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9 Abstract

10 Increased genetic gains for complex traits in plant breeding programs can be achieved 

11 through different selection strategies. The objective of this study was to compare potential gains 

12 for grain yield in a winter wheat breeding program through estimating response to selection R 

13 values across several selection approaches including phenotypic (PS), marker-based (MS), 

14 genomic (GS), and a combination of PS and GS. Five populations of Washington State University 

15 (WSU) winter wheat breeding lines evaluated from 2015 to 2018 in Lind and Pullman, WA, USA 

16 were used in the study. Selection was conducted by selecting the top 20% of lines based on 

17 observed yield (PS strategy), genomic estimated breeding values (GS), presence of yield 

18 “enhancing” alleles of the most significant single nucleotide polymorphism (SNP) markers 

19 identified from genome-wide association mapping (MS), and high observed yield and estimated 

20 breeding values (PS+GS). Overall, PS compared to other individual strategies showed the highest 

21 response. However, when combined with GS, a 23% improvement in R for yield was observed, 

22 indicating that gains could be improved by complementing traditional PS with GS. Using GS alone 

23 as a selection strategy for grain yield should be taken with caution. MS was not that successful in 

24 terms of R relative to the other selection approaches. Altogether, we demonstrated that gains 

25 through increased response to selection for yield could be achieved in the WSU winter wheat 
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26 breeding program by implementing different selection strategies either exclusively or in 

27 combination.    

28

29 Keywords: genetic gains; genome-wide association study; genomic selection; marker selection; 
30 phenotypic selection; winter wheat 
31

32

33 Introduction

34 The challenge to develop higher yielding, climate resilient, disease- and pest-resistant, and 

35 more nutritious crops has never been more urgent considering the anticipated population growth 

36 in the next 30 years [1]. As such, improving genetic gains or performance for important traits such 

37 as yield, disease resistance, and adaptation in staple crops such as wheat (Triticum aestivum L.) 

38 has been the goal of many breeding programs. Genetic gain is the predicted change in mean value 

39 of a trait within a population under selection [2] and is represented by what is more commonly 

40 known as the “breeder’s equation” [3].  To increase genetic gains, an increase in the phenotypic 

41 variability, accuracy of selection, and selection intensity, or a decrease in generation time for 

42 cultivar development, is necessary [4]. Phenotypic, genomic, and marker-based selection 

43 approaches could be used to increase either of the factors mentioned to achieve improved gains.    

44 In bread wheat, phenotypic selection for superior genotypes, characterized primarily by a 

45 “non-shattering” phenotype, begun during its domestication [5]. This “unconscious” breeding 

46 resulted from the unintentional selection of lines that were more adapted and productive under 

47 early farming practices and by natural selection in the fields [6]. The “empirical” and “scientific” 

48 breeding followed the “unconscious”, which resulted in the development of wheat lines with 

49 improved characteristics in breeding programs [6]. Currently, plant breeders have access to 
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50 advanced genome and phenotypic-based selection strategies to fast-track genetic improvement and 

51 increase gains for key traits in wheat [1]. 

52 Several studies evaluated the gains which could be achieved by applying different selection 

53 strategies particularly for increasing resistance to specific diseases in wheat. Rutkoski et al. [7] 

54 compared gains for phenotypic and genomic selection for quantitative stem rust resistance and 

55 observed that genomic selection could perform as well as phenotypic selection for stem rust 

56 resistance improvement but can result in less genetic variation over time. Significant gains using 

57 marker-assisted selection for Fusarium head blight (FHB) resistance were also observed in the 

58 University of Minnesota wheat breeding program due to the presence of a major quantitative trait 

59 locus. Using closely linked and diagnostic markers for Fhb1 caused a 27% reduction in disease 

60 symptoms throughout the breeding programs [8]. In another study, FHB severity in winter wheat 

61 was reduced by 6 and 5% using phenotypic and marker-aided selection, respectively [9]; whereas 

62 marker-assisted breeding for severity and deoxynivalenol (DON) content resulted in higher gains 

63 on an annual basis in spring wheat [10]. Both studies observed a large variation for FHB resistance 

64 in the marker-selected lines demonstrating the need to complement marker selection with 

65 phenotypic selection to further enhance gains. 

66 Grain yield is a complex trait controlled mainly by many loci with small effects [11–13] 

67 and this makes yield more difficult to examine than disease resistance. Improvement in grain yield, 

68 however, remains the prime emphasis of many wheat breeding programs [14], and with that, it is 

69 necessary to measure gains achieved through different breeding and selection strategies.  Given 

70 that there are several selection approaches used in plant breeding, we were interested in quantifying 

71 the possible gains for grain yield which could be attained when these methods are implemented 

72 alone or in combination with others in a winter wheat breeding program. The objective of this 
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73 study was to compare the projected gains for yield resulting from using different selection 

74 strategies in the Washington State University (WSU) winter wheat breeding program. Empirical 

75 datasets for grain yield collected from over 2,200 WSU winter wheat breeding lines grown from 

76 2015 to 2018 were evaluated.  The different selection strategies assessed included phenotypic, 

77 marker, genomic, and a combination of phenotypic and genomic selection. Potential gains for yield 

78 represented as the response to selection R were calculated for these selection strategies.     

79

80 Materials and methods

81 Winter wheat populations

82 A total of five different populations of soft winter wheat lines adapted to the US Pacific 

83 Northwest was used in the study. These populations included an association mapping panel 

84 (AMP), two F5, and two double haploid (DH) populations of WSU winter wheat breeding lines. 

85 The AMP consisted of 456 lines evaluated in Lind (LND) and Pullman (PUL) WA, USA between 

86 2015 and 2018. Significant soil crusting delayed the growth of the winter wheat lines in LND in 

87 2016 and hence the AMP was not evaluated for this site-year.  The F5 lines comprised of 61 and 

88 501 lines planted in 2017 in LND (LND17_F5) and PUL (PUL17_F5), WA respectively. The DH 

89 panels were evaluated in LND and PUL in 2018 and consisted of 447 (LND18_DH) and 759 

90 (PUL18_DH) winter wheat breeding lines. 

91

92 Phenotypic data collection and analyses

93 Grain yield (in t ha -1) was assessed by harvesting whole plots using a Zurn® 150 combine 

94 (Waldenburg, Germany). Adjusted yields were calculated under an augmented design with 
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95 replicated checks and un-replicated genotypes on each block through the Augmented Complete 

96 Block Design (ACBD) in R program [15]. The winter wheat line ‘Eltan’ [16] was used as a check 

97 in LND, and ‘Madsen’ [17] was used as a check in PUL for the 2015-2018 growing seasons for 

98 the AMP.  Checks for the LND17_F5 included the lines ‘Bruehl’ [18], Eltan, ‘Otto’ [19], ‘Jasper’ 

99 [20], Madsen, and ‘Xerpha’[21], whereas ‘Brundage’[22], Jasper, Madsen, ‘Puma’[23], ‘UI 

100 Bruneau’, and ‘Xerpha’ were used for the PUL17_F5 population. Jasper, Otto, and Xerpha were 

101 used as checks for LND18_DH; whereas Jasper, Madsen, Puma, and Xerpha were used as checks 

102 for the PUL18_DH panel.

103 Adjusted values for yield were calculated employing two statistical models following 

104 Lozada and Carter [24]. Briefly, the models used were: 

105  (1)Y𝑖𝑗 =  µ +  B𝑖 +  G +  C +  I +  ε𝑖𝑗 

106  (2)Y𝑖𝑗𝑘𝑙 =  µ +  G +  C +  I +  E𝑖 +  I x E𝑖 +  G x E𝑖 +  C x E𝑖 +  B𝑘(E𝑖) + ε𝑖𝑗𝑘𝑙 

107 where Y is the trait of interest; µ is the effect of the mean; Bi is the effect of the ith block; 

108 G corresponds to the un-replicated genotypes; C is the effect of the replicated checks on each 

109 block; Ei is the effect of the ith environment; I is the effect of the identifier of the checks;  I x Ei, 

110 G x Ei, and C x Ei are the effects of check identifier by environment, genotype by environment, 

111 and check by environment interactions, respectively; Bk(Ei) is the effect of block nested within 

112 each environment; and ε is the standard normal error [15]. Best linear unbiased estimates (BLUEs) 

113 were calculated for individual environments (eq. (1)), whereas best linear unbiased predictors 

114 (BLUPs) were computed for the combined analyses across locations (eq. (2)). Factors were 

115 considered fixed when calculating BLUEs whereas effects were regarded as random for 

116 calculating BLUPs.   

117
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118 Genome-wide association study and genomic predictions

119 SNP genotyping was conducted using genotyping-by-sequencing (GBS) [25] through the 

120 NC State University Genomics Sciences Laboratory in Raleigh, NC, USA. The restriction enzymes 

121 MspI and PstI were used for GBS. SNPs were filtered for minor allele frequency (MAF) of > 0.05 

122 and 10% missing data. After quality control, 16,233 markers (genotype data 1, GD1; S1 File) 

123 remained and were used for genome-wide association study (GWAS) using a fixed and random 

124 effects circulating probability unification (FarmCPU) [26] kinship model in R [27]. SNP loci were 

125 declared to be significant under a Benjamini-Hochberg false discovery rate (FDR) [28] threshold 

126 of 0.05. The percent phenotypic variation explained (R2) by each significant SNP locus was 

127 calculated using a stepwise regression model in JMP® Genomics v.8.1 [29], where the R2 value 

128 when a marker was removed from the regression model was subtracted from the total R2 when all 

129 the significant SNPs were fitted in the model. 

130 Genomic predictions and genomic estimated breeding value (GEBV) calculations were 

131 implemented in the iPAT (Intelligent Prediction and Association Tool) package [30], where a ridge 

132 regression best linear unbiased prediction (RRBLUP) selection model  [31] was trained using the 

133 AMP to predict the yield performance of WSU F5 and DH winter wheat breeding lines for 

134 independent validations. This prediction model considers markers to have effects toward zero with 

135 a common variance [31]. RRBLUP uses the ‘mixed.solve’ function in the form: y = Xβ + Zu + ε, 

136 u ~ N (0, Kσ2
u), where X is a full-rank design matrix for the fixed effects, β; Z is the design matrix 

137 for the random effects u, K is a semidefinite covariance matrix, obtained from markers using the 

138 ‘A.mat’ (additive relationship matrix function); residuals are normal with a mean of zero and 

139 constant variance; and u and ε independent [31]. 
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140 A total of 11,089 high-quality GBS-derived SNP markers common to both the AMP and 

141 the validation sets (genotype data 2, GD2; S2 File) were used for genomic predictions. GD2 was 

142 a subset of GD1 which was used to perform association analyses using the AMP. Phenotypic data 

143 for yield in the validation populations (i.e. the F5 and DH breeding lines) were masked by 

144 representing them as “NA” during each analysis. Predictive ability for the independent validations 

145 were calculated as the Pearson correlation between GEBV and adjusted yield for the F5 and DH 

146 wheat breeding lines. For the GWAS-assisted GS, the top five most significant SNPs based on an 

147 FDR of 0.05 were fitted in an RRBLUP genomic prediction model as fixed effects in iPAT. A total 

148 of seven BLUE and two BLUP yield datasets were used for GWAS and genomic predictions. 

149 Relatedness between the diversity training panel and winter wheat test lines were assessed using 

150 Rogers genetic distances calculated in JMP Genomics v.8.0. 

151

152 Correlation between GEBV for one year and observed yield in the 

153 succeeding year 

154 The relationships between calculated breeding values for one year and its corresponding 

155 adjusted yield on the succeeding year were evaluated by calculating GEBV of the lines in the AMP 

156 and comparing them to their adjusted yield in the next growing season (e.g. GEBV for PUL2015 

157 was compared to adjusted yield in PUL2016). GEBVs were calculated by performing a five-fold 

158 cross-validation for the AMP, where 80% of the lines were used to predict the remaining 20% 

159 using an RRBLUP model in iPAT for the GS1 scenario. The Pearson correlation coefficients 

160 between GEBV and adjusted yield were calculated.    

161

162
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163 Selection strategies and response to selection

164 Different selection approaches for grain yield, namely phenotypic (PS), marker-based 

165 (MS), genomic (GS), and phenotypic + genomic (PS+GS) selection were compared in this study. 

166 For PS, the top 20% of the F5 and DH lines based on adjusted values for yield were selected. In 

167 MS, lines having five yield “enhancing” loci identified from association mapping using the AMP 

168 were selected. These loci represented the five most significant SNPs based on a Benjamini-

169 Hochberg FDR of 0.05 across datasets. In the GS approach, the top 20% of the breeding lines 

170 having the highest GEBV were identified through independent predictions by training the AMP to 

171 predict yield of the F5 and DH breeding lines (GS1). In another GS scenario, five of the most 

172 significant markers identified from association mapping using the AMP were included in the 

173 selection model as fixed effects to predict yield for the breeding lines using an RRBLUP model 

174 (GS2). Finally, for the PS+GS approach, lines having the top 20% highest adjusted grain yield and 

175 the highest GEBV were selected for both GS1 (PS+GS1) and GS2 (PS+GS2). The average of the 

176 adjusted yield of the corresponding lines selected for each of the selection strategy was reported. 

177 Comparisons between mean yield achieved by applying the different selection approaches were 

178 also compared to the mean of the check lines. 

179 Gains achieved through each selection approach were represented as the response to 

180 selection, R, calculated as R= H2S [32], where H2 is the broad-sense heritability calculated as 𝐻2

181  and S is the selection differential, calculated as S= µSelected-µUnselected, where µSelected is =  
𝜎2

𝑔

𝜎 2
𝑔 +  𝜎2

𝑒     

182 the mean yield for the lines with a selection strategy implemented and µUnselected is the mean yield 

183 of the lines without selection applied [33].    

184

185
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186 Results

187 Significant marker-trait associations

188 A total of 24 significant marker-trait associations (MTAs) distributed across 14 

189 chromosomes were identified for yield in the AMP under a kinship model and an FDR of 0.05 

190 (Table 1). Three of these grain yield-related MTAs were on chromosomes 3B and 5B. The percent 

191 variation explained by each significant marker ranged between 0.001 (S2B_239862383) and 0.05 

192 (S7A_545581556) identified in LND17 and PUL15, respectively. No SNP locus was identified to 

193 be significant across multiple datasets. FDR adjusted P-values for the significant markers ranged 

194 between 6.43E-06 (S1A_535858090) and 0.048 (S3B_482345832), whereas allele effects ranged 

195 between -0.39 and 0.26. The significant MTAs had an average minor allele frequency of 0.32. 

196

Table 1. SNP markers associated with grain yield identified in a diverse training panel of US 
Pacific Northwest winter wheat lines (N= 456 lines).

SNP Dataset Chr.
Position 

(bp)
FDR adj. 
P-value a

Minor allele 
frequency

Phenotypic 
variation 
explained, 

R2

S1A_497083519 PUL15 1A 497083519 0.01 0.38 0.0213
S1A_535858090 b PUL18 1A 535858090 6.43E-06 0.34 0.0324
S1B_8150831 PUL18 1B 8150831 0.01 0.14 0.0456
S2A_752287563 LND17 2A 752287563 0.02 0.36 0.0129
S2B_239862383 LND17 2B 239862383 0.01 0.37 0.0001
S2B_775486161 PUL18 2B 775486161 0.01 0.41 0.0175
S2D_639821303 LND17 2D 639821303 0.03 0.18 0.0154
S2D_642029978 LND17 2D 642029978 0.02 0.08 0.0007
S3A_22831895 LND18 3A 22831895 0.04 0.42 0.0241
S3A_567971108 PUL15 3A 567971108 0.009 0.19 0.0145
S3B_482345832 PUL18 3B 482345832 0.05 0.47 0.0025
S3B_561570016 PUL18 3B 561570016 0.003 0.26 0.0159
S3B_818284683 PUL15 3B 818284683 0.005 0.47 0.0217
S3D_325690 LND17 3D 325690 0.01 0.21 0.0033
S5B_29125444 LND17 5B 29125444 0.006 0.08 0.0005
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S5B_47592949 PUL18 5B 47592949 0.01 0.31 0.0090
S5B_679577399 LND18 5B 679577399 0.04 0.32 0.0189
S6A_601959488 LND17 6A 601959488 0.04 0.21 0.0012
S6B_118986455 LND18 6B 118986455 0.0001 0.15 0.0286
S6B_33331876 PUL18 6B 33331876 0.014 0.50 0.0008
S7A_545581556 PUL15 7A 545581556 0.03 0.46 0.0507
S7A_61774265 PUL15 7A 61774265 0.001 0.36 0.0228
S7B_711208053 PUL15 7B 711208053 0.007 0.45 0.0205
S7D_635365239 PUL15 7D 635365239 0.02 0.46 0.0103
a FDR- False discovery rate
b Significant SNPs highlighted in bold text were included in the prediction model as fixed effects for a 
GWAS-assisted genomic selection scenario

197

198

199 Predictive ability and genomic estimated breeding values for grain 

200 yield

201 Prediction ability for the GS1 scenario under independent validations were low, ranging 

202 from -0.21 (PUL16 predicting LND17_F5) to 0.21 (PUL15 predicting LND17_F5) across the 

203 wheat breeding lines (Fig 1). Overall, higher accuracies were observed for predicting the F5 lines 

204 compared with the DH populations (0.03 vs. 0.0002). No significant differences were observed for 

205 accuracies when models were trained using the LND and PUL datasets (0.01 vs. 0.02). Predicting 

206 LND17_F5 and LND18_DH wheat breeding lines using LND datasets resulted in a mean 

207 prediction ability of -0.01 whereas using PUL17_F5 and PUL18_DH as validation populations 

208 resulted in a mean predictive ability of 0.01. Across environment predictions using the LND yield 

209 datasets to predict PUL17_F5 and PUL18_DH populations resulted in a mean of 0.04, whereas 

210 using PUL datasets to predict LND17_F5 and LND_18 DH resulted in a mean of 0.02. BLUP 

211 datasets showed an advantage over BLUE datasets for predictions (0.02 vs. 0.01) across different 

212 validation populations. Mean grain yield GEBV for all the breeding lines across each dataset 
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213 ranged between 2.22 (LND15 as training dataset) and 9.99 (PUL18 as training dataset) for GS1 

214 (S1 Table).    

215

216 Fig 1.  Box plots for prediction ability across a standard genomic selection approach using 
217 RRBLUP (GS1) and a GWAS-assisted GS scheme (GS2) for grain yield in a winter wheat 
218 breeding program. 
219

220 Predicting grain yield using SNPs identified from GWAS as fixed effects in the model 

221 (GS2) did not result in significant differences in mean accuracy overall, although it resulted in an 

222 increase in predictive ability (0.05 vs. 0.02). Significant differences (P < 0.05) for mean prediction 

223 ability, nonetheless, were observed for PUL17_F5 and PUL18_DH. Prediction ability for GS2 

224 ranged between -0.09 (PUL18 predicting PUL17_F5) and 0.27 (PUL15 predicting PUL18_DH). 

225 Highest mean prediction ability across datasets was observed for PUL18_DH (0.19), followed by 

226 LND17_F5 (0.05), LND18_DH (0.02), and PUL17_F5 (-0.04). Predicting yield using BLUP 

227 datasets did not give advantage over to using BLUEs for predictions. In contrast to GS1, within 

228 environment predictions resulted in a 50% gain in mean prediction ability compared to predicting 

229 across environments. Similar with the GS1 scenario, the highest mean GEBV for yield was 

230 observed for PUL18 (7.68) whereas the lowest was observed for LND15 (1.74) (S2 Table). 

231 Correlations between GEBV and adjusted yield for the winter wheat breeding lines were 

232 low to high, ranging between 0.08 (LND18) and 0.71 (PUL_Com). Scatterplots showing positive 

233 significant (P < 0.0001) relationships between breeding values and adjusted yield for LND15, 

234 LND_Com, PUL16 and PUL17 are shown in Fig 2. Likewise, significant associations (P < 0.0001) 

235 between GEBV and yield were observed across growing seasons for the diverse population of US 

236 PNW winter wheat lines (AMP) (Fig 3). Correlation coefficients ranged from 0.003 

237 (PUL15GEBV_PUL16GY) to 0.22 (PUL17GEBV_PUL18GY).
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238 Fig 2.  Relationship between genomic estimated breeding values (GEBV) and adjusted yield 
239 (in t ha -1) for the F5 and DH wheat breeding lines for (A) LND15; (B) LND_Com; (C) 
240 PUL16; and (D) PUL17 training population datasets. *- Significant correlation coefficient at 
241 P < 0.05; ***- significant correlation at P < 0.0001.

242 Fig 3. Correlation between genomic estimated breeding values (GEBV) and adjusted yield 
243 for consecutive growing seasons for a diverse association mapping population (AMP) of US 
244 Pacific Northwest winter wheat evaluated in Lind (LND) and Pullman (PUL), WA from 
245 2015-2018.  ***- Significant correlation at P < 0.0001

246

247 Response to selection across different selection strategies

248 The highest average value for response to selection, R, was highest for PS, being the 

249 baseline method (1.61) (Table 2). Negative mean values for selection response were observed for 

250 both GS1 (-0.003) and MS (-0.35) (Tables 2 and 3). No line was selected under the LND17_F5 

251 population using an MS approach, whereas there were four, 86, and 11 lines containing five 

252 favorable alleles for the most significant SNPs identified from GWAS for LND18_DH, 

253 PUL17_F5, and PUL18_DH, respectively. Using both PS+GS1 and PS+GS2 strategies, with mean 

254 R of 0.63 and 0.53 respectively, were more advantageous in terms of response than MS, GS1, and 

255 GS2, (Table 4). Using GWAS-derived SNP markers as fixed effects in the prediction model in the 

256 GS2 scenario resulted in higher mean R (0.10) compared to GS1 (-0.003). The number of lines 

257 selected on both PS and GS ranged from 0 to 44 for both PS+GS1 and PS+GS2 approaches. There 

258 were no breeding lines selected for both PS and GS scenarios when PUL16 was used to predict 

259 LND17_F5. There were 16 values for R (44%) for the PS+GS1 that were greater than the R value 

260 using the PS alone. On the other hand, only 13 R values (36%) for the PS+GS2 were greater than 

261 the R for PS (Table 4, underscored and boldfaced values).   

262

263
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264

265 Significant differences were observed between the mean R values for PS, GS, and MS 

266 when the mean of the checks was compared to the mean yield for the population under selection 

267 (S1-S5 Tables). Mean R values for PS and PS+GS1 both resulted in a 56% gain in response when 

268 compared to the mean of the checks. A total of 16 selection response values (44%) for the PS+GS1 

269 showed higher R compared to the PS, whereas no R value for the PS+GS2 was observed to be 

270 greater than that for PS alone (S5 Table). Likewise, for the other selection strategies, an 

271 improvement in R was observed when check means were used to calculate selection responses 

272 (S3-S5 Tables).    

273

274

Table 2. Response to selection, R based on phenotypic selection (PS) and marker-based 
selection (MS) for grain yield in US Pacific Northwest winter wheat. 

Test 
population

No. of 
lines 

selected a

Pop. mean 
(without 
selection)

Mean 
(with 

selection) 
Selection 

differential b H2 c
Response to 
Selection d

PS
LND17_F5 12 3.58 4.67 1.09 0.15 0.16
LND18_DH 90 4.57 6.32 1.75 0.56 0.98
PUL17_F5 100 8.66 10.10 1.44 0.13 0.19
PUL18_DH 150 9.62 11.68 2.06 0.53 1.09
MS
LND17_F5 0 3.58 NA NA 0.15 NA
LND18_DH 4 4.57 4.19 -0.38 0.56 -0.21
PUL17_F5 86 8.66 8.52 -0.14 0.13 -0.02
PUL18_DH 11 9.62 8.09 -1.53 0.53 -0.81
a Number of lines selected based on selecting the top 20% of lines on each test population based 
on adjusted yield values (for PS); and based on the mean yield of lines having yield “enhancing” 
SNPs identified through an association mapping approach using an independent population of 
winter wheat lines (for MS)  
b Calculated as the difference between the mean yield of lines with selection and mean yield 
without selection, S= µSel-µUnselected   
c Broad-sense heritability
d Calculated as R= H2S
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Table 3. Response to selection, R for GEBV-based selection (GS1 and GS2) strategies for grain yield in US Pacific 
Northwest winter wheat. R values calculated based on the mean of population without selection applied.   

Training population (AMP) a

Test population
GS1 b H2 LND15 LND17 LND18 LND_Com PUL15 PUL16 PUL17 PUL18 PUL_Com
LND17_F5 0.15 0.003 -0.015 0.012 0.033 0.045 -0.065 -0.018 0.015 0.018

LND18_DH 0.56 0.084 -0.101 -0.034 -0.123 -0.022 0.0 0.129
-

0.1232 -0.123

PUL17_F5 0.13 -0.020 -0.009 0.016 -0.005 0.017 0.017 0.013
-

0.0052 0.029

PUL18_DH 0.53 -0.127 0.111 0.111 0.021 0.265 0.042 -0.101
-

0.1908 -0.011
GS2 c
LND17_F5 0.15 0.003 -0.014 -0.033 -0.045 0.056 0.016 0.0004 0.088 0.084

LND18_DH 0.56 0.084 -0.103 -0.032 -0.125 -0.021
-

0.0025 0.127 -0.123 -0.123
PUL17_F5 0.13 -0.020 -0.009 0.015 -0.006 0.016 0.017 0.013 -0.004 0.188
PUL18_DH 0.53 -0.129 0.113 0.061 0.0197 0.265 1.094 1.094 1.094 -0.016
a AMP-Association mapping panel
b GS1- standard genomic selection
c GS2- GWAS-assisted genomic selection 
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280

281

282

283

Table 4. Response to selection, R, for phenotypic + genomic (PS+GS1 and PS+GS2) selection strategies and number of lines 
selected in combining both approaches for selection (in parentheses) of yield in US Pacific Northwest winter wheat.  R values 
calculated based on the mean of population without selection applied.     

Training population (AMP) a
Test 

population
PS+GS1 H2 LND15 LND17 LND18 LND_Com PUL15 PUL16 PUL17 PUL18 PUL_Com
LND17_F5 0.15 0.11 (1) 0.14 (1) 0.15 (2) 0.17 (3) 0.17 (2) - (0) 0.18 (2) 0.16 (3) 0.15 (2)
LND18_DH 0.56 1.06 b (24) 0.96 (19) 1.05 (21) 0.97 (18) 1.06 (18) 0.96 (13) 1.00 (26) 1.01 (16) 1.01 (16)
PUL17_F5 0.13 0.17 (15) 0.17 (20) 0.18 (27) 0.19 (16) 0.20 (29) 0.18 (26) 0.18 (29) 0.19 (19) 0.19 (31)
PUL18_DH 0.53 1.14 (32) 1.09 (38) 1.12 (30) 1.12 (35) 1.11 (44) 1.10 (29) 1.07 (27) 1.05 (23) 1.11 (28)
PS+GS2
LND17_F5 0.15 0.11 (1) 0.14 (1) -0.02 (2) 0 (3) 0.08 (2) - (0) 0.18 (2) 0.10 (3) 0.14 (2)
LND18_DH 0.56 1.06 (24) 0.96 (19) 1.05 (21) 0.97 (18) 1.06 (18) 0.96 (13) 1.00 (26) 1.01 (16) 1.01 (16)
PUL17_F5 0.13 0.17 (15) 0.17 (20) 0.18 (27) 0.19 (16) 0.20 (29) 0.18 (26) 0.18 (29) 0.19 (19) 0.19 (31)
PUL18_DH 0.53 1.14 (32) 1.09 (38) 1.17 (39) 1.12 (35) 1.10 (44) 1.10 (29) -0.20 (30) -0.37 (38) 1.09 (28)
a AMP-Association mapping panel
b Values in boldface and underlined indicate that the response is greater than that of response for PS (Table 2)
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284 Discussion

285 This study reports the potential gains, represented as the response to selection R, which 

286 could be achieved through employing different selection strategies for grain yield in a winter wheat 

287 breeding program. Among the selection strategies evaluated were phenotypic (PS), marker-based 

288 (MS), genomic (GS), and the combination of PS and GS (PS+GS) under independent predictions.  

289 Phenotypic selection (PS) showed an advantage over the other selection approaches in 

290 terms of R. Selecting a portion of lines (i.e. top 20%) based only on the adjusted yield for the F5 

291 and DH wheat breeding lines showed a 24% gain on yield relative to the mean of the unselected 

292 population. Being the reference selection approach used in the current study, R values for all the 

293 other strategies should only be less than or equal to the R for PS.  Nevertheless, it was observed 

294 that combining PS with different GS approaches (PS+GS1 and PS+GS2) under independent 

295 predictions for some of the datasets resulted in improved R relative to that of the PS. This indicates 

296 the potential of achieving increased gains when selecting for lines having high observed yield and 

297 high estimated breeding values (GEBV). Therefore, when performing selections, breeders could 

298 consider both information from PS and GS (through GEBV) to select lines with improved yield 

299 potential which could result in increased gains. Selecting entries having high observed yield and 

300 high breeding values could give an opportunity to choose lines that are likely to do well across 

301 environments and years in comparison to lines selected based on phenotype alone in a single year 

302 [34]. One caveat for using the PS+GS approach for selection, however, is that in some instances, 

303 there would be no lines that have both high GEBV and high observed yield selected, as in the case 

304 of using PUL16 dataset for predictions. This issue could be circumvented by evaluating more lines 

305 and increasing the selection intensity in the breeding program which could improve the chances of 

306 selecting lines having high phenotypic value and high GEBV. 
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307 Predictive ability for grain yield under independent validations were also low, which could 

308 be a consequence of the genetic relatedness between the diversity training panel and the F5 and 

309 DH winter wheat breeding test lines. Average Rogers’ genetic coefficient between the training and 

310 test populations was 0.31, indicating genetic differences among them (S6 Table). Using GEBV 

311 alone for selection was not that successful relative to the PS and the PS+GS approaches in terms 

312 of values for response. Negative R values were observed for almost 50% of the datasets for both 

313 GS1 and GS2. Relying exclusively on GEBV for performing selections should therefore be taken 

314 with care, as some lines predicted to have high GEBV could have low yield. Correlations between 

315 GEBV and observed yield between a year and the next growing season under cross-validations 

316 using the AMP were in general low, indicating that high GEBV sometimes do not translate to high 

317 observed phenotypic values. This is especially true when evaluating across years due to the 

318 possible effects of genotype-by-environment interactions. In the context of selecting new parental 

319 lines based on GEBV alone, it was recently observed that selecting for high FHB resistance in 

320 winter wheat was not that reliable, as only 19% of the lines (9 out of 47) correctly predicted by 

321 GEBV belong to the best 10% for FHB resistance [35]. In another study, negative GEBV for yield 

322 were observed for synthetic hexaploid spring bread wheat lines evaluated across heat and irrigated 

323 environments [36]. Selection for drought tolerance in maize using GEBV, in contrast, has resulted 

324 in rapid genetic gains and positive selection responses through using molecular markers associated 

325 with yield under drought stress [37].  While selecting lines based on GEBV alone should be 

326 considered with caution, the implementation of genomic selection in breeding programs should 

327 help increase the rate of genetic gains through a faster breeding cycle, higher selection intensity, 

328 and efficiency of genomic prediction approaches in integrating novel genetic  material in wide-

329 crosses and pre-breeding programs [38]. Moreover, GEBV can replace phenotypes if they are more 
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330 predictive of true breeding values [39]. For GEBV therefore to be more relevant in the breeding 

331 program, strategies that could help increase the selection accuracy, such as using genetically 

332 related populations, utilizing optimal training population composition and sizes, and employing 

333 ideal number of markers for predictions [40–42] should be implemented.  Altogether, our results 

334 demonstrated that GEBV could still nonetheless be used as a selection criterion for grain yield in 

335 winter wheat breeding.                                       

336 Selection responses achieved by integrating GWAS-derived markers as fixed effects in the 

337 prediction model (GS2) was not significantly different than that of a standard GS approach (GS1), 

338 although 17% improvement in the mean R was observed. This demonstrated the potential to 

339 increase gains by incorporating fixed effect markers in the model, consistent with previous studies 

340 [43,44]. It should be noted that the markers used as fixed effects in the selection model were 

341 identified to be significant only in the training population (AMP) to disregard the effect of “inside 

342 trading,” which was previously observed to cause overestimated accuracies for FHB resistance in 

343 wheat [33]. These inflated accuracies under “inside trading” are attributed to the bias caused by 

344 using significant markers that were identified in the same group of lines used for genomic 

345 predictions [33]. Using simulations, Bernardo [45] previously showed that incorporating markers 

346 with R2 greater than 10% in the model should give an advantage in increasing the accuracy. In the 

347 present study, significant loci with R2 greater than 10% were not identified. Nevertheless, even if 

348 it were the case, we still observed a positive effect of including significant markers on the 

349 predictive ability for grain yield. In addition to using GWAS-derived markers for prediction, the 

350 inclusion of genetically correlated, highly heritable traits from high-throughput field phenotyping 

351 in the prediction model have been observed to improve selection accuracy for grain yield in wheat 

352 [46–49]. 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 13, 2019. ; https://doi.org/10.1101/734194doi: bioRxiv preprint 

https://doi.org/10.1101/734194
http://creativecommons.org/licenses/by/4.0/


19

353 Negative responses were observed for marker selection (MS) for wheat breeding lines 

354 using independent SNPs identified from association mapping using the AMP, indicating the 

355 inefficiency of using this approach exclusively for the selection of grain yield. Further, there were 

356 no LND17_F5 lines having favorable allele combinations for the most significant yield-related 

357 SNP loci, which demonstrates the difficulty of performing selections based on an MS approach 

358 (Table 2; S7 Table). In the context of genomic predictions for FHB related traits in wheat, the use 

359 of independent SNPs (i.e. markers identified using a different mapping population) was previously 

360 observed to have neutral or reducing effects on selection accuracy [33]. Marker-assisted validation, 

361 marker-aided backcrossing, and marker-assisted gene pyramiding, nonetheless, has been 

362 successfully implemented for different traits such as leaf rust resistance, powdery mildew 

363 resistance, and pre-harvest sprouting tolerance, to name a few [50]. Improvement for grain yield 

364 using MS approaches remains a challenge due to its genetic complexity, heritability, and the effects 

365 of genotype-by-environment interactions compared to disease resistance traits which are 

366 controlled by relatively few QTL with major effects [51]. Consequently, there is a need to validate 

367 results from association studies for complex traits such as yield to better implement MS strategies 

368 in the breeding program. Previously, some QTL validation studies for grain yield in wheat showed 

369 the potential of using allele specific assays such as KASP® [52] to select for lines with high yield 

370 potential. Lozada et al. [53], for instance, developed marker assays for yield and component traits 

371 and used a diverse panel of spring wheat lines from CIMMYT, Mexico to validate the effects of 

372 yield-related loci previously identified in southern US winter wheat. They eventually showed the 

373 potential of developing molecular marker assays that could select for spring wheat lines with 

374 improved yield potential. In the present study, using MS alone might not necessarily result to 
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375 improved gains, however, when implemented together with GS and PS approaches, improved 

376 gains in the breeding program could be observed. 

377  

378 Conclusions

379 Gains in terms of response to selection R, which could be achieved by employing different 

380 selection strategies for grain yield in a winter wheat breeding program were compared. Phenotypic 

381 selection (PS) showed favorable responses to selection compared to genomic (GS) and marker 

382 selection (MS) approaches. Combining PS with GS showed a great potential in achieving higher 

383 R values compared to using either method alone. We observed that GS when combined with 

384 traditional PS for yield, should facilitate an increased response to selection and ultimately genetic 

385 gains in the WSU winter wheat breeding program. Altogether, we showed that genetic gains in 

386 terms of response to selection could be achieved through the integration of one selection method 

387 with another. Breeders could make important selection decisions based on the combination of one 

388 or more strategies to achieve optimal gains in plant breeding programs. Careful consideration on 

389 which selection strategies to implement, depending on the traits being evaluated, cost, and 

390 available resources should facilitate improved genetic gains for complex traits. 

391
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