Abstract
The ultimate goal of biological superresolution fluorescence microscopy is to provide three-dimensional resolution at the size scale of a fluorescent marker. Here, we show that, by localizing individual switchable fluorophores with a probing doughnut-shaped excitation beam, MINFLUX nanoscopy provides 1–3 nanometer resolution in fixed and living cells. This progress has been facilitated by approaching each fluorophore iteratively with the probing doughnut minimum, making the resolution essentially uniform and isotropic over scalable fields of view. MINFLUX imaging of nuclear pore complexes of a mammalian cell shows that this true nanometer scale resolution is obtained in three dimensions and in two color channels. Relying on fewer detected photons than popular camera-based localization, MINFLUX nanoscopy is poised to open a new chapter in the imaging of protein complexes and distributions in fixed and living cells.