
de Velasco Oriol et al.

SOFTWARE

Benchmarking machine learning models for the
analysis of genetic data using FRESA.CAD
Binary Classification Benchmarking
Javier de Velasco Oriol1*†, Antonio Martinez-Torteya2, Victor Trevino1, Israel Alanis1, Edgar E.

Vallejo1ˆ and Jose Gerardo Tamez-Pena1†

*Correspondence:

A01202564@itesm.mx
1Escuela Nacional de Medicina y

Ciencias de la Salud, Tecnologico

de Monterrey, Ave. Morones

Prieto 3000, 64710 Monterrey,

Nuevo Leon, Mexico

Full list of author information is

available at the end of the article
†Equal contributorˆDeceased June

11,2019

Abstract

Background: Machine learning models have proven to be useful tools for the
analysis of genetic data. However, with the availability of a wide variety of such
methods, model selection has become increasingly difficult, both from the human
and computational perspective.

Results: We present the R package FRESA.CAD Binary Classification
Benchmarking that performs systematic comparisons between a collection of
representative machine learning methods for solving binary classification problems
on genetic datasets.

Conclusions: FRESA.CAD Binary Benchmarking demonstrates to be a useful
tool over a variety of binary classification problems comprising the analysis of
genetic data showing both quantitative and qualitative advantages over similar
packages.
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Background
There is an increasing interest in using Machine Learning (ML) models for address-

ing questions on the analysis of genetic data [1, 2]. This is evident from the growing

collection of papers related to these studies available on publication repositories. In

effect, the number of papers in the PubMed repository with the keywords ”machine

learning” has increased almost tenfold during the last ten years (see Figure 1).

Similarly, an increasing collection of ML and statistical models are becoming avail-

able to address questions on the analysis of genetic data [3, 4]. Unfortunately, none

of these ML models has shown to be superior at solving a variety of prediction

problems involving genetic data. This limitation of ML models has been previously

formulated as the ”no free lunch theorem” [5]. The no free lunch theorem for classi-

fication models states that, averaged over all possible problems, every classification

model has the same error rate when classifying previously unseen data; therefore,

no ML model is always better than any other [6]. In the practice, this means that

the goal of ML is not to seek the best learning model for all problems, but to find

a model that performs best for a particular problem.

With the increasing availability of different ML models, systematic comparisons

on the performance of a variety of these models is rapidly coming to be vital as part

of model selection in the construction of predictive models applied to a variety of
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problems using genetic data. In effect, most studies reported in the literature [7, 8,

9] include validations of proposed methods consisting of comparisons of a variety

of ML models. In addition, the majority of genetic variation and gene expression

datasets consists of a large number of predictors and a small number of samples. The

performance evaluation of classification models requires the splitting of data into

training and validation sets. The holdout approach requires the random selection

of a fraction of the data for training and the remaining fraction is used to evaluate

the test performance of the method. Unfortunately, the validation set approach

is typically not appropriate when using genetic data due to the high variance of

the model. In effect, a single validation set would not be sufficient to assess the

performance of the model accurately. Therefore, re-sampling techniques such as k-

fold cross-validation and bootstrapping are often required for these problems [10].

Similarly, clinical diagnosis studies involving binary classification typically suffer

from class imbalance: more control observations than cases, or vice-versa [11, 12].

In these problems, most binary classifiers often show biased classifications []. As a

result, the performance of the classifier is not balanced with respect to sensitivity

and specificity metrics. Moreover, traditional classification metrics such as accuracy

can be misleading [13] as ML methods applied to a highly unbalanced dataset (i.e.

90% cases) might classify all the observations as cases, achieving a 90% accuracy

but failing completely at the task of discriminating correctly between classes.

In most clinical diagnosis problems [14], the focus is on the construction of pre-

dictive models that show excellent performance on classification tasks. However,

identifying the most informative predictors is often required in order to identify

potential determinants of the outcome and for appropriate model selection. This

is particularly evident for genetic diagnosis applications in which the principal aim

of the experiments is often to identify associations of genetic loci with phenotypes,

typically genome association studies.

In this article, we present FRESA.CAD Binary Classification Benchmarking ex-

tending the functionality of FRESA.CAD for conducting comparisons of a variety of

representative ML models for rapid experimentation on the performance of predic-

tion problems from genetic data. We demonstrate the functionality of the proposed

package using a working problem consisting of the prediction of Type 2 diabetes

using genetic variation data borrowed from OpenSNP [15]. We also provide sum-

mary test results on a set of molecular datasets and their vignettes are available at

RPubs. We compared the performance and usability of FRESA.CAD Binary Classi-

fication Benchmarking using both quantitative and qualitative criteria with respect

to those provided by WEKA and Caret, two popular packages that provide binary

classification benchmarking capabilities [16] [17]. Our experiments using a variety

of problems comprising the analysis of genetic data demonstrate that FRESA.CAD

is a useful tool for conducting rapid experimentation addressing binary classifica-

tion problems from genetic data, regarding performance, model selection, feature

selection, presentation of results and usability.

Implementation
Binary Classification Benchmarking was developed in R and it is a key compo-

nent of the FRESA.CAD R package. FRESA.CAD evaluates the repeated holdout
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cross-validation (RHCV) [18] of binary classification algorithms or feature selection

(FS) algorithms and returns a set of all the test results. Figure 2 shows the RHCV

implemented in FRESA.CAD. The repeated test results are then combined into a

single prediction per sample. The classifier performance can be visualized by ROC

plots, described by confusion matrices and summarized by statistical performance

metrics. The summary performance statistics are computed with the epiR pack-

age, which returns the 95% confidence intervals for all performance metrics [19].

The implemented RHCV also stores the train/test partitions, and the selected fea-

tures at each train instance. The FRESA.CAD implementation of RHCV allows the

comparison of different classifiers and feature selection algorithms under the same

playground, hence removing variations due to differences in training/test sets and

filter-filtering algorithms. In order to address class imbalance problems, we devised

a procedure that creates balanced training folds using a combination of oversam-

pling of the underrepresented class and undersampling of the overrepresented class.

This procedure was inspired by the SMOTE algorithm [20].

The benchmark then performs the method comparison feature by takeing a user-

supplied dataset and running a set of predetermined classifiers and feature selection

algorithms on the data set. All the train/test results are stored and can easily be

performance-ranked and visualized by FRESA.CAD provided functions. Further-

more, FRESA.CAD provides a set of functions that allows the simple exploration

and comparison of the selected features of each filter method. The current implemen-

tation of FRESA.CAD benchmarking function evaluates the RHCV performance

of the following algorithms: Bootstrap Stage-Wise Model Selection (BSWiMS)

[21], Least Absolute Shrinkage and Selection Operator (LASSO) [22], Random

Forest (RF) [23],Recursive Partitioning and Regression Trees (RPART)[24],K-

Nearest Neighbors (KNN) with BSWiMS features, Support Vector Machine (SVM)

[25] with minimum-Redundancy-Maximum-Relevance (mRMR)[26] feature selec-

tion filter, Naive Bayes (NB), and the Nearest Centroid (NC) algorithms. Finally,

FRESA.CAD also performs the ensemble of all the above methods.

Each classification method is run using their default parameters or in combina-

tion with the following feature selection methods: BSWiMS, LASSO, RPART and

RF; furthermore, the following filters are also mixed with the classification algo-

rithms and the feature selection methods : integrated discrimination improvement

(IDI), net reclassification improvement (NRI)[27], t student test, Wilcoxon test,

Kendall correlation, and mRMR. These different variations give a total of 66 Cross-

Validation instances. Figure 2 shows the workflow of the benchmark procedure. The

default parameters of the Binary Benchmark function uses BSWiMS, but the user

has the freedom to change the BSWiMS method for any data classifier.

The simplest way to visualize the results of the 66 Cross Validation instances

executed by the FRESA.CAD Binary Benchmark is by using the provided

FRESA.CAD plot function. The plot function compares the performance statis-

tics and ranks them by comparing each CV instance’s 95% confidence interval

(CI). The ranking method accumulates a positive score each time the lower CI of

a performance metric is superior to the mean of the other methods and loses a

point each time the mean is inferior to the top 95%CI of the other methods. The

ranked data is visualized by bar plots that include the 95%CI. The plot function
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returns the accuracy, the sensitivity, the specificity, the balanced error rate and

the receiver operating characteristic area under the curve (ROCAUC) with their

corresponding 95% CI . The following code snippet shows a simple execution and

visualization of the randomCV for the CV evaluation of the quadratic linear dis-

criminant (MASS::qda) and benchmarks its performance to the methods evaluated

by FRESA.CAD BinaryBenchmark functions.

l ibrary ( ”FRESA.CAD” ) # Loading the package
data ( colon , package = ”rda” ) # For Colon Cancer Data se t
Colon <− as . data . frame (cbind ( Class = co lon . y , co lon . x ) ) # To data frame
Colon$Class <− Colon$Class−1 # 0: Control 1: Class
# RHCV. 80% for training , 75 Repet i t ions , Wilcoxon corre l a t i on F i l t e r
cv <− randomCV(Colon , ”Class ” ,

MASS : : qda , t r a i nFra c t i on = 0 . 8 ,
r e p e t i t i o n s = 75 ,
f e a tu r eSe l e c t i onFunc t i on = un iva r i a t e Wilcoxon ,
f e a t u r e S e l e c t i o n . control = l i s t ( l im i t = 0 .10 , thr = 0 . 9 5 ) )

# Benchmark to other methods using the same tra in ing and t e s t s e t s
cp <− BinaryBenchmark ( referenceCV = cv ,

referenceName = ”QDA” ,
re f e r enceF i l t e rName=”Wilcoxon 25” )

pr <− plot ( cp ) #Plo t t ing r e s u l t s

The result of the above code is provided in the supplementary material.

(FRESA DEMO.pdf) For demonstration purposes on SNP datasets, we will build

a Type 2 diabetes data sets. We created the SNPs dataset using the Open-

SNP(https://opensnp.org/) service. The OpenSNP query found 14 Type 2 subjects.

We added 114 normal controls for a total of 128 individuals for our benchmarking

study. The extracted data was stored into two different folders: one folder for case

subjects and the second for control subjects. After that, we configured a Python

and PLINK script to generate BED formatted files [28]. The BED files contained

the phenotypes and the SNPs in a single dataset. The generated data set gives us

the opportunity to study the behavior of classifiers and feature selection filters in a

highly unbalanced dataset.

Preprocessing the Genetic Data

The correct use of the FRESA.CAD benchmarking function on a specific dataset

may require data conditioning and pre-processing, where the type of re-processing

depends on the type of data. Here, we will show how to process the OpenSNP

genotyping data. We followed the gene-data quality control methodologies [29].

The pre-process BED files were analyzed for marker call rate, sample call rate,

minor allele frequency (MAF), and Linkage Disequilibrium (LD) [30]. Therefore,

we removed the intrinsic factors in genetics that may cause methodological errors

or inconsistencies between results. Sample call rate filtering threshold was set to

70%, marker call rate filtering threshold was set to 95%, MAF threshold was set

to 1%, and LD was addressed by clumping [31]. Lastly, the final dataset, required

by FRESA.CAD was generated using only the top 1000 SNPs ranked by their

univariate p-values. This simplifies the task computationally for FRESA.CAD as

well as eliminating those SNPs which have a very minor statistical correlation which

could be due to random effects. The adjustments to the dataset with the Quality

Control Pipeline can be analyzed in Table 1.
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Running the Benchmark

Once the processed data was ready, the FRESA.CAD Benchmarking was run on

the genetic dataset. Supplementary material: Type2Diabetes.pdf reports all the

results of the experiment. In this section, we will present the main results. Figure

3 and 4 show the ROC Curve for the different classifiers. The AUC varied from

0.59 to 0.95. The Random Forest did not return good results. On the other hand,

BSWiMS, LASSO and KNN models showed nice AUC performance. The Ensemble

of the methods also shows great AUC performance.

Analyzing the Results

Figure 5 shows the heat map of the prediction for every single classifier on every

test subject and the relationship between classifiers. It can be observed that for

cases the results of the classifiers differ. On one side we have RPART and the other

extreme we have BSWiMS and Filtered RF. RF, SVM and Ensemble models have

similar predictions, the figure also shows that the methods with more false positives

were LASSO and RPART.

Figures 6 shows three outputs of the plot.BinaryBenchmark() FRESA.CAD

function. The Balanced Error Rate (BER) of the classifiers indicates that the KNN

classifier was superior to the rest of the classifiers. The ROC AUC indicates that

BSWiMS, LASSO, KNN, and Method Ensemble were superior to RF, RPART,

and SVM. The ROC AUC of the combination of filters and classifiers shows that

the nearest centroid classifiers (KNN, NC-Spearman, and NC-RSS) are superior to

other methods when classifying SNPs data sets.

Meta-Analysis: Feature selection

FRESA.CAD provides a comprehensive analysis of the performance of the clas-

sifiers. If the main goal of the analysis is to explore relevant features, the object

returned by the benchmarking stores the feature selection frequency of all filter

methods, or model selection methods. Figure 7 shows the heat-map of the top

SNPs and their association to cases and controls. Table 2 shows the univariate

analysis provided by the FRESA.CAD univariate ranking function for each SNP.

The table shows the univariate ROC AUC given by the SNP marker, the result of

the Wilcoxon test and the corresponding p-value associated with type-2 diabetes.

It is interesting that SNP rs2410284 was a top selected SNP even though, its uni-

variate p-value was not significant. Furthermore, rs13136503 was also found to be

associated with type-2 diabetes confirming previous reports [32].

Comparing Benchmarking on Different Datasets

The binary classification benchmark was run on a set of different datasets: Leukemia

[33], Colon [34], BRCA.REC [35], Lymphoma [36], ARCENE [37], Prostate [38],

BRCA [39], Diabetes [15], and Depression [15]. In this section, we present the sum-

mary analysis of the results, while the supplementary material shows the detailed

outputs and analysis of the results. Table 3 shows the characteristics of the nine

data sets (before quality controls) used to evaluate the functionality of the bi-

nary benchmarking. As it can be seen multiple datasets are highly imbalanced, yet

FRESA.CAD achieves good results thanks to the intrinsic methods implemented in
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the package. Figure 8 summaries the test-performance results of the main classifiers

for each data set. We built Radar plots from the FRESA.CAD results by using a

simple script as described in the demo document. The figure 8 shows those plots

which rank each method on each one of the following performances metric: Sensitiv-

ity, Specificity, Accuracy, Balanced Error Rate, ROC AUC and CPU time. Figure

9 shows the average effect of filtering on the classification results. The plots report

the following performance metrics: Accuracy, Sensitivity, Specificity, Balanced Er-

ror Rate, ROC AUC, plus the average size and Jaccard index. These figures clearly

show that the best classifier is dataset dependent. While KNN overperformed all

methods in the Type-2 diabetes data set, it was the worst classifier in the BRCA

data set. We also see that RF is the best classifier in the BRCA recurrence study,

and depression SNP; but, it did not well in the BRCA data set.

Comparison with other Benchmarking Software
The FRESA.CAD benchmark functionality and outputs were compared to other

widely used machine-learning software packages: Caret [17] and Weka [16]. Both

software packages can be configured to evaluate the cross-validation performance

of classifiers. We set up Weka and Caret to cross-validate Random Forest, Support

Vector Machines, Naive Bayes and K-Nearest Neighbors classifiers and we compared

the results to the ones provided by FRESA.CAD. Furthermore, the Logistic Regres-

sion outputs of Caret and Weka were compared to BSWiMS logistic regression. For

comparison purposes, we did the tests on two different datasets: Type-2 diabetes

and BRCA. We attempted to setups all software parameters in a similar way, and

the cross-validation was repeated 50 times and summary statistics were produced.

The ROC AUC score was used to compare software outputs.

Figure 10 shows the ROC AUC returned by all software packages tested on Type-2

diabetes, while figure 11 shows the results of BRCA. These results show differences

in CV performance, especially the results of SVM and RF. These can be expected

due to the fact that RF and SVM have several hyper-parameters and FRESA.CAD

was run with their default values. These values are different from other software

implementations. Hence user must be careful in the interpretation of classifiers that

depend on hyper-parameters. Table 4 shows the run times of the different software/-

classifiers. These times varied among software packages, but overall the amount of

time required to run all 50 repetitions across different classifiers was similar. These

run times were all performed in the same computer running on a i5-8400 CPU, on

Windows 10 in Rstudio. In general, the results of FRESA.CAD were slightly supe-

rior compared to the other two toolkits, especially on the more unbalanced dataset

of Type-2 Diabetes. The ease of use as well as the direct comparison graphs are

two other areas where Weka and especially Caret were found lacking and where

FRESA.CAD excelled at.

Discussion
There is no panacea in ML: there is no superior model that performs best overall

binary classification problems. Therefore, tools that allow for rapid experimentation

on the performance of representative ML models intended to address binary classi-

fication problems are becoming increasingly useful for the analysis of genetic data.
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Genetic data typically consists of a large number of predictors and a much smaller

number of samples. For example, genetic variation datasets often consist of millions

of SNPs and thousands of samples. Similarly, gene expression datasets often consist

of thousands of predictors and dozens of samples. These datasets are prone to high

variance and overfitting when using ML models. Therefore, the systematic use of

resampling methods such as k-fold cross-validation and bootstrapping are necessary.

To evaluate these datasets, metrics that account for class imbalance like AUC and

balanced error are typically required. FRESA.CAD Binary Classification Bench-

marking uses these metrics and provides a collection of graphical results presented

by ROC curves and heatmaps in order to simplify the interpretation of the results

and compare the efficiency in balanced or imbalanced cases. FRESA.CAD Binary

Classification Benchmarking carefully implements these methods for reducing the

uncertainty associated with the analysis of genetic data and for the estimation of

test errors of the adjusted ML models.

The FRESA.CAD Benchmark tool has some benefits over the other software avail-

able for benchmarking; it requires just one line to do the fitting and repetition with

multiple models, as well as the comparison between them. On the other hand, Weka

and Caret, offer greater flexibility, and more powerful tools to compare methods,

but their usage is not straightforward. The main advantage FRESA.CAD has over

the two other benchmarks is the feature selection system is directly implemented

and how easily the resulting features can be obtained for analysis. The results also

show directly the confidence intervals of each given metric to give. Furthermore,

graphing is already included with the most useful types of graphics displayed with

little code in a professional manner. This makes it so that FRESA.CAD is the best

benchmarking tool out of the three for a researcher that wants to compare common

methods easily on their dataset and wants to gain insight into the feature selec-

tion process required to further refine the investigation ,as we were able to show in

the sample type-2 diabetes experiment: benchmarking methods and meta-feature

analysis identified key SNPs required to get good classification performance.

FRESA.CAD Binary Classification Benchmarking is designed for rapid experi-

mentation with minimal effort, comparing multiple representative ML models and

quickly exploring any type of binary classification problem. To compare multiple

models just 3 steps are needed: process the dataset with the desired features and

the binary labels to provide to the benchmark (if needed), run the FRESA.CAD

Benchmarking and then analyze the different results and tables.

There are some limitations that have to be taken into account when using

FRESA.CAD Benchmarking. First, exhaustive model optimization is not imple-

mented due to computational considerations, second, SNP studies require prepro-

cessing to mitigate biased results, but these preprocessing steps have to be evaluated

carefully to avoid overfitting, hence independent validation may be required in all

SNP analysis. However, FRESA.CAD binary benchmarking is sufficiently flexible

and available as open source. Therefore, this R package can be extended to incor-

porate hyperparameters optimization for each of the considered ML models, and it

may be extended to incorporate SNP preprocessing to mitigate false-positive discov-

ery. We expect to incorporate this functionality in future versions of this package.

Although, FRESA.CAD benchmarking capabilities can be used to evaluate con-

tinuous and ordinal regression models, it still lacks the ability to properly handle
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multiclass and multilabel classification problems. We are actively working on adding

this capability because we believe these extensions would enhance the usability of

the FRESA.CAD R package.

Conclusions
We presented FRESA.CAD Binary Classification Benchmarking for supervised bi-

nary classification problems using genetic data. We presented a working problem

related to the prediction of complex phenotypes from genetic variation data. We

contrasted the functionality of FRESA.CAD benchmarking with those provided by

WEKA and Caret packages. Overall, we believe that FRESA.CAD benchmarking

is a promising alternative to allow for the rapid experimentation of ML models.

Availability and requirements
Project name: FRESA.CAD Project home page: https://cran.r-project.org/web/packages/FRESA.CAD/index.html

Operating system(s): Platform independent Programming language: R, C++ Other requirements: R 2.3 or higher
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License: GNU GPL. Any restrictions to use by non-academics: none
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Figures

Figure 1 Collection of papers on the Pubmed repository. The paper counts were obtained using a
query with the keywords “Machine learning”.

Figure 2 Repeatev Holdout Cross-Validation, and the Benchmark method.

Figure 3 ROC Curves for the Benchmarking of the BSWiMS, Random Forest, RPART and
LASSO Classifiers.

Figure 4 ROC Curves for the Benchmarking of the SVM, KNN Classifiers as well as the
Ensemble.

Figure 5 Heat map to compare the similarity between predictions.

Figure 6 Balanced error of the classifiers for the Diabetes SNP dataset, ROC AUC of the
classifiers for the Diabetes SNP dataset, ROC AUC for combinations of filters and classifiers.

Figure 7 Values for the top features for the Diabetes Dataset.

Figure 8 Radar plots of benchmarking classification methods on different data sets.

Figure 9 Radar plots showing the average effect of filters on the classification methods.

Figure 10 Benchmark comparisons for the Type-2 Diabetes dataset.

Figure 11 Benchmark comparisons for the BRCA dataset.
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Pdf file containing additional implementation details and additional figures and tables.
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Table 1 Quality control procedures

Processing Step Cases Controls Features
Starting Dataset 14 114 1,458,419
SNP Quality Controls 14 114 487,464
LD-Based Clumping 14 114 30,598
Sample Filtering and SNP reduction 11 110 1,000

Table 2 Top 20 SNPs

SNP ROCAUC WILCOX FREQ
rs2410284 0.85 0.1572 0.964
rs7131786 0.8227 0.0479 0.746
rs7857956 0.8182 0.0654 0.754
rs6549439 0.8182 0.0688 0.732
rs904081 0.8182 0.7038 0.898
rs179645 0.8182 0.6765 0.904

rs7143032 0.8182 0.6957 0.872
rs10488260 0.8136 2.00E-04 0.68
rs13132035 0.8091 8.00E-04 0.622
rs13136503 0.8091 0.1641 0.675
rs1776960 0.8091 0.1427 0.728

rs13023745 0.8045 0.8428 0.868
rs369715 0.8045 0.2106 0.655

rs4420136 0.8045 0.0014 0.619
rs10774486 0.8 0.898 0.829
rs7094705 0.8 0.2682 0.613
rs8123890 0.8 0.2962 0.631
rs9589196 0.8 0.2742 0.645
rs4798131 0.8 0.2751 0.682
rs202983 0.7955 0.3385 0.615

Table 3 Data set characteristics before QC

Dataset Cases Controls Number of Features
Leukemia 25 47 7130
Colon 40 22 2000
BRCA.REC 80 308 10350
Lymphoma 58 19 7129
ARCENE 88 112 10000
Prostate 52 50 12600
BRCA 57 111 2905
Diabetes 11 110 7220
Depression 54 29 8300

Table 4 Runtimes for one instance of each model (sec.)

Benchmark RF SVM K-NN Naive Bayes BSWiMS/ Log- Reg RPART LASSO Ensemble Total (s)
FRESA.CAD 0.94 0.15 0.02 0.03 15.5 0.15 0.25 16.9 1,697
Caret 1.28 0.25 0.06 0.08 0.08 / / / 88
Weka 0.06 0.02 0.03 0.02 27.9 / / / 1,402
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