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ABSTRACT 22 

While microbiome studies have focused on diversity on the species or higher level, bacterial 23 

species in microbiomes are represented by different, often multiple strains. These strains could 24 

be clonally and phenotypically very different, making assessment of strain content vital to a full 25 

understanding of microbiome function. This is especially important with respect to antibiotic 26 

resistant strains, the clonal spread of which may be dependent on competition between them and 27 

susceptible strains from the same species. The pandemic, multi-drug resistant, and highly 28 

pathogenic E. coli subclone ST131-H30 (H30) is of special interest, as it has already been found 29 

persisting in the gut and bladder of healthy people. In order to rapidly assess E. coli clonal 30 

diversity, we developed a novel method based on deep sequencing of two loci used for sequence 31 

typing, along with an algorithm for analysis of resulting data. Using this method, we assessed 32 

fecal and urinary samples from healthy women carrying H30, and were able to uncover 33 

considerable diversity, including strains with frequencies at <1% of the E. coli population. We 34 

also found that even in the absence of antibiotic use, H30 could complete dominate the gut and, 35 

especially, urine of healthy carriers. Our study offers a novel tool for assessing a species’ clonal 36 

diversity (clonobiome) within the microbiome, that could be useful in studying population 37 

structure and dynamics of multi-drug resistant and/or highly pathogenic strains in their natural 38 

environments.  39 

IMPORTANCE 40 
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Bacterial species in the microbiome are often represented by multiple genetically and 41 

phenotypically different strains, making insight into subspecies diversity critical to a full 42 

understanding of the microbiome, especially with respect to opportunistic pathogens. However, 43 

methods allowing efficient high-throughput clonal typing are not currently available. This study 44 

combines a conventional E. coli typing method with deep amplicon sequencing to allow analysis 45 

of many samples concurrently. While our method was developed for E. coli, it may be adapted 46 

for other species, allowing for microbiome researchers to assess clonal strain diversity in natural 47 

samples. Since assessment of subspecies diversity is particularly important for understanding the 48 

spread of antibiotic resistance, we applied our method to study of a pandemic multidrug-resistant 49 

E. coli clone. The results we present suggest that this clone could be highly competitive in 50 

healthy carriers, and that the mechanisms of colonization by such clones need to be studied. 51 

INTRODUCTION 52 

Microbiomes, both in terms of function and diversity, have recently been a topic of considerable 53 

interest. The gut microbiome has gotten special attention due to its high complexity and 54 

importance to health1-9. So far, studies have almost exclusively focused on species or higher-55 

level diversity. However, this paints an incomplete picture, since strains within the same species 56 

can be of distinct clonal origin and have vastly different metabolic, pathogenic, and antibiotic 57 

resistance profiles10-19. Importantly, multidrug-resistant bacterial strains have been found 58 

competing with commensal strains in the gut, even without antibiotic pressure18-23. Thus, there is 59 

a pressing need to identify strains in the human microbiome for species of critical health 60 

importance. 61 

Escherichia coli is one of the most common residents of the gut. While primarily a commensal 62 

colonizer, extra-intestinal pathogenic E. coli clones are implicated in a variety of diseases, 63 
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including urinary tract infections (UTIs) - a leading cause of human antibiotic use24-28. The 64 

spread of multi-drug resistant E. coli is now a major health concern, especially the pandemic 65 

fimH30 subclone of sequence type ST131 (H30). Though recently-emerged, H30 is now globally 66 

distributed and comprises up to half of all urinary and bloodstream isolates of E. coli that are 67 

fluoroquinolone-resistant and produce extended-spectrum beta-lactamases (ESBL)29-33. 68 

Additionally, it is strongly associated with drug-bug mismatches and adverse outcomes in elderly 69 

and immunocompromised individuals31-34. Somewhat paradoxically, H30 is also a persistent gut 70 

colonizer of healthy people and frequently causes asymptomatic bacteriuria (ABU) in such 71 

carriers35. Yet, the relative clonal predominance of H30 strains among E. coli colonizing the gut 72 

or bladder in healthy carriers remains unknown. Answering these questions could have a 73 

significant impact on understanding the spread of antibiotic resistance and its reservoirs. 74 

Currently, microbiome diversity is studied by sequencing the 16S rRNA gene, but this cannot 75 

capture clonal diversity36, 37. Conventional methods for assessing clonal diversity, such as 76 

metagenomic sequencing and single colony typing, are costly and labor intensive. For reliable 77 

clonal diversity analysis, metagenomic sequencing requires very high coverage per sample, 78 

while single colony typing requires handpicking large numbers of colonies for multi-locus 79 

sequence typing (MLST)38-42. In E. coli, MLST requires assessment of 7 genes per isolate which 80 

is analytically complex, costly, labor intensive, and therefore difficult to implement. Previously, 81 

we reported an alternative clonotyping method that requires sequencing regions of only 2 genes – 82 

fumC which is part of the MLST scheme and fimH that encodes a rapidly-evolving fimbrial 83 

adhesin43. The fumC/fimH-based (CH) typing of E. coli is widely accepted due to its simplicity 84 

and ability to not only identify specific STs but subdivide them into smaller subclones43. 85 
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Specifically, H30 is identified using the allele combination fumC40/fimH30, while other less 86 

resistant ST131 strains have the same fumC but different fimH alleles.  87 

Here, we report a high-throughput method for clonal typing of E. coli strains by combining CH 88 

typing and deep amplicon sequencing. We developed a new algorithm - Population-Level Allele 89 

Profiler (PLAP) - for detecting alleles and predicting the relative prevalence of each allele in a 90 

sample. We were able to assess the prevalence of clonal groups (including H30) in multiple fecal 91 

and urine samples concurrently, with a limit of relative abundance detection at <1% of the total 92 

population. 93 

RESULTS 94 

Deep amplicon sequencing of defined samples 95 

To validate our approach and establish a limit of detection for strain presence, we first tested our 96 

deep amplicon sequencing procedure on a set of defined samples. To create the defined samples, 97 

we first selected a fecal sample from our lab collection known to contain H30 and ST101. Next, 98 

we isolated a single colony from each and confirmed them to be strains of H30 (fumC40/fimH30) 99 

and ST101 (fumC41/fimH86) using CH typing. From these single colonies, we first created H30-100 

only and ST101-only mixtures of fumC and fimH amplicons. We also created four ST101/H30 101 

mixed samples by combining the fumC and fimH amplicons from ST101 and H30 in ST101:H30 102 

ratios of 1:1, 1:4, 1:100, and 1:1000. 103 

Analysis of raw sequencing data from H30-only and ST101-only samples showed the average 104 

coverage of erroneous bases was 0.08% ± 0.09% for both strains. Erroneous bases were observed 105 

in both genes across most nucleotide positions. The highest coverage for an erroneous base was 106 

0.66% of aligned reads in fumC and 0.45% in fimH for H30, and 0.68% in fumC and 0.46% of 107 
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reads in fimH for ST101. The frequency distribution for erroneous base coverage is presented in 108 

Supplemental Figure 1. 109 

Analysis of raw sequencing data from ST101/H30 mixes showed that both H30 and ST101 110 

alleles were detectable in the 1:1, 1:4, and 1:100 mixes. In the 1:1000 mix, only alleles of the 111 

dominant H30 strain were observed. In the 1:1, 1:4, and 1:100 mixes, input and observed allele 112 

prevalence was highly correlated for both fumC and fimH (R2=0.996 and 0.997 respectively, 113 

Suppl. Fig. 2). Erroneous bases were observed at 0.09% ± 0.1% and 0.08% ± 0.09% of aligned 114 

reads in fumC and fimH, respectively (Suppl. Fig. 1). The highest coverage for erroneous bases 115 

among all mixes was 0.79% of aligned reads for fumC and 0.57% of aligned reads for fimH.  116 

Since 0.79% of aligned reads was the highest coverage for an erroneous base, we established 117 

0.8% as a cutoff for correct base calling in both genes. This cutoff was used for all further PLAP 118 

analysis. 119 

Deep sequencing of study samples and allele prediction 120 

Next, we applied PLAP to 67 participant samples (43 fecal and 24 urine) collected from a 121 

previous study35. A total of 128 fumC and 129 fimH alleles were predicted across all samples, of 122 

which 123 (96.1%) and 125 (96.9%) were previously known fumC and fimH alleles, 123 

respectively. 5 novel fumC and 4 novel fimH alleles were potentially detected. All novel fumC 124 

and fimH alleles were phylogenetically distant from other alleles predicted in the sample, 125 

indicating that these alleles are not artifacts of sequencing (Suppl. Fig. 3, 4). These novel alleles 126 

nonetheless clustered with other E. coli fumC and fimH alleles, indicating that these are novel E. 127 

coli alleles rather than alleles belonging to other species. 128 
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The average number of alleles predicted per sample was 1.91 ± 0.96 for fumC and 1.93 ± 1.01 129 

for fimH. 43 samples had same numbers of predicted fumC and fimH alleles; 24 samples had 130 

different numbers of predicted fumC and fimH alleles (Fig. 1). Overall, the number of predicted 131 

fumC alleles correlated to the number of predicted fimH alleles with an R2 of 0.88 (Fig. 1). 132 

To assess the performance of PLAP for predicting alleles, we used samples containing criterion 133 

clones - strains previously identified by single colony typing. PLAP detected criterion fimH and 134 

fumC alleles in 52 of these samples (90%). In the 6 samples where criterion allele(s) were not 135 

found, the criterion clones were ciprofloxacin-resistant, but their isolation from the sample 136 

required ≥2 plating attempts. This leads us to believe that these alleles were not detected because 137 

they were absent in the MacConkey-plated population prior to deep sequencing. 138 

A total of 72 non-criterion (previously unidentified) fumC and 71 non-criterion fimH alleles were 139 

predicted by PLAP across all 67 samples. To assess the performance of PLAP on non-criterion 140 

alleles, we analyzed 14 samples (10 fecal, 4 urine) predicted to contain 22 non-criterion fumC 141 

and 22 non-criterion fimH alleles. 12 of these samples had at least one non-criterion allele 142 

alongside criterion alleles; the remaining 2 had multiple non-criterion alleles in each gene only. 143 

For each sample ≥40 single colonies were isolated and CH type determined using 7-SNP qPCR, 144 

with each CH type verified by sequencing. With these data, we confirmed 19 (86%) predicted 145 

non-criterion alleles for each gene. This included one predicted novel fumC allele. Of the 146 

unconfirmed alleles, one was not distinguishable by 7-SNP qPCR and had a predicted prevalence 147 

of 1%; therefore, we did not attempt to locate it. The remaining unconfirmed alleles had 148 

predicted prevalences of <3% and therefore may have been missed due to insufficient sampling. 149 

Additionally, all criterion alleles in these samples, 12 per gene, were predicted by PLAP. 150 

Prediction of allele prevalence in multi-allele samples 151 
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We have also designed PLAP to predict the within-sample prevalence of each allele. The average 152 

allele prevalence in fecal samples was 47.3% ± 4.3% SEM (range 0.88 – 100%) for fumC and 153 

48.4% ± 4.22% SEM (range 1 – 100%) in fimH. The average allele prevalence in urine samples 154 

was 64.8% ± 6.91% SEM (range 1.4 – 100%) for fumC and 58.3% ± 7.18% SEM (range 1 – 155 

100%) in fimH.  156 

In order to verify that the prevalences predicted by PLAP were accurate, we compared 157 

predictions to actual in-sample prevalence using two different methods. 158 

In the first method, we used H30 since ascertaining its prevalence is relatively simple. By plating 159 

the sample on MacConkey agar then patching onto LB-ciprofloxacin, it is possible to compare 160 

the number of cipro-resistant (H30) colonies to the total number of E. coli colonies. The ratio of 161 

these two numbers provides the H30 load in a sample. We compared the predicted prevalences of 162 

fumC40 and fimH30 to the H30 load in 17 fecal samples containing cipro-resistant H30. 163 

Correlations between the H30 load and the predicted prevalence of fumC40 and fimH30 were 164 

0.86 and 0.84 respectively (Fig. 2), indicating that prevalences given by PLAP were 165 

representative of actual allele prevalences. To determine whether outliers were present, we 166 

calculated the 99% CI range for every sample (see Methods). Three outlier samples were 167 

identified (open circles, Fig. 2). Since it is possible that these outliers contain ciprofloxacin-168 

sensitive non-H30 fimH30-containing clones, fumC-null or fimH-null clones, and/or 169 

ciprofloxacin-sensitive H30, we decided to employ screening of a large number of single 170 

colonies. 171 

In this second method, we used single colony typing for the in-depth characterization of 14 172 

multi-allele samples described above, alongside 4 additional single-allele samples (2 fecal, 2 173 

urine) for which only one allele per gene was predicted. This set of 18 samples included 11 of 174 
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the 17 fecal samples used for the H30-based analysis above, including one of the outlier samples. 175 

For all 18 samples, we used CH typing of ≥40 single colonies per sample to determine the 176 

prevalence of each fumC and fimH allele. Correlation between the PLAP-predicted prevalence 177 

and the experimental allele prevalence was 0.98 for both fumC and fimH alleles (Fig. 3). As in 178 

the H30 analysis above, we determined whether outliers were present using the 99% CI range for 179 

every sample. Only one outlier was detected, corresponding to the only sample that contained 180 

colonies from which fimH could not be amplified (fimH-null colonies). Furthermore, the sample 181 

that was an outlier in the H30-based analysis was found to contain a relatively rare ciprofloxacin-182 

sensitive H30. 183 

Matching fumC and fimH alleles to predict sample strain content 184 

In CH typing, unique combinations of fumC and fimH alleles are used to determine the identities 185 

of strains in a sample. Since a strain contains one copy of fumC and fimH, the prevalences of 186 

alleles of these two genes in the sequencing data should be identical. For example, in a sample 187 

containing 30% H30 (fumC40/fimH30) and 70% ST101 (fumC41/fimH86), we expect to see 30% 188 

of fumC reads to be fumC40 and 30% of fimH reads to be fumH30. In reality, however, the 189 

prevalences will be slightly different due to PCR and sequencing errors. To establish an 190 

acceptable difference between the prevalences of same-strain fumC and fimH alleles, we looked 191 

at 11 samples containing unique CH types (i.e. without allele sharing). In these 11 samples, the 192 

predicted prevalences of fumC and fimH were highly correlated (0.99, Fig. 3). First, we 193 

calculated the absolute difference between the predicted fumC and fimH prevalence for each 194 

matched pair of alleles. Next, each absolute difference was divided by the predicted fumC or 195 

fimH prevalence to obtain a relative deviation (Fig. 4). Finally, we used the relative deviations to 196 
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derive an equation for the maximum acceptable difference between matching fumC and fimH 197 

alleles (Fig. 4). 198 

While some samples, like those discussed above, contain only unique CH types, others contain 199 

CH types with shared alleles. For example, in a sample containing 30% H30 and 70% ST131, 200 

which share fumC40, the prevalence of fumC40 is not representative of either H30 or ST131 201 

prevalence. For such samples, the minority rule was applied to resolve the strain content. Thus, 202 

under the minority rule, the percentage of H30 in the example above would be determined by 203 

fimH30, rather than fumC40, since the fimH30 prevalence is smaller. We tested this approach on 204 

both the H30 and the 18-sample analysis described above to see if this resolved outliers. In both 205 

cases, using the minority rule removed outliers and improved the correlation between predicted 206 

and experimental prevalence (Suppl. Fig. 5). Thus, we were able to assign strain content and 207 

strain prevalence in all samples, including samples with allele sharing. 208 

Predicted strain diversity of fecal and urine samples 209 

Using the equation described above, we were able to classify all samples in our study into 4 210 

categories (see Fig. 5): samples with only one CH type (uniclonal); samples with multiple unique 211 

CH types (unambiguous); samples with one dominant unique CH type and multiple minor non-212 

unique CH types (ambiguous-simple), and samples where the dominant CH type was not unique 213 

(ambiguous-complex). Fecal samples were 33% uniclonal, 23% unambiguous, 21% ambiguous-214 

simple, and 23% ambiguous-complex. Urine samples were 54% uniclonal, 8% unambiguous, 215 

25% ambiguous-simple, and 12.5% ambiguous-complex. 216 
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Overall, 107 fecal and 48 urine strains were predicted, corresponding to 68 clones in fecal 217 

samples and 33 clones in urine samples. Of these clones, 50 (73.5%) and 24 (73%) were found in 218 

Enterobase, respectively. 219 

Out of the 155 total strains predicted, 6 were fumC-null (3.9%) and 2 were fimH-null (1.3%). 220 

This is congruent with the occurrence of null alleles in our 18-sample subset, where 1 (3%) out 221 

of 35 total strains predicted was a null-allele strain. 222 

The average number of strains per sample was 2.47 ± 1.32 for fecal samples and 1.96 ± 1.40 for 223 

urine samples. Based on Enterobase’s ST-phylogroup data, we determined that B2 was the most 224 

common (14 out of 47, 30%) among non-criterion fecal strains. Other phylogroups included A 225 

(26%), B1 (19%), C (8.5%), D (11%), E (2%), and F (4%). Non-criterion strains in urine 226 

samples included strains from phylogroups B2 (8 out of 16, 50%), B1 (19%), D (19%), A and F 227 

(6% each). 228 

Novel clones 229 

17 fecal samples (40%) and 8 urine samples (33%) in our study were found to contain at least 230 

one novel CH type. This included 19 fecal and 9 urine CH types not found in Enterobase. Of 231 

these, 5 fecal and 3 urine CH types included at least one novel allele, and 14 fecal and 6 urine 232 

CH types were combinations of fumC and fimH that were not previously observed (novel CH 233 

combinations). Both CH types involving novel alleles and novel CH combinations were 234 

observed to be primarily low-frequency clones. The average predicted prevalence for novel CH 235 

combinations was 8.7% ± 3.5% SEM (range 1-64.2%), and 13 out of 20 novel CH combinations 236 

had predicted prevalences of <5%. One such combination was confirmed in our 14 characterized 237 
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sample set, consisting of fumC24 and fimH9, with a predicted prevalence of 1.6% and 238 

experimental prevalence of 1.2%. 239 

Similarly, 7 out of 8 novel allele-containing CH types had predicted prevalences of <2%. The 240 

remaining CH type had a predicted prevalence of 70.7% and was detected using single colony 241 

typing. The novel fumC allele was paired with fimH47 and was verified to be 8 SNPs away from 242 

the closest known allele. The remaining MLST gene alleles for this strain were adk46, icd260, 243 

mdh160, gyrB266, purA1, and recA221.  244 

Clones below error threshold 245 

To ascertain if we could identify alleles at prevalences below our defined error threshold of 246 

0.8%, we ran PLAP on the set of 14 multi-allele samples using an error threshold of 0.5%. In 8 247 

and 6 samples, respectively, prevalence of fumC and fimH alleles was <0.8%. None of the alleles 248 

corresponded to known fumC or fimH alleles. These apparent novel alleles clustered alongside 249 

known alleles identified in the sample (Suppl. Fig. 6, 7), leading us to conclude that these arose 250 

due to sequencing or amplification error rather than belonging to clonally different strains.  251 

Predicted strain diversity in urine and fecal samples 252 

Strain diversity in first fecal samples was comparable with diversity in second fecal samples 253 

(paired t-test, p>0.1). Distinguishing between H30-containing and non-H30 samples showed that 254 

there was no statistical difference in strain diversity between H30-containing and non-H30 fecal 255 

samples of either kind (unpaired t-test, p>0.1), and that there was no difference in diversity 256 

between first and second fecal samples in either non-H30 or H30-containing samples (Fig. 6, 257 

paired t-test, p>0.1). Both H30 and non-H30 urine samples were less diverse than corresponding 258 
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fecal samples (paired t-test, p<0.01 and 0.02, respectively). However, H30 urine samples were 259 

less diverse than non-H30 urine samples (t-test, p=0.04). 260 

It is also noteworthy that in 6 out of 23 H30-containing fecal samples, H30 was the only strain 261 

predicted, indicating that it may be fully dominant in the gut niche in these participants. 262 

Strain turnover in fecal samples 263 

There was no correlation between number of strains in the first and second fecal sample, as well 264 

as no correlation between number of strains in the urine sample and either fecal sample (Fig. 7). 265 

When comparing the strain content of first and second fecal samples, we found that 92% of non-266 

criterion strains appeared to be transient i.e. were detected in one of the fecal samples only. 267 

Transient non-criterion strains were also skewed towards lower-frequency strains (t-test, 268 

p<0.001, Fig. 8B). It is possible that these strains are present in both fecal samples but are below 269 

our limit of detection in one. However, we find that in one participant (P2, Suppl. Data) the first 270 

fecal sample contains 3 ciprofloxacin-sensitive non-criterion strains while the second fecal 271 

sample contains only ciprofloxacin-resistant H30 as verified by single colony testing. This leads 272 

us to believe that there may be significant strain turnover in our fecal samples overall. 273 

DISCUSSION 274 

 We combined conventional fumC/fimH typing with deep amplicon sequencing to assess E. coli 275 

clonal diversity in a high-throughput manner. Our method has several advantages over existing 276 

protocols. Firstly, our method has high sequencing resolution for target species. Since we only 277 

sequence E. coli fumC and fimH, we can generate ≥0.5 million reads per sample, yielding ≥5,000 278 

reads per base. In contrast, metagenomic sequencing, which is nonspecific to target species, 279 

yields only 20 reads per base per genome (assuming a 5Mb genome). Secondly, our method 280 
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assessed up to 46 samples per sequencing run. In contrast, MLST requires typing ≥100 single 281 

colonies per sample to capture the low-prevalence strains that PLAP detects. Finally, while we 282 

developed PLAP for E. coli’s CH typing, PLAP is not limited to E. coli clonotyping and may be 283 

generalized to other MLST schemes. 284 

Despite studies showing that the healthy gut E. coli population typically includes multiple 285 

clones, we show that the pandemic multidrug-resistant subclone H30 can dominate the gut in 286 

healthy women, sometimes as the only detectable clone42, 44-48. This builds upon previous 287 

research which has found multidrug-resistant bacteria in healthy people, and healthy people who 288 

appear to harbor only one gut clone44-48. Total dominance is especially concerning since 289 

antibiotic pressure was absent, indicating that H30 is potentially outcompeting other clones by 290 

alternative means. Whether these mechanisms are metabolic, or whether certain virulence factors 291 

give H30 an advantage is unclear, though previous studies have speculated that some virulence 292 

factors may be beneficial for E. coli gut survival49. Additionally, our study involved a small 293 

number of participants in which H30 was present in the gut and bladder. Therefore, it is possible 294 

that host differences play a significant role. Another novel observation was that H30 was the sole 295 

detected urinary strain more frequently than other clones, regardless of H30 gut dominance/non-296 

dominance. This may indicate that H30 might be an especially well-adapted uropathogen, 297 

potentially explaining its association with UTI. Since it is unknown how ABU converts to UTI, 298 

further study into H30 dominance in both ABU and UTI are needed. 299 

We also uncovered substantial diversity in our samples. This includes significant E. coli diversity 300 

in non-H30 urine samples from healthy women. Reports of multi-strain bacteriuria are rare, 301 

likely due to the convention of selecting one isolate per urine sample46, 47. Therefore, it is 302 

unknown how common multi-strain bacteriuria may truly be. Remarkably, we also detected low-303 
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prevalence strains in the gut, some of which were novel clones, with up to 6 clones in a single 304 

sample. Gut E. coli diversity of this magnitude is supported by studies typing >200 single 305 

colonies per sample42. Studies using smaller counts usually report fewer clones, indicating that 306 

there may be undescribed E. coli diversity when manageable numbers of colonies are used44, 45. 307 

Therefore, we believe that microbiome-like approaches to E. coli diversity are necessary to fully 308 

understand intra-species dynamics in both the gut and bladder. 309 

Our approach does have limitations. Firstly, our lowest detectable strain prevalence is 0.8% of 310 

the E. coli population. This limit may be addressed in several ways including use of a high-311 

fidelity polymerase and preferential selection of E. coli colonies. However, we also recognize 312 

that detection of rare strains may still prove difficult and that methods like ours may not fully 313 

replace current techniques. Secondly, our method relies on sub-culturing E. coli. We are aware 314 

that, theoretically, some strains could be suppressed during growth on selective media, forming 315 

no/smaller colonies and skewing prevalence results. However, we did not encounter this during 316 

our study. While amplification of fumC and fimH may be applied to urine samples without 317 

culturing, attempts at doing this directly from fecal samples were unsuccessful, possibly due to 318 

E. coli comprising <1% of the gut microbiome, making E. coli DNA too rare to effectively 319 

amplify. Therefore, we used culturing for all samples. These issues lower the reliability of our 320 

approach, but we believe that it remains an important step towards development of 321 

comprehensive clonal diversity (clonobiome) assessment tools for any species of interest. 322 

MATERIALS AND METHODS 323 

Study design and sample processing 324 
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We selected a subset of participants from a previous study carried out by Kaiser Permanente 325 

Washington and University of Washington (Seattle, WA)35. That study identified healthy gut 326 

carriers of ciprofloxacin-resistant E. coli, including E. coli H30. These E. coli were found in 327 

initial fecal samples by plating on LB-ciprofloxacin and CH typing of 1 to 8 single colonies. 328 

After the initial fecal sample was analyzed, H30 carriers as well as carriers of some other strains 329 

were asked to provide urine samples. These were received on average 152 ± 55.9 days after the 330 

initial sample (85% responded). The respondents were then asked to provide follow-up fecal 331 

samples, which were received on average 82 ± 41.1 days after the urine sample (84% 332 

responded). All fecal and urine samples were tested for ciprofloxacin-resistant E. coli as with 333 

initial samples. For this study, we chose 28 individuals who supplied all three samples. In 11 334 

participants, H30 was identified in all three samples; in 4 additional participants H30 was 335 

isolated in two samples. In 8 participants ciprofloxacin-resistant ST1193 was found in at least 336 

two samples. In 5 participants the same ciprofloxacin-susceptible clone was found in at least two 337 

samples. The sample types, strains clonal identity, and sampling times for all participants are 338 

shown in Supplemental Figure 8. Average age of participants was 66.7 ± 15.7 years. 339 

Preparation of predefined control samples 340 

For control experiments, two predefined strains were chosen - H30 (E. coli FESS614.ds6) and 341 

clonal group ST101 (E. coli FESS614.ds4). DNA from these strains was extracted and fumC and 342 

fimH was amplified by PCR using the following conditions: 3min denaturation (95°C), 35 cycles 343 

of annealing (95°C for 45sec, 57°C for 45sec, 72°C for 45sec), 5min extension (72°C), 4°C hold. 344 

The primers (10 uM) used were as follows: 5’-TCACAGGTCGCCAGCGCTTC-3’ (fumC 345 

forward), 5’-GTACGCAGCGAAAAAGATTC3’ (fumC reverse), 5’-346 

TCAGGGAACCATTCAGGCA-3’ (fimH forward), 5-ACAAAGGGCTAACGTGCAG-3’ (fimH 347 
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reverse). Amount of PCR product was measured by Qbit. To create H30-only and ST101-only 348 

samples, the corresponding fumC and fimH PCR products were pooled together at a 1:1 ratio. To 349 

create mixes, H30 and ST101 amplicons of fumC were mixed together in ST101:H30 ratios of 350 

1:1, 1:4, 1:10, 1:100, and 1:1000. The same was performed with fimH amplicons. The fumC and 351 

fimH mixes were then pooled together by ratio type to create mixes that had equal concentrations 352 

of total fumC and fimH. The DNA mixes were prepared for sequencing using Nextera XT DNA 353 

library prep kit using standard protocol. The resulting library was sequenced on the Illumina 354 

MiSeq (v3 kit). All mixes, except 1:10, reached coverage of ≥9,000X and were analyzed. 355 

Deep sequencing and allele analysis of the fecal and urine samples 356 

Each fecal and urine sample was plated on MacConkey agar to reach ~1,000 E. coli single 357 

colonies per plate. All colonies were swabbed from the agar and DNA extracted using the 358 

Qiagen Blood & Tissue Kit. From this pooled DNA fumC and fimH genes were amplified by 359 

PCR by using the same primers and conditions as described above for control samples. 360 

Amplicons were then purified and pooled by sample using the Qiagen Gel Extraction kit, then 361 

prepared for sequencing using Nextera XT DNA library prep kit using standard protocol except 362 

for usage of 52.5ul of RSB in the final magnetic bead cleanup step. The resulting library was 363 

sequenced on the Illumina MiSeq (v3 kit). Sequencing data was analyzed using a Python 364 

program of our construction, Population-Level Allele Profiler (PLAP), and has been made 365 

available for public use on GitHub: github.com/marade/PLAP. The process is described below 366 

(see also Suppl. Fig. 9). 367 

For each sample, adapter sequences were removed using Trim-Galore, and resulting trimmed 368 

reads were aligned to a list of all known fumC and fimH alleles using KMA with strict 99.99% 369 

identity matching50, 51. For each KMA-detected allele per sample, trimmed reads were again 370 
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aligned to the sequence using Minimap2 and SAMtools52, 53. Any candidate allele which had at 371 

least 1 base supported by <0.8% of reads was removed from consideration. False positives were 372 

filtered using a moving 10bp window for each allele as follows. Reads of ≥100bp with 100% 373 

identity within the window were counted. Alleles with low initial coverage, unstable coverage 374 

(high average deviation from the mean), and high similarity in coverage pattern to an allele with 375 

more stable coverage were removed from consideration. If >3 alleles were left for consideration 376 

for a gene, 10bp moving window analysis was repeated with ≥200bp reads. If for any interval in 377 

this second analysis, >60% of coverage was lost compared to the first moving window coverage, 378 

the allele was discarded. Heterogeneity at any positions that remained undescribed by surviving 379 

alleles was recorded. Relative abundance of all alleles was determined using the minimum 380 

coverage found during first moving window analysis. In samples found by PLAP to be ≥50% 381 

made up of <100bp reads (overtagmented samples), allele prevalence was calculated manually 382 

by ascertaining base(s) unique to each allele and using the coverage of these base(s) to calculate 383 

prevalence. 384 

Out of the 28 total sets of fecal and urine samples chosen for this study, at least one sample failed 385 

PCR amplification or sequencing library prep in 4 sets and therefore all samples from these sets 386 

were dropped. From the remaining 24 sets we were able to sequence fumC and fimH in all three 387 

samples. Out of those, 67 (89%) samples – 22 first fecal, 24 urine, and 21 second fecal – reached 388 

≥9,000X coverage per gene and were included in the analysis. 389 

Determining within-sample clonal group breakdown 390 

Identity of strains present in a sample was determined by combining fumC and fimH allele 391 

numbers and determining the ST type using Enterobase. In uniclonal and unambiguous samples, 392 

every allele had one match supported by the equation for maximum acceptable difference 393 
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between same-strain fumC and fimH. Therefore, these alleles formed a CH type based on which 394 

ST type was determined. 395 

For ambiguous-simple samples, the most prevalent fumC and fimH alleles formed an equation-396 

supported CH type. Any alleles that also had a single equation-supported match were assigned to 397 

form a CH type. For all other alleles, Enterobase was consulted to determine which allele 398 

combinations have been observed. If the CH type(s) produced was between alleles that had 399 

different prevalences according to the equation, the “remaining” prevalence was calculated for 400 

the allele with the greater prevalence. This allele was then paired with allele(s) for which an 401 

Enterobase-logged CH type was not available and/or any novel alleles until the “remaining” 402 

prevalence was consumed. If there were any allele(s) that remained after this step, they were 403 

paired with the major allele of the opposite gene.  404 

For ambiguous-complex samples, the most prevalent fumC and most prevalent fimH allele were 405 

assigned to the same CH type. The “remaining” prevalence was calculated for the allele with the 406 

greater prevalence and treated as an unmatched allele. From this step, we proceeded as with 407 

ambiguous-simple samples. 408 

Determining prevalence of clonal groups by culturing 409 

Prevalence of ciprofloxacin-resistant clones in each sample was determined by diluting ~1ul of 410 

sample with ≥300ul of H2O, plating 40ul of this dilution on MacConkey agar, picking >130 411 

single E. coli colonies, patching on Hardy-Chrom UTI agar to verify E. coli identity, then 412 

patching colonies on LB-ciprofloxacin. Prevalence of other clonal groups was validated by 413 

plating on MacConkey agar and subsequent patching of single colonies onto Hardy-Chrom UTI 414 
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agar to distinguish E. coli. fumC and fimH alleles of these colonies were then determined by 7-415 

SNP clonotyping and Sanger sequencing54. 416 

Statistical and phylogenetic analysis 417 

To determine the 99% confidence interval (CI) for the prevalence of ciprofloxacin-resistant 418 

strains, the number of resistant colonies was treated as number of successes and the total number 419 

of picked colonies was treated as the total. To determine the 99% CI for the prevalence of 420 

ciprofloxacin-sensitive strains, the number of colonies of that strain was treated as number of 421 

successes and the total number of picked colonies was treated as the total. Confidence intervals 422 

were calculated using Stata55. All t-tests were run using GraphPad 423 

(http://www.graphpad.com/quickcalcs/ConfInterval1.cfm).  424 

Phylogenetic trees were constructed using MEGA756. Erroneous base coverage graph was 425 

generated using seaborn57. Escherichia coli fumC alleles were downloaded from Enterobase 426 

MLST allele data. Escherichia coli fimH alleles used are publicly available58. Escherichia 427 

fergusonii and albertii fumC alleles were downloaded from NCBI. Klebsiella pneumonia and 428 

Enterobacter aerogenes alleles of fimH were downloaded from the PATRIC database 429 

(www.patricbrc.org). 430 

ACKNOWLEDGEMENTS 431 

We thank the personnel of KPWARI for assistance in collection of samples, and Dr. Sifang Chen 432 

for proofreading of the manuscript. 433 

This work was supported by the National Institutes of Health (grant numbers R01AI106007 and 434 

R42 AI116114-02 [to E. V. S.]) 435 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted August 14, 2019. ; https://doi.org/10.1101/735233doi: bioRxiv preprint 

https://doi.org/10.1101/735233


 

21 
 

E.V.S. conceived the project and designed the experiments. D.K. performed control sample 436 

sequencing and analysis. All other sequencing, validation, and analysis was performed by S.G.S. 437 

V.T. provided study data and samples. M.R. programmed the algorithm; M.R. and S.G.S. tested 438 

and calibrated it. S.G.S. and E.V.S. wrote the manuscript with input from all authors. 439 

REFERENCES 440 

1. Heintz-Buschart A, Wilmes P. 2018. Human gut microbiome: Function matters. Trends 441 

Microbiol. 26(7):563-574. 442 

2. Caputi V, Giron MC. 2018. Microbiome-gut-brain axis and Toll-like receptors in 443 

Parkinson’s Disease. Int J Mol Sci 19(6):1689. 444 

3. Perez-Pardo P, Hartog M, Garssen J, Kraneveld AD. 2017. Microbes tickling your 445 

tummy: the importance of the gut-brain axis in Parkinson’s Disease. Curr Behav 446 

Neurosci Rep 4(4):361-368. 447 

4. Sanmiguel C, Gupta A, Mayer EA. 2015. Gut Microbiome and obesity: A plausible 448 

explanation for obesity. Curr Obes Rep 4(2):250-261. 449 

5. De la Cuesta-Zuluaga J, Corrales-Agudelo V, Velásquez-Mejía EP, Carmona JA, Abad 450 

JM, Escobar JS. 2018. Gut microbiota is associated with obesity and cardiometabolic 451 

disease in a population in the midst of Westernization. Sci Rep 8:11356.  452 

6. Roszyk E, Puszczewicz M. 2017. Role of human microbiome and selected bacterial 453 

infections in the pathogenesis of rheumatoid arthritis. Reumatologia 55(5):242-250.  454 

7. Bu J, Wang Z. 2018. Cross-talk between gut microbiota and heart via the routes of 455 

metabolite and immunity. Gastroenterol Res Pract 2018:6458094. 456 

8. Dzidic M, Boix-Amorós A, Selma-Royo M, Mira A, Collado MC. 2018. Gut microbiota 457 

and mucosal immunity in the neonate. Med Sci Basel. 6(3): E56. 458 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted August 14, 2019. ; https://doi.org/10.1101/735233doi: bioRxiv preprint 

https://doi.org/10.1101/735233


 

22 
 

9. Nunez G. 2017. Linking pathogen virulence, host immunity and the microbiota at the 459 

intestinal barrier. Keio J Med 66(1):14. 460 

10. Tenaillon O, Skurnik D, Picard B, Denamur E. 2010. The population genetics of 461 

commensal Escherichia coli. Nature Reviews. 8(3):207-217. 462 

11. Gordon DM, O’Brien CL, Pavli P. 2015. Escherichia coli diversity in the lower intestinal 463 

tract of humans. Environ Microbiol Rep. 7(4):642-648. 464 

12. Costea PI, Coelho LP, Sunagwa S, Much R, Huerta-Cepas J, Forslund K, Hildebrand F, 465 

Kushugulova A, Zeller G, Bork P. 2017. Subspecies in the global human gut microbiome. 466 

Mol Sys Biol. 13(12):960. 467 

13. Metwaly A, Haller D. 2019. Strain-level diversity in the gut: the P. copri case. Cell Host 468 

Microbe. 25(3):349-350. 469 

14. Zhang C, Zhao L. 2016. Strain-level dissection of the contribution of the gut microbiome 470 

to human metabolic disease. Genome Med. 8(1):41. 471 

15. Leatham MP, Banerjee S, Autieri SM, Mercado-Lubo R, Conway T, Cohen PS. 2009. 472 

Precolonized human commensal Escherichia coli clones serve as a barrier to E. coli 473 

O157:H7 growth in the streptomycin-treated mouse intestine. Infect Immun. 77(7):2876-474 

86. 475 

16. Hecht AL, Casterline BW, Earley ZM, Goo YA, Goodlett DR, Bubeck Wardenburg J. 476 

2016. Clone competition restricts colonization of an enteric pathogen and prevents colitis. 477 

EMBO Rep. 17(9):1281-91. 478 

17. Lam LH, Monack DM. 2014. Intraspecies competition for niches in the distal gut dictate 479 

transmission during persistent Salmonella infection. PLoS Pathog. 10(12):e1004527. 480 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted August 14, 2019. ; https://doi.org/10.1101/735233doi: bioRxiv preprint 

https://doi.org/10.1101/735233


 

23 
 

18. Sassone-Corsi M, Nuccio SP, Liu H, Hernandez D, Vu CT, Takahashi AA, Edwards RA, 481 

Raffatellu M. 2016. Microcins mediate competition among Enterobacteriaceae in the 482 

inflamed gut. Nature. 540(7632):280-283. 483 

19. Moreno E, Johnson JR, Perez T, Prats G, Kuskowski MA, Andreu A. 2009. Structure and 484 

urovirulence characteristics of the fecal Escherichia coli population among healthy 485 

women. Microbes Infect. 11(2):274-280.  486 

20. Bailey JK, Pinyon JL, Anantham S, Hall RM. 2010. Commensal Escherichia coli of 487 

healthy humans: a reservoir for antibiotic-resistance determinants. J Med Microb. 488 

59:1331-1339. 489 

21. Gorrie CL, Mirceta M, Wick RR, Judd LM, Wyres KL, Thomson NR, Strugnell RA, 490 

Pratt NF, Garlick JS, Watson KM, Hunter PC, McGloughlin SA, Spelman DW, Jenney 491 

AWJ, Holt KE. 2018. Antimicrobial-resistant Klebsiella pneumoniae carriage and 492 

infection in specialized geriatric care wards linked to acquisition in the referring hospital. 493 

Clin Infect Dis. 67(2):161-170. 494 

22. Li H, Zhu J. 2017. Targeted metabolic profiling rapidly differentiates Escherichia coli 495 

and Staphylococcus aureus at species and strain level. Rapid Commun Mass Spectrom. 496 

31(19):1669-1676. 497 

23. Galardini M, Koumoutsi A, Herrera-Dominguez L, Cordero Varela JA, Telzerow A, 498 

Wagih O, Wartel M, Clermont O, Denamur E, Typas A, Beltrao P. 2017. Phenotype 499 

inference in an Escherichia coli strain panel. Elife. 6:e31035. 500 

24. Bevan ER, McNally A, Thomas CM, Piddock LJV, Hawkey PM. 2018. Acquisition and 501 

loss of CTX-M-producing and non-producing Escherichia coli in the fecal microbiome of 502 

travelers to South Asia. mBio. 9(6):e02408-18. 503 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted August 14, 2019. ; https://doi.org/10.1101/735233doi: bioRxiv preprint 

https://doi.org/10.1101/735233


 

24 
 

25. Robin F1,2, Beyrouthy R3,2, Bonacorsi S4,5, Aissa N6, Bret L7, Brieu N8, Cattoir V9, 504 

Chapuis A10, Chardon H8, Degand N11, Doucet-Populaire F12, Dubois V13, Fortineau 505 

N14, Grillon A15, Lanotte P16, Leyssene D17, Patry I18, Podglajen I19, Recule C20, 506 

Ros A21, Colomb-Cotinat M22, Ponties V22, Ploy MC23, Bonnet R3,2. 2017. Inventory 507 

of extended-spectrum-β-lactamase-producing Enterobacteriaceae in France as assessed 508 

by a multicenter study. Antimicrob Agents Chemother. 61(3): pii: e01911-16. 509 

26. Gupta M, Didwal G, Bansal S, Kaushal K, Batra N, Gautam V, Ray P. 2019. Antibiotic-510 

resistant Enterobacteriaceae in healthy gut flora: A report from north Indian semiurban 511 

community. Indian J Med Res. 149(2):276-280. 512 

27. Johnson JR, Johnston B, Clabots C, Kuskowski MA, Castanheira M. 2010. Escherichia 513 

coli sequence type ST131 as the major cause of serious multidrug-resistant E. coli 514 

infections in the United States. Clin Infect Dis. 51(3):286-294. 515 

28. Johnson JR, Tchesnokova V, Johnston B, Clabots C, Roberts PL, Billig M, Riddell K, 516 

Rogers P, Qin X, Butler-Wu S, Price LB, Aziz M, Nicolas-Chanoine MH, Debroy C, 517 

Robicsek A, Hansen G, Urban C, Platell J, Trott DJ, Zhanel G, Weissman SJ, Cookson 518 

BT, Fang FC, Limaye AP, Scholes D, Chattopadhyay S, Hooper DC, Sokurenko EV. 519 

2013. Abrupt emergence of a single dominant multidrug-resistant clone of Escherichia 520 

coli. J Infect Dis. 207(6):919-928.  521 

29. Burgess MJ, Johnson JR, Porter SB, Johnston B, Clabots C, Lahr BD, Uhl JR, Banerjee 522 

R. 2015. Long-term care facilities are reservoirs for antimicrobial-resistant sequence type 523 

131 Escherichia coli. Open Forum Infect Dis. 2(1):ofv011. 524 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted August 14, 2019. ; https://doi.org/10.1101/735233doi: bioRxiv preprint 

https://doi.org/10.1101/735233


 

25 
 

30. Johnson JR, Porter S, Thuras P, Castanheira M. 2017. The pandemic H30 subclone of 525 

sequence type 131 (ST131) as the leading cause of multidrug-resistant Escherichia coli 526 

infections in the United States (2011–2012). Open Forum Infect Dis. 4(2):ofx089. 527 

31. Tchesnokova V, Rechkina E, Chan D, Haile HG, Larson L, Schroeder DW, Solyanik T, 528 

Shibuya S, Hansen KE, Ralston JD, Riddell K, Scholes D, Sokurenko EV. 2019. 529 

Pandemic uropathogenic fluoroquinolone-resistant Escherichia coli have enhanced 530 

ability to persist in the gut and cause bacteriuria in healthy women. Clin Inf Dis. 531 

(accepted) 532 

32. Ong SH, Kukkillaya VU, Wilm A, Lay C, Ho EX, Low L, Hibberd ML, Nagarajan N. 533 

2013. Species Identification and Profiling of Complex Microbial Communities Using 534 

Shotgun Illumina Sequencing of 16S rRNA Amplicon Sequences. Parkinson J, ed. PLoS 535 

One 8(4):e60811.  536 

33. Chen W, Zhang CK, Cheng Y, Zhang S, Zhao H. 2013. A Comparison of Methods for 537 

Clustering 16S rRNA Sequences into OTUs. Casiraghi M, ed. PLoS One. 8(8):e70837. 538 

34. Zolfo M, Tett A, Jousson O, Donati C, Segata N. 2017. MetaMLST: multi-locus clone-539 

level bacterial typing from metagenomic samples. Nucleic Acids Res. 45(2):e7. 540 

35. Scholz M, Ward DV, Pasolli E, Tolio T, Zolfo M, Asincar F, Truong DT, Tett A, 541 

Morrow AL, Segata N. 2016. Clone-level microbial epidemiology and population 542 

genomics from shotgun metagenomics. Nature Methods. 13:435-438. 543 

36. Nayfach S, Rodriguez-Mueller B, Garud N, Pollard KS. 2016. An integrated 544 

metagenomics pipeline for strain profiling reveals novel patterns of bacterial transmission 545 

and biogeography. Genome Res. 26(11):1612-1625. 546 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted August 14, 2019. ; https://doi.org/10.1101/735233doi: bioRxiv preprint 

https://doi.org/10.1101/735233


 

26 
 

37. Fischer M, Strauch B, Renard BY. 2017. Abundance estimation and differential testing 547 

on strain level in metagenomics data. Bioinformatics. 33(14):i124-i132. 548 

38. Weissman SJ, Johnson JR, Tchesnokova V, Billig M, Dykhuizen D, Riddell K, Rogers P, 549 

Qin X, Butler-Wu S, Cookson BT, Fang FC, Scholes D, Chattopadhyay S, Sokurenko 550 

EV. 2012. High-resolution two-locus clonal typing of extraintestinal pathogenic 551 

Escherichia coli. Appl Environ Microbiol. 78(5):1353-1360. 552 

39. National Center for Emerging and Zoonotic Infectious Diseases, Division of Healthcare 553 

Quality Promotion. “Biggest Threats and Data”. Centers for Disease Control and 554 

Prevention. www.cdc.gov/drugresistance/biggest_threats.html 555 

40. Eckburg PB, Bik EM, Bernstein CN, Purdom E, Dethlefsen L, Sargent M, Gill SR, 556 

Nelson KE, Relman DA. 2005. Diversity of the human intestinal microbial flora. Science. 557 

308(5728):1635-8. 558 

41. Anderson MA, Whitlock JE, Harwood VJ. 2006. Diversity and distribution of 559 

Escherichia coli genotypes and antibiotic resistance phenotypes in feces of humans, 560 

cattle, and horses. App Environ Microbiol. 72(11):6914-22. 561 

42. Richter TKS, Hazen TH, Lam D, Coles CL, Seidman JC, You Y, Silbergeld EK, Fraser 562 

CM, Rasko DA. 2018. Temporal variability of Escherichia coli diversity in the 563 

gastrointestinal tracts of Tanzanian children with and without exposure to antibiotics. 564 

mSphere. 3(6):e00558-18. 565 

43. Diard M, Garry L, Selva M, Mosser T, Denamur E, Matic I. 2010. Pathogenicity-566 

associated islands in extraintestinal pathogenic Escherichia coli are fitness elements 567 

involved in intestinal colonization. J Bacteriol. 192(19):4885-93. 568 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted August 14, 2019. ; https://doi.org/10.1101/735233doi: bioRxiv preprint 

https://doi.org/10.1101/735233


 

27 
 

44. Le Gall T, Clermont O, Gouriou S, Picard B, Nassif X, Denamur E, Tenaillon O. 2007. 569 

Extraintestinal virulence is a coincidental by-product of commensalism in B2 570 

phylogenetic group Escherichia coli strains. Mol Biol Evol. 24(11):2373-84. 571 

45. Nielsen KL, Stegger M, Godfrey PA, Feldgarden M, Andersen PS, Frimodt-Moller N. 572 

2016. Adaptation of Escherichia coli traversing from the faecal environment to the 573 

urinary tract. Int J Med Microbiol. 306(8):595-603. 574 

46. Moreno E, Andreu A, Perez T, Sabate M, Johnsom JR, Prats G. 2005. Relationship 575 

between Escherichia coli strains causing urinary tract infection in women and the 576 

dominant faecal flora of the same hosts. Epidemiol Infect. 134:1015-1023. 577 

47. Smati M, Clermont O, Le Gal F, Schichmanoff O, Jauréguy F, Eddi A, Denamur E, 578 

Picard B. 2013. Real-time PCR for quantitative analysis of human commensal 579 

Escherichia coli populations reveals a high frequency of subdominant phylogroups. Appl 580 

Environ Microbiol. 79(16):5005-12. 581 

48. Krueger F. 2016. Trim Galore. https://github.com/FelixKrueger/TrimGalore. [Online; 582 

accessed 2018-11-28] 583 

49. Philip TLC, Clausen F, Aarestrup M, Lund O. 2018. Rapid and precise alignment of raw 584 

reads against redundant databases with KMA", BMC Bioinformatics. 19:307. 585 

50. Li H. 2018. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics. 586 

34:3094-3100.  587 

51. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, 588 

Durbin R, 1000 Genome Project Data Processing Subgroup. 2009. The Sequence 589 

alignment/map (SAM) format and SAMtools, Bioinformatics. 25(16) 2078-9. 590 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted August 14, 2019. ; https://doi.org/10.1101/735233doi: bioRxiv preprint 

https://doi.org/10.1101/735233


 

28 
 

52. Tchesnokova V, Avagyan H, Billig M, Chattopadhyay S, Aprikian P, Chan D, Pseunova 591 

J, Rechkina E, Riddell K, Scholes D, Fang FC, Johnson JR, Sokurenko EV. 2016. A 592 

Novel 7-Single Nucleotide Polymorphism-Based Clonotyping Test Allows Rapid 593 

Prediction of Antimicrobial Susceptibility of Extraintestinal Escherichia coli Directly 594 

From Urine Specimens. Open Forum Infect Dis 3(1):ofw002. 595 

53. StataCorp. 2019. Stata Statistical Software: Release 16. College Station, TX: StataCorp 596 

LLC. 597 

54. Kumar S, Stecher G, Tamura K. 2016. MEGA7: Molecular Evolutionary Genetics 598 

Analysis version 7.0. Mol Biol Evol. 33(7):1870-1874. 599 

55. Waskom M, Botvinnik O, O’Kane D, Hobson P, Lukauskas S, Gemperline DC, 600 

Augspurger T, Halchenko Y, Cole JB, Warmenhoven J, de Ruiter J, Pye C, Hoyer S, 601 

Vanderplas J, Villalba S, Kunter G, Quintero E, Bachant P, Martin M, Meyer K, Miles A, 602 

Ram Y, Yarkoni T, Williams ML, Evans C, Fitzgerald C, Fonnesback C, Lee A, Qalieh 603 

A. 2017. Seaborn: statistical data visualization. http://seaborn.pydata.org. [Online; 604 

accessed 2019-02-05]. 605 

56. Roer L, Tchesnokova V, Allesoe R, Muradova M, Chattopadhyay S, Ahrenfeldt J, 606 

Thomsen MCF, Lund O, Hansen F, Hammerum AM, Sokurenko E, Hasman H. 2017. 607 

Development of a Web Tool for Escherichia coli Subtyping Based on fimH Alleles. J 608 

Clin Microbiol. 55:2538–2543. 609 

FIGURE LEGENDS 610 

Figure 1. Congruency of fumC and fimH allele counts in fecal and urine samples. Size of 611 

bubbles corresponds to number of samples with designated fumC/fimH allele counts (i.e. 1 612 
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sample with one fumC allele and three fimH alleles). Linear fit with Pearson square correlation 613 

index shown. 614 

Figure 2. Validation of predicted H30 allele prevalence. PLAP-predicted prevalence of H30 615 

alleles vs actual H30 load in H30-containing fecal samples. Prevalence of predicted fumC40 (A) 616 

and predicted fimH30 (B). Predicted prevalence of fumC40 and fimH30 is expressed as 617 

percentage of all E. coli in each sample. Experimentally confirmed H30 load is expressed as 618 

percent of H30 (ciprofloxacin-resistant) single colonies to all plated E. coli single colonies in 619 

percent. At least 130 colonies were tested per sample. Outliers, marked in open circles, were 620 

outside the 99% confidence interval of the number of colonies tested. 621 

Figure 3. Validation of predicted fumC/fimH allele prevalence. A. PLAP-predicted vs 622 

experimental within-sample fumC/fimH allele prevalence in 18 samples. Experimental allele 623 

prevalence was determined by CH typing of at least 40 single bacterial colonies per sample. 624 

Outliers (open circles) were outside the 99% confidence interval of the number of colonies 625 

sampled. B. Predicted prevalence of fumC vs fimH alleles from the same CH type in 11 samples 626 

where no sharing of alleles between strains was present. 627 

Figure 4. Difference in predicted prevalence between fumC and fimH alleles from the same E. 628 

coli strain. Deviation in absolute numbers is shown on the top. Deviation as a percentage of the 629 

prevalence of the allele is shown on the bottom. Open circles indicate fimH data points. Shaded 630 

circles indicate fumC data points. Trend lines and equations were used to determine intervals for 631 

matching (i.e. belonging to the same CH type) fumC and fimH alleles. 632 
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Figure 5. Representative examples of each sample category defined by within-sample 633 

breakdown of prevalence for fumC and fimH alleles. Number of fecal and urine samples 634 

belonging in each category is listed below. 635 

Figure 6. Diversity of E. coli in individual fecal/urine samples. H30 content was determined 636 

by PLAP and/or culturing. 637 

Figure 7. Counts of E. coli strains in fecal and urine samples. Number of strains detected by 638 

PLAP in (A) first fecal vs urine, (B) second fecal vs urine, and (C) first fecal vs second fecal 639 

samples. Each bubble indicates participants with the corresponding number of E. coli strains in 640 

the designated sample. The bubble size indicates number of participants with the determined 641 

number of strains. Linear fit with Pearson square correlation index shown.  642 

Figure 8. Persistence of E. coli strains in fecal samples. (A) Prevalence of criterion fecal 643 

strains in first vs second fecal samples. White data points indicate H30 strains while shaded data 644 

points indicate non-H30 strains. Circled cluster represents 4 strains present at 100% prevalence 645 

in both samples. Dotted lines indicate the mean prevalence for strains in first and second fecal 646 

samples. Distribution of prevalences in both first and second fecal samples is not significantly 647 

different from random (t-test, p>0.05). (B) Prevalence of non-criterion fecal strains in first vs 648 

second fecal samples. Dotted lines indicate the mean prevalence for transient strains in first and 649 

second fecal samples. Transient strains are defined as strains that are present in only one of the 650 

two fecal samples from the same participant. Distribution of prevalences in both first and second 651 

fecal samples is significantly skewed towards lower prevalences (t-test, p<0.01). 652 

Supplemental Figure 1. Coverage of erroneous bases in H30-only, ST101-only, and mix sample 653 

sequencing. Coverage is expressed in percentage of total reads aligned to each gene. 654 
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Supplemental Figure 2. Correlation between input and PLAP-derived (deep seq) prevalences of 655 

fumC and fimH alleles of H30 and ST101 in 1:1, 1:4, and 1:100 mixes. 656 

Supplemental Figure 3. Phylogenetic relationships between predicted novel fumC alleles and 657 

known E. coli fumC alleles. Escherichia fergusonii and albertii fumC alleles also presented for 658 

outgroup reference. Alleles not labelled with a species are known E. coli alleles or putative novel 659 

alleles. Alleles found in the sample as the novel allele are highlighted in the same color as the 660 

novel allele to show distance between predicted novel alleles and other fumC alleles present in 661 

the sample. Alleles present in multiple different samples are marked with the appropriate colors 662 

next to the allele name. 663 

Supplemental Figure 4. Phylogenetic relationships between predicted novel fimH alleles and 664 

known E. coli fimH alleles. Klebsiella pneumoniae and Enterobacter aerogenes fimH alleles also 665 

presented for outgroup reference. Alleles not labelled with a species are known E. coli alleles or 666 

putative novel alleles. Alleles found in the sample as the novel allele are highlighted in the same 667 

color as the novel allele to show distance between predicted novel alleles and other fimH alleles 668 

present in the sample. Alleles present in multiple different samples are marked with the 669 

appropriate colors next to the allele name.  670 

Supplemental Figure 5. A. Comparison of actual H30 load in H30-containing fecal samples to 671 

PLAP-predicted fumC-40/fimH-30 prevalences with minority rule correction (i.e. the smaller 672 

prevalence of the two was used). Prevalence of fumC-40/fimH-30 is expressed as percentage of 673 

all E. coli in each sample. H30 load is expressed as ratio of H30 (ciprofloxacin-resistant) single 674 

colonies to all plated E. coli single colonies in percent. B. PLAP-predicted allele prevalence 675 

(with minority rule correction) compared to experimental allele prevalence as determined by 676 

surveying at least 40 single colonies per sample. 677 
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Supplemental Figure 6. Putative rare novel fumC alleles identified by lowering the error 678 

threshold from 0.8% to 0.5%, marked in open shapes. Known alleles from the same sample as 679 

the rare novel allele are marked in filled-in shapes of the same type and color. FumC-40 was 680 

present in 3 different samples and therefore is marked by 3 different shapes. 681 

Supplemental Figure 7. Putative rare novel fimH alleles identified by lowering the error 682 

threshold from 0.8% to 0.5%, marked in open shapes. Known alleles from the same sample as 683 

the rare novel allele are marked in filled-in shapes of the same type and color. FimH-30 was 684 

present in 3 different samples and therefore is marked by 3 different shapes. 685 

Supplemental Figure 8. Sampling of volunteer sample sets. Length of segments is proportional 686 

to number of days between samples. 687 

Supplemental Figure 9. PLAP algorithm workflow. Algorithms previously developed by 688 

other groups include Trim-Galore, KMA, Minimap2. Not pictured but used during windowed 689 

coverage checks is SAMtools. 690 

 691 
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