navigating through constant, shal-
low chemoattractant gradients [25, 36]. However, when the
chemoattractant landscape has spatially correlated fluctua-
tions, AB cells can achieve higher velocity than predicted by
mere gradient-alignment when they tune their memory to the
lengthscale of the spatial correlations.

In contrast to previous work, which focused on the delete-
rious effect of noise on sensing [6, 28] and swimming [40, 41],
our model explores how the correlations in the attractant, as
encountered by swimming, can be used to enhance the chemo-
tactic performance. Building on our numerical observations
from the AB model, we extended work by de Gennes [30] to
derive an analytical approximation of the drift velocity that
captures the ability of cells to use spatial correlations. The
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validity of our derivation hinges upon the assumption that
the tumbling rate remains close to the adapted state [21]. We
show that this assumption, which is less restrictive than the
standard shallow gradient assumption [18, 36], is enough to
restrict the relationship between the timescales of internal re-
sponse and perceived stimulus. Specifically, our results hold
for rugged environments in the large signal-to-noise regime,
even if the typical shallow gradient assumption breaks down.

Our analytical model predicts the enhanced drift velocity
in rugged environments across a range of correlation lengths
and cellular memories (Figs. 3–4), consistent with cells with
memory performing a non-local optimisation [22] beyond lo-
cal gradient alignment. This finding suggests an ecological
benefit if cells adjust their memory actively to match the
lengthscales in the environment [8]. Importantly, when the
landscape fluctuations are negligible or they occur on long
spatial scales, our model recovers the KS model, so that the
best strategy is purely local optimisation, as shown by previ-
ous studies studies [32, 42]. We also show that our findings are
in agreement with optimal information coding by the chemo-
tactic pathway [26, 28] and provide a link between previous
results on memory and filtering in the time-domain [5, 26] to
chemotactic spatial navigation.

Our model overpredicts the drift velocity of AB cells with
short memory navigating mildly rugged landscapes (Fig. 3b).
We showed that, in this regime, suboptimal filtering due to
short memory results in long-lived multi-modal population
responses (Fig. 5). This numerical observation suggests a dif-
ferent role for cellular memory as a means to tune how much
the ruggedness of the landscape is reflected in the heterogene-
ity of the population responses.

Our results show that the optimal memory is always smaller
than the run length and hence cells are ‘blind’ to longer corre-
lations. This suggests that memory-based sensing and direc-

tional persistence are intimately linked. In addition, we only
considered pre-adapted cells with memory comparable to the
run time [16], although bacteria are known to optimise the
timescale of their response (and hence their memory) from
seconds up to minutes by receptor methylation [8]. There-
fore, it would be of interest to study how memory facilitates
navigation in patchy environments using a detailed kinetic
model of swimming coupled with a model of the complete
chemotaxis pathway to allow for longer timescales ad nonlin-
ear adaptation [23].
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