
FINET: Fast Inferring NETwork

Anyou Wang1* Rong Hai1,2*

1 The Institute for Integrative Genome Biology, University of California at Riverside, Riverside, CA
92521, USA, and 2Department of Microbiology and Plant Pathology, University of California at
Riverside, Riverside, CA 92521, USA

*Correspondence:
A Wang anyou.wang@alumni.ucr.edu
R Hai rong.hai@ucr.edu

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted August 13, 2019. ; https://doi.org/10.1101/733683doi: bioRxiv preprint

https://doi.org/10.1101/733683
http://creativecommons.org/licenses/by-nc-nd/4.0/

Abstract: Numerous software have been developed to infer the gene regulatory network, a long-standing
key topic in biology and computational biology. Yet the slowness and inaccuracy inherited in current
software hampers their application to the increasing massive data. Here, we develop a software, FINET
(Fast Inferring NETwork), to infer a network with high accuracy and rapidity. The high accuracy results
from integrating algorithms with stability-selection, elastic-net, and parameter optimization. Tested by a
known biological network, FINET infers interactions with more than 91% true positive ratio (true
positives/total true callings). The high speed comes from partnering parallel computations implemented
with Julia, a new compiled language that runs much faster than existing languages used in the current
software, such as R, Python, and MATLAB. Regardless of FINET’s implementations with Julia, users
without any background in the language or computer science can easily operate it, with only a user-
friendly single command line. In addition, FINET can infer other networks such as chemical networks
and social networks. Overall, FINET provides a confident way to efficiently and accurately infer any
type of network for any scale of data.
Availability and implementation available in github https://github.com/anyouwang/finet.git

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted August 13, 2019. ; https://doi.org/10.1101/733683doi: bioRxiv preprint

https://doi.org/10.1101/733683
http://creativecommons.org/licenses/by-nc-nd/4.0/

1. Introduction
All biological phenotypes result from a certain degree of gene regulation, and understanding gene
regulations remains a crucial, fundamental topic in the biology. Conventionally, manipulating gene
mutations such as knockout and knockdown helps to infer the gene regulations. However, these
approaches suffer several challenges such as transcript compensatory and side effects (El-Brolosy et al.,
2019). Gene mutation approaches also assume that the genome becomes stable after mutations. The
genome, however, varies dramatically with even a single gene mutation, which alters gene expressions
of thousand genes as shown in RNA sequencing data. As a result, there is no way to fully comprehend
the complete regulatory interactions of any single gene.

Computational biology and bioinformatics have attempted to infer gene regulatory networks from gene
expression data, and have established software and tools to execute their work (Marbach et al., 2012) .
However, these current softwares’ efficiency suffers from high noise and lagging, and they usually
generate overly complicated network interactions—mostly false positives (Marbach et al., 2012).
Therefore, these results actually provide more questions than answers to true biology regulatory
interactions. With the software FINET, we are able to quickly and accurately reveal true gene
interactions and refresh gene interaction pictures.

2. Theory and algorithms
Theoretically, FINET is primarily based on elastic-net theory and stability selections. The elastic-net is
an extension of LASSO (Wang and Sarwal, 2015) (least absolute shrinkage and selection operator), a
penalized regression method for shrinkage and variable selection by minimizing:

Lasso tends to ignore the variables in a correlated group. To avoid this, the elastic-net adds an additional
quadratic part to the penalization to include the correlated genes.

Elastic-net and lasso are arguably the best methods for shrinkage and variable selection, and k-fold
cross-validations have been implemented in current software like GMLNet (Friedman et al., 2010).
However, these validations include too many variables and these selected variables offer results of
coefficients without any priority of trueness. It is then difficult to estimate the stability of these variable

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted August 13, 2019. ; https://doi.org/10.1101/733683doi: bioRxiv preprint

https://doi.org/10.1101/733683
http://creativecommons.org/licenses/by-nc-nd/4.0/

selections.

To improve the accuracy of variable selection, stability selection comes into play (Meinshausen and
Bühlmann, 2010). The general idea of stability selection is to add a resampling step into an existing
model selection to make it stable and increase accuracy. For example, during elastic-net selection, the
total samples are randomly partitioned into two subgroups, and each subgroup is subjected to an elastic-
net model selection. If a variable was simultaneously selected at the two groups, the selected variable
would be likely true (Meinshausen and Bühlmann, 2010).

The FINET’s algorithm of each resampling step is to bootstrap randomly split samples into m subgroups
(m >=2) without replacement. In each subgroup, a complete model of elastic-net is run to select variables
(regulators in biology) interacting with a target (a target gene in biology). Such resampling step iterates
n times. The frequency of each regulator selected during iterations is counted and is used to rank
regulator priority of confidences (frequency levels) and confidence strength in true positive selection.
The maximum frequency is 1 (highest confidence), and a variable with a frequency of 1 for a given
target means that it was always selected in m*n trials and it is likely a true positive regulator for this
target.

3. Parameter optimization

We have optimized FINET parameters for most common users and was set as default values in FINET.
Here, we only highlighted parameter optimization of the frequency cutoff and resampling in m groups.

3.1. Frequency cutoff
To systematically optimize the frequency cutoff for FINET, we run FINET to select regulators
controlling each target in a well-known matrix used by dream5 network challenge (network1 matrix)
(Marbach et al., 2012) , which includes variable matrix and golden standard true positives.

From the theory above, we learned that high frequency cutoff ensures the accuracy of variable selection.
The optimal cutoff, however, remains unknown. To optimize the frequency cutoff, we first computed the
AUC (Area Under The Curve) of ROC (receiver operating characteristic curve) at an array of frequency
from 0.1 to 1. The golden standard at network1 was treated as known interactions, and the total true
positives produced by FINET were treated as true positive callings, and the rest were negative callings.
As expected, the AUC decreased with increasing frequency cutoff (Figure 1A, blue line). At the
frequency cutoff of 0.2, AUC reached 71.1%, but at the frequency cutoff of 0.95, the AUC lowered to
57.1%. This was consistent with the trend of total true positive callings, which declined dramatically
with a high frequency cutoff (Figure 1A, red line). Obviously, at lower frequency cutoff, more positives
were selected and less negatives were filled in. This resulted in higher AUC, but it contained higher
noise because more false positives were also added to the selection. Therefore, AUC may not be a good
measurement to evaluate the accuracy of true positive calling.

Here, we introduced the true positive ratio (true positives/total true positive callings) to measure
accuracy. During variable selection, we normally select too many variables, unsure of which one is true.
In the network inference, it is more meaningful to have a higher true positive ratio than to call more
true positives. For example, one algorithm made 1000 true positives callings, but the real true positives
were 200 (true positive ratio: 20%). Another algorithm only called 200 true positives, but 160 were real
(true positive ratio: 80%). The second algorithm missed 40 true positive (200-160), but it contained less
noise than the first one, so we certainly prefer the second algorithm. In fact, some interactions in
biology may not be relevant, and ignoring some interactions might make the network clear. Adding

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted August 13, 2019. ; https://doi.org/10.1101/733683doi: bioRxiv preprint

https://doi.org/10.1101/733683
http://creativecommons.org/licenses/by-nc-nd/4.0/

false positives to get the high AUC would jeopardize the scientific value of findings. Therefore, the true
positive ratio has more advantage than AUC.

True positive ratio increased positively with frequency cutoff (Figure 1c green line). When frequency
cutoff at 0.95, the true positive ratio reached 80% at resampling m=4. A higher frequency cutoff directly
correlated to a higher true positive ratio and inversely related to the error ratio. These results fit the
theory above very well. In contrast, more than 90% of true positive callings were false positives at cutoff
=0.1, indicating most selections as false without resampling step. Therefore, the high frequency cutoff
(e.g. 0.95) reduces false positive callings and makes selection stable, and resampling is necessary.

3.2. Resampling m subgroups
Resampling is the key technique to improve the true positive ratio in FINET, which allows resampling m
subgroups. We plotted the true positive ratio for each m (m=2,4,8) and evaluated the effect of m on the
true positive ratio. When m=2, the maximum of true positive ratio only reached 45% at n=200 iterations,
while FINET could reach 80% and 92% for m=4 and 8 respectively (Figure 1B). In addition, when m=8,
the true positive ratio reached 91% with n=10 iterations, and only slightly increased to 92% at n=100.
True positive ratio became stable at n=200. Therefore, appropriately increasing m potentially reduces
the noise and improves the true positive ratio.

4. Implementation, speed and usage

The whole software is implemented with Julia. From julia 0.4 to its latest version, we believe the
multiple process as the stable module for parallel computations in Julia, although other approaches have
been introduced. Therefore, FINET still uses multiple process modules for parallel computations.
Running multiple processes requires big memory for large quantities of data. This issue is solved by
using shared arrays across the processes to reduce the memory consumption in FINET.

Julia’s speed is arguably faster than C/C++, and it runs much faster than R, Python and MATLAB,
which are both widely used in network inference software. For example, comparing the same Fortran
code of elastic-net model, glmnet, running respectively in R and Julia for a random matrix 10000*100,
Julia and R took respectively 0.7541 and 1.166 seconds to complete a single cross-validation fit. In
addition, the loop over n iterations takes much longer times in R than does Julia. More importantly, it is
impractical to run a data sample greater than a 10GB data matrix with R. Simply loading the 10GB data
into memory (assuming memory available) takes hours for R. One can only imagine how many weeks
or months it would take to select variables from a big matrix by applying algorithms with looping over n
iterations in R. FINET, however, makes it possible and can complete it within hours or days in a normal
computer cluster.

Using FINET is fast, accurate, easy, and accessible. FINET completes all processes with one simple
command line, with input data and output file names as required, and other arguments as optional and
default (see the github web for details). Anyone with or without a computer science background can
easily complete the command line.

Although developed under Linux environment, FINET should perform well in any operating system
with Julia installation, including microsoftware window and apple machintosh.

Figure legend

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted August 13, 2019. ; https://doi.org/10.1101/733683doi: bioRxiv preprint

https://doi.org/10.1101/733683
http://creativecommons.org/licenses/by-nc-nd/4.0/

Figure 1. FINET parameter optimization. A, Frequency cutoff optimization. Frequency cutoff from 0.1 to
1.0 vs AUC, true positive ratio and normalized true positive calling (true positive callings at each cutoff/
max(true positive callings at each cutoff)). This data resulted from FINET running on network1 at
dream5 with following settings, m=4, n=500, alpha=0.5 (see github software website for details). B,
comparisons of true positive ratio of resampling m subgroups.

References

El-Brolosy,M.A. et al. (2019) Genetic compensation triggered by mutant mRNA degradation. Nature,
568, 193.
Friedman,J. et al. (2010) Regularization Paths for Generalized Linear Models via Coordinate Descent. J.
Stat. Soft., 33.
Marbach,D. et al. (2012) Wisdom of crowds for robust gene network inference. Nature Methods, 9, 796–
804.
Meinshausen,N. and Bühlmann,P. (2010) Stability selection. Journal of the Royal Statistical Society:
Series B (Statistical Methodology), 72, 417–473.
Wang,A. and Sarwal,M.M. (2015) Computational Models for Transplant Biomarker Discovery. Front.
Immunol., 6.

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted August 13, 2019. ; https://doi.org/10.1101/733683doi: bioRxiv preprint

https://doi.org/10.1101/733683
http://creativecommons.org/licenses/by-nc-nd/4.0/

�

�

�

�

�

�

�

�

�

�

�

�
�

�
�

�
�

�

�

�
�

�

0.25

0.50

0.75

1.00

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.951.0

Pe
rc

en
ta

ge

variable

�

�

NormalizedTruePositive
RatioTruePositive
AUC

Frequency cut o�

�

�

�

�

�

�

�

�

�

�

0.4

0.6

0.8

0 100 200 300 400 500

R
a

tio
Tr

u
e

P
o

si
tiv

e

m

�

�

2
4
8

Iteration

Figure 1

A

B

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted August 13, 2019. ; https://doi.org/10.1101/733683doi: bioRxiv preprint

https://doi.org/10.1101/733683
http://creativecommons.org/licenses/by-nc-nd/4.0/

