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Abstract  

Genome-wide association studies (GWAS) have identified multiple common breast cancer 

susceptibility variants. Many of these variants have differential associations by estrogen 

receptor (ER), but how these variants relate with other tumor features and intrinsic molecular 

subtypes is unclear. Among 106,571 invasive breast cancer cases and 95,762 controls of 

European ancestry with data on 173 breast cancer variants identified in previous GWAS, we 

used novel two-stage polytomous logistic regression models to evaluate variants in relation to 

multiple tumor features (ER, progesterone receptor (PR), human epidermal growth factor 

receptor 2 (HER2) and grade) adjusting for each other, and to intrinsic-like subtypes. Eighty-five 

of 173 variants were associated with at least one tumor feature (false discovery rate <5%), most 

commonly ER and grade, followed by PR and HER2. Models for intrinsic-like subtypes found 

nearly all of these variants (83 of 85) associated at P<0.05 with risk for at least one luminal-like 

subtype, and approximately half (41 of 85) of the variants were associated with risk of at least 

one non-luminal subtype, including 32 variants associated with triple-negative (TN) disease. Ten 

variants were associated with risk of all subtypes in different magnitude. Five variants were 

associated with risk of luminal A-like and TN subtypes in opposite directions. This report 

demonstrates a high level of complexity in the etiology heterogeneity of breast cancer 

susceptibility variants and can inform investigations of subtype-specific risk prediction. 
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Significance 

Our results demonstrate complex etiologic heterogeneity patterns of common breast cancer 

susceptibility variants and can inform functional analyses to identify underlying causal variants 

and the development of subtype-specific polygenic risk scores.   

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted February 1, 2021. ; https://doi.org/10.1101/733402doi: bioRxiv preprint 

https://doi.org/10.1101/733402


15 

 

Introduction 

Breast cancer represents a heterogenous group of diseases with different molecular and 

clinical features(1). Clinical assessment of estrogen receptor (ER), progesterone receptor (PR), 

human epidermal growth factor receptor 2 (HER2) and histological grade are routinely 

determined to inform treatment strategies and prognostication(2). Combined, these tumor 

features define five intrinsic-like subtypes (i.e., luminal A-like, luminal B–like/HER2-negative, 

luminal B-like/HER2-positive, HER2-positive/non-luminal, and triple negative) that are 

correlated with intrinsic subtypes defined by gene expression panels(2,3) Most known breast 

cancer risk or protective factors are related to luminal or hormone receptor (ER or PR) positive 

tumors, whereas less is known about the etiology of triple-negative (TN) tumors, an aggressive 

subtype(4,5). 

Breast cancer genome-wide association studies (GWAS) have identified over 170 

common susceptibility variants, most of them single nucleotide polymorphisms (SNPs), of which 

many are differentially associated with ER-positive than ER-negative disease(6-8). These include 

20 variants that primarily predispose to ER-negative or TN disease(7,8). However, few studies 

have evaluated variant associations with other tumor features, or simultaneously studied 

multiple, correlated tumor markers to identify source(s) of etiologic heterogeneity(7,9-13). We 

recently developed a two-stage polytomous logistic regression method that efficiently 

characterizes etiologic heterogeneity while accounting for tumor marker correlations and 

missing tumor data(14,15). This method can help describe complex relationships between 

susceptibility variants and multiple tumor features, helping to clarify breast cancer subtype 

etiologies and increasing the power to generate more accurate risk estimates between 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted February 1, 2021. ; https://doi.org/10.1101/733402doi: bioRxiv preprint 

https://doi.org/10.1101/733402


16 

 

susceptibility variants and less common subtypes. We recently demonstrated the power of this 

method in a GWAS to identify novel breast cancer susceptibility accounting for tumor 

heterogeneity(15). 

In this report, we sought to expand our understanding of etiologic heterogeneity among 

breast cancer subtypes, by applying the two-stage polytomous logistic regression methodology 

to a large study population from the Breast Cancer Association Consortium (BCAC) for detailed 

characterization of risk associations with 173 breast cancer risk variants identified by 

GWAS(6,7) by tumor subtypes defined by ER, PR, HER2 and tumor grade.  

Methods 

Study Population and Genotyping 

The study population and genotyping are described in previous publications(6,7) and in 

the Supplementary Methods. We included invasive cases and controls from 81 BCAC studies 

with genotyping data from two Illumina genome-wide custom arrays, the iCOGS and 

OncoArray (106,571 cases (OncoArray: 71,788; iCOGS: 34,783) and 95,762 controls 

(OncoArray: 58,134; iCOGS: 37,628); Supplementary Table 1). We evaluated 173 breast 

cancer risk variants that were identified in or replicated by prior BCAC analyses to be 

associated with breast cancer risk at a p-value threshold p<5.0x<10-8 (6,7). Most of these 

variants (n=153) were identified because of their association with risk of overall breast cancer, 

and a small number of variants (n=20) were identified because of their association specific to 

ER-negative breast cancer (Supplementary Table 2). These 173 variants have not previously 

been simultaneously investigated for evidence of tumor heterogeneity with multiple tumor 
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markers(6,7,15,16). Genotypes for the variants marking the 173 susceptibility loci were 

determined by genotyping with the iCOGS and the OncoArray arrays and imputation to the 

1000 Genomes Project (Phase 3) reference panel. 

 

Statistical Analysis 

An overview of the analytic strategy is shown in Figure 1 and a detailed discussion of the 

statistical methods, including the two-stage polytomous logistic regression, are provided in the 

Supplementary Methods and elsewhere(14,15). Briefly, we used two-stage polytomous 

regression models that allow modelling of genetic association of breast cancer accounting for 

underlying heterogeneity in associations by combinations of multiple tumor markers using a 

parsimonious decomposition of subtype-specific case-control odds-ratio parameters in terms of 

marker-specific case-case odd-ratio parameters(14,15). We introduced further parsimony by 

using mixed-effect formulation of the model that allows ER-specific case-case parameters to be 

treated as fixed and similar parameters for other markers (PR, HER2 and grade) as random. We 

used an expectation–maximization (EM) algorithm(17) for parameter estimation under this 

model to account for missing data in tumor characteristics. A detailed description of the two-

stage polytomous regression models used in this manuscript is presented in the Supplementary 

Methods and in separate manuscripts(14,15).  

Our primary aim was to identify which of 173 known breast cancer susceptibility 

variants showed heterogenous risk associations by ER, PR, HER2 and grade.  This was tested 

using a global heterogeneity test by ER, PR, HER2 and/or grade, with a mixed-effect two-stage 

polytomous model (model 1), fitted separately for each variant. The global null hypothesis was 
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that there was no difference in risk of breast cancer associated with the variant genotype 

across any of the tumor features being evaluated. We accounted for multiple testing (173 tests, 

one for each of variant) of the global heterogeneity test using a false discovery rate (FDR) <0.05 

under the Benjamini-Hochberg procedure(18).  

For the variants showing evidence of global heterogeneity after FDR adjustment, we 

further evaluated which of the tumor features contributed to the heterogeneity by fitting a 

fixed-effects two-stage model (model 2) that simultaneously tested for associations with each 

tumor feature (this model was fitted for each variant separately). We used a threshold of 

P<0.05 for marker-specific tumor heterogeneity tests to describe which specific tumor 

marker(s) contributed to the observed heterogeneity, adjusting for the other tumor markers in 

the model. This p-value threshold was used only for descriptive purposes, as the primary 

hypotheses were tested using the FDR-adjusted global test for heterogeneity described above.  

We conducted additional analyses to explore evidence of heterogeneity. We fitted a 

fixed-effect two-stage model (model 3) to estimate case-control odd ratios (ORs) and 95% 

confidence intervals (CI) between the variants and five intrinsic-like subtypes defined by 

combinations of ER, PR, HER2 and grade: (1) luminal A-like (ER+ and/or PR+, HER2-, grade 1 or 

2); (2) luminal B-like/HER2-negative (ER+ and/or PR+, HER2-, grade 3); (3) luminal B-like/HER2-

positive (ER+ and/or PR+, HER2+); (4) HER2-positive/non-luminal (ER- and PR-, HER2+), and (5) 

TN (ER-, PR-, HER2-). We also fitted a fixed-effect two-stage model to estimate case-control ORs 

and 95% confidence intervals (CI) with tumor grade (model 4; defined as grade 1, grade 2, and 

grade 3) for the variants associated at P<0.05 only with grade in case-case comparisons from 

model 2. 
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To help describe sources of heterogeneity from different tumor characteristics in 

models 2 and 3, we performed cluster analyses based on Euclidean distance calculated from z-

statistics that were estimated by the individual marker-specific tumor heterogeneity tests 

(model 2) and the case-control associations with risk of intrinsic-like subtypes (model 3) . The 

clusters were used only to help present our findings and were not intended to suggest strictly 

defined categories. Clustering was performed in R using the function Heatmap as implemented 

by the package “Complex Heatmap” version 3.1(19).  

We also tested for evidence of heterogenous risk associations by TN status by fitting an 

extended mixed-effect two-stage polytomous model (model 1-extended), using a global 

heterogeneity test by ER, PR, HER2, TN, and/or grade, and an extended fixed-effects two stage 

model polytomous model to test which tumor features, ER, PR, HER2, TN, and/or grade, 

contributed to the heterogeneity (model 2-extended). 

We performed sensitivity analyses, in which we estimated the ORs and 95% CI between 

the variants and the intrinsic-like subtypes by implementing a standard polytomous model 

restricted to cases with complete tumor marker data. For all analyses we analyzed OncoArray 

and iCOGS array data separately, adjusting for the first 10 principal components for ancestry-

informative variants, and then meta-analyzed the results.  

Results 

The mean (SD) ages at diagnosis (cases) and enrollment (controls) were 56.6 (12.2) and 

56.4 (12.2) years, respectively. Among cases with information on the corresponding tumor 

marker, 81% were ER-positive, 68% PR-positive, 83% HER2-negative and 69% grade 1 or 2 

(Table 1; see Supplementary Table 1 for details by study). Supplementary Table 3 shows the 
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correlation between the tumor markers. ER was positively correlated with PR (r2=0.61) and 

inversely correlated with HER2 (r2=-0.16) and grade (r2=-0.39). The most common intrinsic-like 

subtype was luminal A-like (54%), followed by TN (14%), luminal B-like/HER2-negative (13%), 

Luminal B-like/HER2-positive (13%) and HER2-positive/non-luminal (6%; Table 1).  

Figure 1 shows an overview of the analytic strategy and results from three main 

analyses performed separately for each variant: 1) global test for heterogeneity by all tumor 

markers (model 1; primary hypothesis), 2) marker-specific tumor test for heterogeneity for 

each marker, adjusting for the others (model 2), 3) estimation of case-control ORs (95%CIs) by 

intrinsic-like subtypes (model 3), and 4) estimation of case-control ORs (95%CIs) by tumor 

grade (model 4). 

 

1) Global test for heterogeneity by tumor markers (primary hypothesis) 

Mixed-effects two-stage models (model 1) were fitted for each of the 173 variants 

separately and included terms for ER, PR, HER2 and grade to test of global heterogeneity by any 

of the tumor features (case-case comparison). This model identified 85 of 173 (49.1%) variants 

with evidence of heterogeneity by at least one tumor feature (FDR<5%; Figure 1-2; 

Supplementary Fig. 1).  

 

2) Marker-specific tumor test for heterogeneity for each marker, adjusting for other 

markers  

Fixed-effects two-stage models (model 2) was used to test which of the correlated 

tumor markers was responsible for the observed global heterogeneity in the 85 variants (case-
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case comparison). These analyses identified ER and grade as the two features that most often 

contributed to the observed heterogeneity (45 and 33 variants had marker-specific P<0.05 for 

ER and grade, respectively), and 29 variants were associated with more than one tumor feature 

(Figure 1, Supplementary Fig. 1). Eighteen of these 85 variants showed no associations with any 

individual tumor marker at P<0.05 (Supplementary Fig. 1). Twenty-one variants were 

associated at P<0.05 only with ER, 12 variants only with grade, 4 variants only with PR and one 

variant only with HER2 (Supplementary Fig. 1, see footnotes). 

 

3) Estimation of case-control ORs (95%CIs) by intrinsic-like subtypes (model 3) 

Fixed-effects two-stage models for intrinsic-like subtypes (model 3) were fitted for each 

of the 85 variants with evidence of global heterogeneity to estimate ORs (95% CIs) for risk 

associations with each subtype (case-control comparisons). Supplementary Figure 2 shows a 

summary of these analyses for the 85 variants, clustered by case-control p-value of association 

between susceptibility variants and breast cancer intrinsic-like subtypes, and Supplementary 

Figures 3 shows forest plots for associations with risk by tumor subtypes. Nearly all (83 of 85) 

variants were associated with risk (P<0.05) for at least one luminal-like subtype, and 

approximately half (41 of 85) of the variants were associated with risk of at least one non-

luminal subtype, including 32 variants that were associated with TN disease (Figure 1, 

Supplementary Fig. 2 footnote ‘h’). Ten variants were associated with risk of all subtypes 

(Figure 1, Supplementary Fig. 2 footnote ‘j’). Below we describe examples of groups of variants 

associated with different patterns of associations with intrinsic subtypes (Figure 3 a-d). 

Two correlated (r2=0.73) variants at 10q26.13 (rs2981578 and rs35054928) and 
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16q12.1-rs4784227 had the strongest evidence of association with risk of luminal-like subtypes 

(Figure 3a, Supplementary Fig. 2). The two variants at 10q26.13 showed no evidence of 

associations with TN subtypes, and a weaker association with HER2-positive/non-luminal 

subtype (Figure 3a, Supplementary Fig. 2). In an extended two-stage model (model 2-

extended) to specifically test for heterogeneity between TN vs non-TN subtypes, both 

rs2981578 and rs35054928 were strongly associated with TN status (Supplementary Fig. 4). In 

contrast, 16q12.1-rs4784227 was strongly associated with risk for all luminal-like subtypes and, 

weaker so, with risk of HER2-positive/non-luminal and TN subtypes (Figures 3a, Supplementary 

Fig. 2).  

Three variants 19p13.11-rs67397200, 5p15.33-rs10069690 and 1q32.11-rs4245739 

showed the strongest evidence of associations with risk of TN disease (Figure 3b, 

Supplementary Fig. 2). In the model 2-extended these variants were significantly associated 

with TN status (Supplementary Fig. 4).  

Two weakly correlated variants in 6q25 (r2=0.17), rs9397437 and rs3757322, and a third 

variant in 6q25, rs2747652, which was not correlated (r2<0.01) with rs9397437 or rs3757322, 

showed strong evidence of being associated with risk of all subtypes. rs9397437 and rs3757322 

had strong evidence of associations with risk of TN and risk of luminal-like subtypes (Figures 3c 

and Supplementary Fig. 2). rs2747652 was most strongly associated with risk of the HER2-

positive/non-luminal subtype (Figures 3c, Supplementary Fig. 2).  

Five variants were associated with risk of luminal A-like disease in an opposite direction 

to their association with risk of TN disease (Figure 3d, Supplementary Fig. 2). 1q32.1-

rs6678914, 2p23.2-rs4577244, and 19p13.11-rs67397200 had weaker evidence of associations 
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with risk of luminal A-like disease compared to associations with risk of TN disease, and  

10p12.31-rs7072776 and 22q12.1-rs17879961 (I157T) had stronger evidence of an association 

with risk of luminal A-like disease compared to their association with risk of TN disease (Figure 

3d, Supplementary Fig. 2, for rs67397200 see Figure 3b). In model 2-extended, rs7072776, 

rs17879961, and rs67397200 were significantly associated with TN status (Supplementary Fig. 

4).  

 

4) Estimation of case-control ORs (95%CIs) by tumor grade (model 4) 

Case-control associations by tumor grade for the 12 variants associated at P<0.05 only 

with grade in case-case comparisons are shown in Supplementary Fig. 5. 13q13.1-rs11571833, 

1p22.3-rs17426269 and 11q24.3-rs11820646 showed stronger evidence for predisposing to risk 

of high-grade subtypes, and the remaining variants showed stronger evidence for predisposing 

to risk of low-grade subtypes. 

 

When limiting analyses to cases with complete tumor marker data, results from case-

control analyses were similar, but less precise than results from the two-stage polytomous 

regression model using the EM algorithm to account for missing tumor marker data 

(Supplementary Table 4). 

 

Discussion 

This study demonstrates the extent and complexity of genetic etiologic heterogeneity 

among 173 breast cancer risk variants by multiple tumor characteristics, using novel 
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methodology in the largest and the most comprehensive investigation conducted to date. We 

found compelling evidence that about half of the investigated breast cancer susceptibility loci 

(85 of 173 variants) predispose to tumors with different characteristics. We identified tumor 

grade, along with confirming ER and TN status, as important determinants of etiologic 

heterogeneity. Associations with individual tumor features translated into differential 

associations with the risk of intrinsic-like subtypes defined by their combinations. 

Many of the variants with evidence of global heterogeneity predisposed to risk of 

multiple subtypes, but with different magnitudes. For example, three variants identified in early 

GWAS for overall breast cancer, FGFR2 (rs35054928 and rs2981578)(20,21) and 8q24.21 

(rs13281615)(20), were associated with luminal-like and HER2-positive/non-luminal subtypes, 

but not with TN disease. rs4784227 located near TOX3(20,22) and rs62355902 located in a 

MAP3K1(20) regulatory element, were associated with risk of all five subtypes. Of the five 

variants found associated in opposite directions with luminal A-like and TN disease, we 

previously reported rs6678914 and rs4577244 to have opposite effects between ER-negative 

and ER-positive tumors(7). rs17879961 (I157T), a likely causal(16) mis-sense variant located in a 

CHEK2 functional domain that reduces or abolishes substrate binding(23), was previously 

reported to have opposite directions of effects on lung adenocarcinoma and lung squamous cell 

carcinoma and for lung cancer between smokers and non-smokers(24,25). However, further 

studies are required to follow-up and clarify the mechanisms for these apparent cross-over 

effects. 

In prior ER-negative GWAS, we identified 20 variants that predispose to ER-negative 

disease, of which five variants were only or most strongly associated with risk of TN disease 
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(rs4245739, rs10069690, rs74911261, rs11374964, and rs67397200)(7,8). We confirmed these 

five variants to be most strongly associated with TN disease. The remaining previously 

identified 15 variants all showed associations with risk of non-luminal subtypes, especially TN 

disease, and for all but four variants (rs17350191, rs200648189, rs6569648, and rs322144) 

evidence of global heterogeneity was observed.  

Little is known regarding PR and HER2 as sources of etiologic heterogeneity independent 

of ER or TN status. Of the four variants that showed evidence of heterogeneity only according 

to PR, rs10759243(6,26), rs11199914(6) and rs72749841(6) were previously found primarily 

associated with risk of ER-positive disease, and rs10816625 was found to be associated with risk 

of ER-positive/PR-positive tumors, but not other ER/PR combinations(12). rs10995201 was the 

only variant found in case-case comparisons to be solely associated with HER2 status, although 

the evidence was not strong, requiring further confirmation. Previously, rs10995201 showed no 

evidence of being associated with ER status(27). Most variants associated with PR or HER2, had 

not been investigated for PR or HER2 heterogeneity while adjusting for ER(9-13). We previously 

reported rs10941679 to be associated with PR-status, independent of ER, and also with 

grade(10). We also found suggestive evidence of PR-specific heterogeneity for 16q12-

rs3803662(13), which is in high LD (r2= 0.78) with rs4784227 (TOX3), a variant strongly 

associated with PR status. Our findings for rs2747652 are also consistent with a prior BCAC fine-

mapping analysis across the ESR1 locus, which found rs2747652 to be associated with risk of 

the HER2-positive/non-luminal subtype and high grade independent of ER(9). rs2747652 

overlaps an enhancer region and is associated with reduced ESR1 and CCDC170 expression(9). 
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Histologic grade is a composite of multiple tumor characteristics including mitotic count, 

nuclear pleomorphism, and degree of tubule or gland formation(28). Among the 12 variants 

identified with evidence of heterogeneity by grade only, rs17426269, rs11820646, and 

rs11571833 were found to be most strongly associated with risk of grade 3 disease. rs11571833 

lies in the BRCA2 coding region and produces a truncated form of the protein(29) and has been 

shown to be associated with both risk of TN disease and risk of serous ovarian tumors, both of 

which tend to be high-grade(30). To our knowledge, rs17426269 and rs11820646 have not been 

investigated in relation to grade heterogeneity. The remaining 9 variants were all more strongly 

associated with grade 1 or grade 2 disease. Five of these variants were previously reported to 

be associated primarily with ER-positive disease(6,31,32), highlighting the importance of 

accounting for multiple tumor characteristics to better illuminate heterogeneity sources. 

We identified 18 variants with evidence of global heterogeneity (FDR<5%), but no 

significant (marker-specific P<0.05) associations with any of the individual tumor 

characteristic(s). This is likely explained by the fact that the test for association with specific 

tumor markers using fixed-effects models are less powerful than mixed-effects models used to 

test the primary hypothesis of global heterogeneity by any tumor marker(14).  

To help describe and visualize the strength of the evidence for common heterogeneity 

patterns, we performed clustered analyses of p-values for tumor marker-specific heterogeneity 

tests and case-control associations with risk of intrinsic-like subtypes. Because they are based 

on p-values, these clusters reflect differences in sample size and statistical power to detect 

associations between variants and specific tumor subtypes. Thus, clusters should not be 

interpreted as strictly defined categories.  
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A major strength of our study is our large sample size of over 100,000 breast cancer 

cases with tumor marker information, and a similar number of controls, making this the largest, 

most comprehensive breast cancer heterogeneity investigation. Our application of the two-

stage polytomous logistic regression enabled adjusting for multiple, correlated tumor markers 

and accounting for missing tumor marker data. This is a more powerful and efficient modeling 

strategy for identifying heterogeneity sources among highly correlated tumor markers, 

compared with standard polytomous logistic regression(14,15). In simulated and real data 

analyses, we have demonstrated that in the presence of heterogenous associations across 

subtypes, the two-stage model is more powerful than polytomous logistic regression for 

detecting heterogeneity. Moreover, we have demonstrated that in the presence of correlated 

markers, the two-stage model, incorporating all markers simultaneously, has much better 

ability to distinguish the true source(s) of heterogeneity compared to testing for heterogeneity 

by analysis of one marker at a time(14,15). In prior analyses, we showed that the two-stage 

polytomous regression is a powerful approach to identify susceptibility variants that display 

tumor heterogeneity(15). Notably, in this prior investigation we excluded the genomic regions 

in which the 173 variants that were investigated in this work are located(15).  

Our study also has some limitations. First, many breast cancer cases from studies 

included in this report had missing information on one or more tumor characteristics. To 

address this limitation, we implemented an EM algorithm that allowed a powerful analysis to 

incorporate cases with missing tumor characteristics under the assumption that tumor 

characteristics are missing at random (MAR), i.e., the underlying reason for missing data may 

depend on observed tumor markers or/and covariate values, but not on the missing values 
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themselves(33). If this assumption is violated it can lead to an inflated type-one error(14). 

However, in the context of genetic association testing, the missingness mechanism would also 

need to be related to the genetic variants under study, which is unlikely. Our study focused on 

investigating ER, PR, HER2, and grade as heterogeneity sources, and future studies with more 

detailed tumor characterization could reveal additional etiologic heterogeneity sources.  

In summary, our findings provide insights into the complex etiologic heterogeneity 

patterns of common breast cancer susceptibility loci. These findings may inform future studies, 

such as fine-mapping and functional analyses to identify the underlying causal variants, 

clarifying biological mechanisms that drive genetic predisposition to breast cancer subtypes. 

Moreover, these analyses provide precise estimates of relative risk for different intrinsic-like 

subtypes that could improve the discriminatory accuracy of subtype-specific polygenic risk 

scores(34). 
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Figure 1. Overview of the analytic strategy and results from the investigation of 173 known breast cancer suscep

variants for evidence of heterogeneity according to the estrogen receptor (ER), progesterone receptor (PR), hum

epidermal growth factor receptor 2 (HER2), and grade 

 
a 
We evaluated 173 breast cancer risk variants identified in or replicated by prior BCAC GWAS (6,7), see Methods and 

Supplementary Methods sections for more details.  

 
b
 Model 1 (primary analyses): Mixed-effect two-stage polytomous model (ER as fixed-effect, and PR, HER2 and grade as rand

effects) for global heterogeneity tests (i.e. case-case comparisons from stage 2 of the two-stage model) between each indiv

variant and any of the tumor features (separate models were fit for each variant). In an extended analysis we fit, Model 1-ex

a mixed-effects two-stage polytomous model to test for global heterogeneity between each individual susceptibility variant 

and triple-negative status (as fixed effects) and PR, HER2, and grade (as random effects).  

 
c
 Model 2: Fixed-effect two-stage polytomous model for marker-specific tumor heterogeneity tests (i.e. case-case compariso

stage 2 of the two-stage model) between each individual variant and each of the tumor features (ER, PR, HER2, and grade), 

adjusted for each other (separate models were fit for each variant). In an extended analysis we fit Model 2-extended, a fixed

two-stage polytomous model to test for marker-specific tumor heterogeneity between each individual susceptibility variant

each of ER, PR, HER2, grade, and triple-negative status, mutually adjusting for each other. 

 
d
 Model 3: Fixed effect two-stage polytomous model for risk associations with intrinsic-like subtypes (i.e. case-control comp

from stage 1 of the two-stage model): luminal A-like, luminal B-like/HER2-negative, luminal B-like/HER2-positive, HER2-posit

luminal, and triple negative. 

 
e 

Model 4: Fixed effect two-stage polytomous model for risk associations with tumor grade (i.e. case-control comparisons fro

1 of the two-stage model) for the 12 variants associated at P<0.05 only with grade in case-case comparisons (from model 2)

grade 2, and grade 3. 
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Figure 2. Heatmap of the P-values from the fixed-effects two-stage polytomous model for marker-specific heterogeneity tests (case-case comparison fro

model 2) for association between each of the 173 breast cancer susceptibility variants and estrogen receptor (ER), progesterone receptor (PR), human e

growth factor receptor 2 (HER2) or grade, adjusting for principal components and each tumor marker. Columns represent individual variants. For more d

information on the context of figure see Supplementary Fig. 1. 
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Figure 3. Results from fixed-effects two-stage polytomous models for risk associations
a
 with intrinsic-like subtype

(model 3) for variants with evidence of heterogeneity by tumor markers in the two-stage model (model1)
b
;  pane

examples of variants (a) most strongly associated with luminal-like subtypes, (b) most strongly associated with TN

subtypes, (c) associated with all subtypes with varying strengths of association, and (d) associated with luminal A

and TN subtypes in different directions. See Supplementary Figure 3 for more details. 

 

 

      Luminal A-like               Luminal B-like/HER2-negative               luminal B-like/HER2-positive               HER2-positive/non-luminal                Triple-Nega

a
 Per-minor allele odds ratio (95% confidence limits). 

b
 Model 1, mixed-effects two-stage polytomous model testing for global heterogeneity according to estrogen receptor (ER), progesterone recep

epidermal growth factor receptor 2 (HER2) and grade 
c
 Predicted target genes as reported in Fachal L, et al. Nature genetics 2020; 52 (1), 56-73 
d
 Luminal A-like (ER+ and/or PR+, HER2-, grade 1 & 2); Luminal B-like/HER2-negative (ER+ and/or PR+, HER2-, grade 3); luminal B-like/HER2-posi

and/or PR+, HER2+); HER2-positive/non-luminal (ER- and PR-, HER2+), and triple-negative (ER-, PR-, HER2-) 
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Table 1. Distribution of estrogen receptor (ER), progesterone receptor (PR), human epidermal growth factor receptor 2 

(HER2), and grade and the intrinsic-like subtypes
a

 among cases of invasive breast cancer in studies from the Breast 

Cancer Consortium Association.   

Tumor Marker N (%) 

ER  

Negative 16,900 (19%) 

Positive 70,030 (81%) 

Unknown 19,641 

PR  

Negative 24,283 (32%) 

Positive 51,603 (68%) 

Unknown 30,685 

HER2  

Negative 47,693 (83%) 

Positive 9,529 (17%) 

Unknown 49,349 

Grade  

1 15,583 (20%) 

2 37,568 (49%) 

3 24,382 (31%) 

Unknown 29,038 

Intrinsic-like subtypes  

Luminal A-like 27,510 (54%) 

Luminal B-like/HER2-

negative 
6,804 (13%) 

Luminal B-like/HER2-

positive 
6,511 (13%) 

HER2-positive/non-

luminal 
2,797   (6%) 

Triple-negative 7,178 (14%) 

Unknown 55,771   
 

a Luminal A-like (ER+ and/or PR+, HER2-, grade 1 & 2); Luminal B-like/HER2-negative (ER+ and/or PR+, HER2-, grade 3); Luminal B-like/HER2-positive (ER+ and/or PR+, 

HER2+); HER2-positive/non-luminal (ER- and PR-, HER2+), and triple-negative (ER-, PR-, HER2-) 

 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted February 1, 2021. ; https://doi.org/10.1101/733402doi: bioRxiv preprint 

https://doi.org/10.1101/733402

