
FINET: Fast Inferring NETwork

Anyou Wang1* Rong Hai1,2*

1 The Institute for Integrative Genome Biology, University of California at Riverside, Riverside, CA
92521, USA, and 2Department of Microbiology and Plant Pathology, University of California at
Riverside, Riverside, CA 92521, USA

*Correspondence:
A Wang anyou.wang@alumni.ucr.edu
R Hai rong.hai@ucr.edu

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted January 23, 2020. ; https://doi.org/10.1101/733683doi: bioRxiv preprint

https://doi.org/10.1101/733683
http://creativecommons.org/licenses/by-nc-nd/4.0/

Abstract: Numerous software have been developed to infer the gene regulatory network, a long-standing
key topic in biology and computational biology. Yet the slowness and inaccuracy inherited in current
software hamper their applications to the increasing massive data. Here, we develop a software, FINET
(Fast Inferring NETwork), to infer a network with high accuracy and rapidity. The high accuracy results
from integrating algorithms with stability-selection, elastic-net, and parameter optimization. Tested by a
known biological network, FINET infers interactions with more than 94% precision (true positives/total
true callings). The high speed comes from partnering parallel computations implemented with Julia, a
new compiled language that runs much faster than existing languages used in the current software, such
as R, Python, and MATLAB. Regardless of FINET’s implementations with Julia, users without any
background in the language or computer science can easily operate it, with only a user-friendly single
command line. In addition, FINET can infer other networks such as chemical networks and social
networks. Overall, FINET provides a confident way to efficiently and accurately infer any type of
network for any scale of data.
Availability and implementation available in github https://github.com/anyouwang/finet.git

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted January 23, 2020. ; https://doi.org/10.1101/733683doi: bioRxiv preprint

https://doi.org/10.1101/733683
http://creativecommons.org/licenses/by-nc-nd/4.0/

1. Introduction
All biological phenotypes result from a certain degree of gene regulation, and understanding gene
regulations remains a crucially fundamental topic in the biology. Conventionally, manipulating gene
mutations such as knockout and knockdown helps to infer the gene regulations. However, these
approaches suffer several challenges such as transcript compensatory and side effects 1. Gene mutation
approaches also assume that the genome becomes stable after mutations. The genome, however, varies
dramatically with even a single gene mutation, which alters gene expressions of thousand genes as
shown in RNA sequencing data. As a result, there is no way to fully comprehend the complete
regulatory interactions of any single gene.

Computational biology and bioinformatics have attempted to infer gene regulatory networks from gene
expression data, and have established software and tools to execute their works 2–7. However, the
efficiency of current software suffers from high noise and lagging, and they usually generate overly
complicated network interactions—mostly false positives 2. Therefore, these results actually provide
more questions than answers to true biology regulatory interactions. With the software FINET, we are
able to quickly and accurately reveal true gene interactions and refresh gene interaction pictures.

2. Theory and algorithms
Theoretically, FINET is primarily based on elastic-net theory and stability selections. The elastic-net is
an extension of LASSO8 (least absolute shrinkage and selection operator), a penalized regression
method for shrinkage and variable selection by minimizing:

Lasso tends to ignore the variables in a correlated group. To avoid this, the elastic-net adds an additional
quadratic part to the penalization to include the correlated genes.

Elastic-net and lasso are arguably the best methods for shrinkage and variable selection, and k-fold
cross-validations have been implemented in current software like GMLNet 9. However, these validations
include too many variables and these selected variables offer results of coefficients without any priority
of trueness. It is then difficult to estimate the stability of these variable selections.

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted January 23, 2020. ; https://doi.org/10.1101/733683doi: bioRxiv preprint

https://doi.org/10.1101/733683
http://creativecommons.org/licenses/by-nc-nd/4.0/

To improve the accuracy of variable selection, stability selection comes into play 10. The general idea of
stability selection is to add a resampling step into an existing model selection to make it stable and
increase accuracy. For example, during elastic-net selection, the total samples are randomly partitioned
into two subgroups, and each subgroup is subjected to an elastic-net model selection. If a variable was
simultaneously selected at the two groups, the selected variable would be likely true 10.

The FINET’s algorithm of each resampling step is to bootstrap randomly split samples into m subgroups
(m >=2) without replacement. In each subgroup, a complete model of elastic-net is run to select variables
(regulators in biology) interacting with a target (a target gene in biology). Such resampling step iterates
n times. The frequency of each regulator selected during iterations is counted as frequency score, total
selected times in n*m trials = total hits/n*m, and it is used to rank regulator priority of confidences
(frequency levels) and confidence strength in true positive selection. The maximum frequency score is 1
(highest confidence), and a variable with a frequency of 1 for a given target means that it was always
selected in m*n trials and it is likely a true positive regulator for this target. When m increases (e.g.
m=8), in which a regulator simultaneously targets its target at m sub-groups in n bootstrap resampling,
type I error goes down dramatically.

3. Parameter optimization

We have optimized FINET parameters for most common users and was set as default values in FINET.
Here, we only highlighted parameter optimization of the frequency score cutoff and resampling in m
groups.

3.1. Frequency score cutoff
To systematically optimize the frequency score cutoff for FINET, we run FINET to select regulators
controlling each target in a well-known matrix used by dream5 network challenge (network1 matrix) 2 ,
which includes variable matrix and golden standard true positives.

From the theory above, we learned that high frequency cutoff ensures the accuracy of variable selection.
The optimal cutoff, however, remains unknown. To optimize the frequency cutoff, we first computed the
AUC (Area Under The Curve) of ROC (receiver operating characteristic curve) at an array of frequency
from 0.1 to 1. The golden standard at network1 was treated as known interactions, and the total true
positives produced by FINET were treated as true positive callings, and the rest were negative callings.
As expected, the AUC decreased with increasing frequency cutoff (Figure 1A, blue line). At the
frequency cutoff of 0.2, AUC reached 71.1%, but at the frequency cutoff of 0.95, the AUC lowered to
57.1%. This was consistent with the trend of total true positive callings, which declined dramatically
with a high frequency cutoff (Figure 1A, red line). Obviously, at lower frequency cutoff, more positives
were selected and less negatives were filled in. This resulted in higher AUC, but it contained higher
noise because more false positives were also added to the selection. Therefore, AUC may not be a good
measurement to evaluate the accuracy of true positive calling.

Here, we used precision (true positives/total true positive callings) to measure accuracy. During variable
selection, we normally select too many variables, unsure of which one is true. In the network inference,
it is more meaningful to have a higher precision than to call more true positives including noise. For
example, one algorithm made 1000 true positives callings, but the real true positives were 200 (precision:
20%). Another algorithm only called 200 true positives, and 160 were real true (precision: 80%). The
second algorithm missed 40 true positive (200-160), but it contained less noise than the first one, so we
certainly prefer the second algorithm. In fact, some interactions in biology may not be relevant, and
ignoring some interactions might make the network clear. Many biological experiments are normally

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted January 23, 2020. ; https://doi.org/10.1101/733683doi: bioRxiv preprint

https://doi.org/10.1101/733683
http://creativecommons.org/licenses/by-nc-nd/4.0/

conducted to prove one true gene interaction. It is valuable to obtain real true positives from
computational biology. Adding false positives to get the high AUC would jeopardize the scientific value
of findings. Therefore, the precision has more advantage than AUC.

The precision increased positively with frequency cutoff (Figure 1A green line). When frequency cutoff
at 0.95, the precision reached 80% at resampling m=4. A higher frequency cutoff directly correlated to a
higher precision and inversely related to the error ratio. These results fit the theory above very well. In
contrast, more than 90% of true positive callings were false positives at cutoff =0.1, indicating most
selections (>90%) as false without stability-selection resampling step. Therefore, the high frequency
cutoff (e.g. 0.95) reduces false positive callings and makes selection stable, and stability-selection
resampling is necessary.

3.2. Resampling m subgroups
Resampling is the key technique to improve the precision in FINET, which allows resampling m
subgroups. We plotted the precision for each m (m=2,4,8) and evaluated the effect of m on the precision.
When m=2, the maximum of precision only reached 45% at n=200 iterations and still kept a lot of noise,
although m=2 was proposed and adopted in most current software(Meinshausen and Bühlmann, 2010;
Marbach et al., 2012). This suggested that the biology is more complex than the statistic theory stated.

To solve the high noise problem, FINET increases m value as described above. FINET reaches 80% and
92% for m=4 and 8 respectively (Figure 1B). In addition, when m=8, the precision reached 91% with
n=10 iterations, and only slightly increased to 92% at n=100. Precision became stable at n=200.
Therefore, increasing iteration n value to a big number like 10,000 as suggested in most software might
not help a lot.

To appreciate the overall improvement from FINET, we plotted its precision against recall for m =8 and
m =12 (Figure 1C, 1D). When m=8 and frequency cutoff with 0.99, 0.95, and 0,9, the precision of FINET
reaches respectively 92.2%, 91.8%, and 89.4% with recall 0.04, 0.07, 0.1 (Figure 1C). Increasing m to 12
improves precision to 94.2%, 93.6%, 91.8% respectively for frequency cutoff of 0.99, 0.95 and 0.9, with
recall 0.02, 0.04, 0.05 (Figure 1D). This suggested that the best way to improve accuracy is to increase
sample size to allow big m value (e.g. m >=8).

4. Implementation, speed and usage

The whole software is implemented with Julia. From julia 0.4 to its latest version, we believe the
multiple process as the stable module for parallel computations in Julia, although other approaches have
been introduced. Therefore, FINET still uses multiple process modules for parallel computations.
Running multiple processes requires big memory for large quantities of data. This issue is solved by
using shared arrays across the processes to reduce the memory consumption in FINET.

Julia’s speed is arguably comparable to C/C++, and it runs much faster than R, Python and MATLAB,
which are widely used in network inference software. For example, comparing the same Fortran code of
elastic-net model, glmnet, running respectively in R and Julia for a random matrix 10000*100, Julia and
R took respectively 0.7541 and 1.166 seconds to complete a single cross-validation fit. In addition, the
loop over n iterations takes much longer times in R than does Julia. More importantly, it is impractical
to run a data sample greater than a 20GB data matrix with R. Simply loading the 20GB data into
memory (assuming memory available) takes hours for R. One can only imagine how many weeks or
months it would take to select variables from a big matrix by applying algorithms with looping over n

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted January 23, 2020. ; https://doi.org/10.1101/733683doi: bioRxiv preprint

https://doi.org/10.1101/733683
http://creativecommons.org/licenses/by-nc-nd/4.0/

iterations in R. FINET, however, makes it possible and can complete it within hours or days in a normal
computer cluster.

Using FINET is fast, accurate, easy, and accessible. FINET completes all processes with one simple
command line, with input data and output file names as required, and other arguments as optional and
default. The input data is a normalized matrix with each column as a gene and rows as observations
(see the github web for details). Anyone with or without a computer science background can easily
complete the command line.

Although developed under Linux environment, FINET should perform well in any operating system
with Julia installation, including microsoftware window and apple machintosh.

Figure legend

Figure 1. FINET parameter optimization and performance. A, Frequency cutoff optimization. Frequency
cutoff from 0.1 to 1.0 vs AUC, precision and normalized true positive calling (true positive callings at
each cutoff/max(true positive callings at each cutoff)). This data resulted from FINET running on
network1 at dream5 with following settings, m=4, n=500, alpha=0.5 (see github software website for
details). B, comparisons of precision of resampling m subgroups (frequency cutoff>0.95). C-D, the
overall performance of FINET when m =8 (C) and 12 (D).

References

1. El-Brolosy, M. A. et al. Genetic compensation triggered by mutant mRNA degradation. Nature 568,

193 (2019).

2. Marbach, D. et al. Wisdom of crowds for robust gene network inference. Nature Methods 9, 796–

804 (2012).

3. Huynh-Thu, V. A., Irrthum, A., Wehenkel, L. & Geurts, P. Inferring regulatory networks from

expression data using tree-based methods. PLoS ONE 5, (2010).

4. Mordelet, F. & Vert, J.-P. SIRENE: supervised inference of regulatory networks. Bioinformatics 24,

i76–i82 (2008).

5. Haury, A.-C., Mordelet, F., Vera-Licona, P. & Vert, J.-P. TIGRESS: Trustful Inference of Gene

REgulation using Stability Selection. BMC Systems Biology 6, 145 (2012).

6. Zoppoli, P., Morganella, S. & Ceccarelli, M. TimeDelay-ARACNE: Reverse engineering of gene

networks from time-course data by an information theoretic approach. BMC Bioinformatics 11, 154

(2010).

7. Ruyssinck, J. et al. NIMEFI: Gene Regulatory Network Inference using Multiple Ensemble Feature

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted January 23, 2020. ; https://doi.org/10.1101/733683doi: bioRxiv preprint

https://doi.org/10.1101/733683
http://creativecommons.org/licenses/by-nc-nd/4.0/

Importance Algorithms. PLoS One 9, (2014).

8. Wang, A. & Sarwal, M. M. Computational Models for Transplant Biomarker Discovery. Front.

Immunol. 6, (2015).

9. Friedman, J., Hastie, T. & Tibshirani, R. Regularization Paths for Generalized Linear Models via

Coordinate Descent. J. Stat. Soft. 33, (2010).

10. Meinshausen, N. & Bühlmann, P. Stability selection. Journal of the Royal Statistical Society:

Series B (Statistical Methodology) 72, 417–473 (2010).

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted January 23, 2020. ; https://doi.org/10.1101/733683doi: bioRxiv preprint

https://doi.org/10.1101/733683
http://creativecommons.org/licenses/by-nc-nd/4.0/

�

�

�

�

�

�

�

�

�

�

�

�
�

�
�

�
�

�

�

�
�

�

0.25

0.50

0.75

1.00

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.951.0

Pe
rc

en
ta

ge

variable

�

�

NormalizedTruePositive

AUC

Frequency cut o�

�

�

�

�

�

�

�

�

�

�

0.4

0.6

0.8

0 100 200 300 400 500

m

�

�

2
4
8

Iteration

Figure 1

A

B

Pr
ec

is
io

n

Precision

0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18

0
.7

5
0

.8
0

0
.8

5
0

.9
0

m=8 performance

0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16

0
.8

0
0

.8
5

0
.9

0

Recall

Recall

Pr
ec

is
io

n
Pr

ec
is

io
n

m=12 performance

C

D

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted January 23, 2020. ; https://doi.org/10.1101/733683doi: bioRxiv preprint

https://doi.org/10.1101/733683
http://creativecommons.org/licenses/by-nc-nd/4.0/

