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Abstract 

Cellular DNA barcoding has become a popular approach to study heterogeneity of cell 

populations and to identify lineages with differential response to cellular stimuli. 

However, there is a lack of reliable methods for statistical inference of differentially 

responding lineages. Here, we used mixtures of DNA-barcoded cell pools to generate a 

realistic benchmark read count dataset for modelling a range of outcomes of lineage-

tracing experiments. By accounting for the statistical properties intrinsic to the DNA 

barcode read count data, we implemented an improved algorithm that provides a 

significantly higher accuracy at detecting differentially responding lineages, compared 

to current RNA-seq data analysis algorithms. Building on the reliable statistical 

methodology, we illustrate how multidimensional phenotypic profiling (or high-

throughput ‘lineage phenomics’) enables one to deconvolute phenotypically distinct cell 

subpopulations within a cancer cell line. The mixture control dataset and our analysis 

results provide a systematic foundation for benchmarking and improving algorithms for 

lineage-tracing experiments.  

Introduction 

Cellular DNA barcoding was originally developed to trace clonal growth dynamics in vivo 

or in vitro1,2,3,4,5. More recently, however, cellular DNA barcoding has been applied as an 

effective means to detect clone-specific differences in the phenotypes other than growth, 

including drug response6–12, postsurgical recurrence13, reprogramming capacity14,15, 

phenotypic plasticity11,16, and metastatic potential6,17. Generally, cellular DNA barcoding 

can be widely applied to quantify clone-specific differences in virtually any phenotype 

for which a phenotype-based cell selection method exists. Moreover, emerging 

methodologies seek to integrate lineage-tracing with single-cell technologies, such as 

scRNA-seq15,18–21, or even isolate lineages carrying a barcode of interest for in-depth 

cellular profiling22–24. These developments are expected to provide high-resolution 

insights into the biology of heterogeneous cellular systems. However, to our knowledge, 
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there has been no systematic efforts to benchmark the accuracy of clonal phenotype 

quantification via DNA barcoding.  

In a typical clone tracing experiment (Fig. 1A), cells are infected with a short semi-

random DNA sequence - a “barcode” - after which the cells are expanded to achieve a 

sufficient representation of individual clones. The barcoded cell population is then 

divided into subsamples, typically “control” and “treatment” pools, where the control 

pool determines a background barcode representation, whereas the treatment pool(s) 

are subjected to a phenotype-based selection (e.g.  drug treatment, immunophenotyping, 

or xenografting). Finally, the barcode abundances are estimated within each pool with 

next-generation sequencing (NGS). In the quantification phase, clone sizes are assumed 

to be proportional to the barcode abundances, and accordingly, differentially 

represented barcodes (DRBs) between the treatment pool(s) and control population 

indicate clone-specific differences in the particular phenotype.  

The detection of DRBs can statistically be considered as identification of differentially 

represented sequencing tags from high-throughput count data, and RNA-seq data 

analysis algorithms have been applied to this task7. However, we hypothesized that 

barcode count data from lineage-tracing experiments may seriously violate the basic 

assumptions of the RNA-seq analysis algorithms (i.e., that tagwise variance is 

homogeneous and the read counts follow a negative binomial distribution). We 

reasoned that the tagwise variance and the underlying distribution of the barcode read 

counts depends on the sampling size (i.e., the number of sampled cells from the 

barcoded population). Sampling is an indispensable step in most lineage-tracing 

experiments. For instance, selection pressure introduces a sampling bottleneck, which 

reduces the number of cells in the sample proportionally to the degree of the pressure. 

Such sample size reduction can be extremely high in some applications (e.g., 

xenografting, high doses of a drug, or cell sorting for rare subpopulations). Therefore, 

differences in the selection pressure may result in large a variance differences between 

the samples, leading to biased performance of DRB detection with the RNA-seq analysis 

algorithms, unless corrected for.  

Here, we performed multiple independent clone-tracing experiments on cancer cell lines 

to generate barcoded cell pools with non-overlapping sets of barcodes. We used these 

cell pools to generate benchmarking barcode read count datasets for modelling of 

various outcomes of lineage tracing experiments. By considering the statistical 

characteristics of the benchmark data and those observed in published studies, we 

compared the commonly-used RNA-seq analysis algorithms, DESeq25 , DESeq226 , and 

edgeR27,28. Based on the benchmarking results, we developed DEBRA (DESeq-based 

Barcode Representation Analysis) algorithm for more reliable clone-tracing through 

improved DRB detection accuracy and a proper control for false discoveries in a wide 

range of experimental conditions. Finally, we demonstrate how multidimensional 

phenotypic profiling can be implemented on barcoded cancer cells to identify 

phenotypically distinct cell subpopulations. These analysis results provide both 
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experimental and statistical insights into high-throughput lineage phenomics and 

phenotype-based subpopulation inference as an extension of cellular DNA barcoding 

applications. 

Results 

A gold-standard benchmark dataset for modelling response heterogeneity in 

lineage tracing experiments  

To systematically study the effect of sampling on DNA barcode count data, and the 

applicability of the RNA-seq data analysis algorithms to the identification of  

differentially responding lineages, we performed high-complexity cellular DNA 

barcoding experiments on two cancer cell lines - OVCAR5 and Mia-PaCa-2. The cancer 

cells were infected with lentiviral DNA barcoding library, carrying ~5 million unique 

sequences at very low multiplicity of infection (<0.01 MOI) to label about 5x104 Mia-

PaCa-II cells and 104 OVCAR5 cells (see Methods). Each cell line was independently 

transduced in two replicas, selected with antibiotic and expanded to produce two cell 

pools with different sets of DNA barcodes (Pool#1 and Pool#2, see Fig. 1). For each cell 

line, the barcoded cell pools were mixed in a 50/50 ratio and 18 subsamples of different 

sizes were produced (Fig. 1B, Supplementary Table 1). This experimental setup 

modelled a situation in which different degrees of selection pressure (e.g. different doses 

of a drug) are applied to a sample with no lineage-specific differences in the response to 

the condition (e.g. treatment). We called these samples null subsamples because no 

barcode is expected to be differentially represented and, therefore, an accurate DRB 

detection algorithm is supposed to accept the null hypothesis for all the barcodes. Such 

null subsamples enabled us to study the effect of sampling size on the statistical 

characteristics of barcode count data, and to estimate the false discovery rate of DRB 

detection algorithms. 

Furthermore, we generated 24 perturbed subsamples by changing the representation of 

a subset of barcodes in the Pool#1/Pool#2 mixture by adding extra number of cells from 

the barcoded cell Pool #1 (Fig. 1B, Supplementary Table 1). Perturbed subsamples model 

the selection experiments on a cell population with various degrees of lineage-specific 

responses to the selection pressure. By sequencing Pool#1 and Pool#2, we determined 

the ground-truth for differential representation of the barcodes in the perturbed 

subsamples, which allowed us to assess the accuracy of the DRB detection algorithms. 
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Fig. 1 | An overview of the experimental setup for the benchmark dataset generation. a, A schematic 

presentation of a typical lineage tracing experiment (see text for description). b, To generate the 

benchmark barcode count datasets, we performed two independent high-complexity DNA-barcoding 

experiments on Mia-PaCa-II and OVCAR5 cell lines (see Methods for details). In each experiment, cells 

were collected after selection and expansion step (Fig. 1A) to produce two cell pools (Pool#1 and Pool#2). 

Cells in each pool were counted and mixed in a 50/50 ratio. The mixture was then subsampled in various 

extents in two replicas to produce so-called null subsamples with different numbers of cells (20x103, 

40x103, 80x103, 160x103, 330x103, 660x103) but with the same expected representation of each barcode 

(i.e., modelling null hypothesis). Perturbed subsamples were generated by taking either 20, 40, 80 or 160 

thousand cells from the Pool#1/Pool#2 mixture, and adding an indicated percentages of cells from the 

Pool#1 (e.g. for sample with 160x103 cells and perturbation degree of 35%, we added 

160x103x0.35=56x103 cells from the Pool#1). 

Sampling bottleneck affects statistical properties of the DNA-barcode count data 

and DRB detection accuracy 

To investigate the statistical characteristics of the benchmark barcode count data, we 

first analyzed the mean-variance relationships for each pair of null subsamples. We  

found a marked increase in the variance as the size of the subsample decreases in both 

OVCAR5 and Mia-PaCa-2 cells (Fig. 2A, B; Supplementary Fig. 1A, B). We observed a 

similar dependency in the  data from a pancreatic cancer patient-derived xenograft 

(PDX) model published by Seth et al.7 (Fig. 2A, B), where the variance of the drug-treated 

samples is much higher as compared to that of the non-treated controls. The observed 

difference is likely due to the decrease in the total number of cells (sample size) in 

response to the drug treatment. We next tested how well the barcode count data follows 

a negative binomial (NB) distribution using the goodness-of-fit estimation for our 

OVCAR5 and Mia-PaCa-2 null subsamples and the published pancreatic PDX samples7. 

Notably, the NB model approximated poorly the barcode count data at low count region 

both in the small-sized OVCAR5 null subsamples and in the PDX drug-treated samples 

(Fig. 2C; Supplementary Fig. 1C). These properties of the barcode count data violate the 

basic assumptions made in the RNA-seq data analysis algorithms, which may lead to 
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their sub-optimal performance when applied to DRB detection in lineage tracing 

experiments. 

 

Fig. 2 | Sampling size affects the statistical properties and accuracy of DRB detection. a, Mean-

variance plots for the benchmark OVCAR5 null subsamples and pancreatic cancer patient-derived 

xenograft (PDX) samples7. Local variance was calculated by averaging a tagwise variance over the mean 

counts using a 20 read-count window. b, Scatterplots of median-normalized read counts of OVCAR5 null 

subsamples and pancreatic PDX samples7. c, Local goodness-of-fit testing for negative binomial 

distribution where the distribution parameters were estimated using maximum likelihood estimator 

(MLE). Two-sample Cramer-von-Mises test was used to compare the observed and simulated negative 

binomial random variables. Statistical significance was determined using Monte-Carlo-bootstrap method, 

where a small empirical p-value indicates strong deviation from the negative binomial distribution. d, The 

proportion of differentially represented barcodes (DRBs) identified in the OVCAR5 null subsamples with 

various versions of RNA-seq analysis algorithms. Two replicas of the null subsamples of indicated sizes (x-

axis) were tested for DRBs against a control group of 4 null subsamples (two Null-660 samples and two 

Null-330 samples). The bars represent the average proportion of DRBs identified with the algorithms, 

calculated over 3-fold bootstrap runs (mean of the 10 resamples with replacement) under the indicted 

false discovery rates (FDRs). The version with unadjusted p-values is shown in Supplementary Fig. 1D for 

comparison. LRT, likelihood ratio test; Wald, Wald test; QLF, quasi-likelihood F-test; and exact, 
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implementation of exact test proposed by Robinson and Smyth29, as implemented in the original 

algorithms.  

To test the performance of the RNA-seq analysis algorithms for the identification of 

DRBs, we applied the widely-used algorithms - DESeq, DESeq2 and edgeR - on the 

OVCAR5 null subsamples. An accurate DRB detection method is expected to accept the 

null hypothesis for all the barcodes (i.e., no barcode should be identified as differentially 

represented), since the representation of the barcodes are equal across the null 

subsamples. However, all the tested versions of the algorithms identified a significant 

number of DRBs between the null subsamples of different sizes, with percentages of 

DRBs reaching 50% at smaller sample sizes and higher FDR levels (Fig. 2D). We note 

that all these detections are false positives, and all the algorithms had much higher type 

I error rates than those expected based on their empirical p-values (Supplementary Fig. 

1D). DESeq performed better than the other algorithms, yet it identified more than 15% 

false positives at sample size of 20x103 cells at a nominal FDR level of 0.25. Moreover, 

the performance of DESeq decreased when implemented in other designs 

(Supplementary Fig. 2A). With all the tested algorithms, the proportion of falsely-

detected DRBs increased when null-subsamples with larger differences in size and, hence 

in variance, are compared. These analysis results show that the decrease in sample size 

due to selection pressure or any other manipulation leading to cell loss may severely 

compromise the accuracy of DRB detection with the standard RNA-seq analysis 

algorithms. 

Modified versions of DESeq and DESeq2 algorithms improve the accuracy of DRB 

detection  

We reasoned that the high observed rates of false discoveries is primarily due to the way 

the RNA-seq analysis algorithms estimate the tagwise dispersions by sharing 

information across sample groups with unequal variances (e.g. by fitting a negative 

binomial generalized linear model). To address this issue, we modified the DESeq2 and 

DESeq algorithms so that the tagwise dispersions are estimated using the replicas of the 

treatment group only (see Methods). In both of the modified algorithms, we tested two 

options for tagwise dispersion estimation - “trended” and “shrunken” (see Methods). 

Due to the observed deviance from the NB model at low-count regions that renders 

statistical tests based on the NB model inapplicable (Fig. 2C; Supplementary Fig. 1C), we 

implemented a heuristic algorithm that uses the observed count data to estimate a 

group-specific read count value (so-called β threshold, see Methods), above which the 

read counts follow the NB model. The estimated β threshold was used as a lower bound 

for the independent filtering step26,30 (see Methods). Such an approach effectively 

eliminates possible false discoveries originating from the read counts that do not follow 

NB model, while taking advantage of the improved detection power provided by the 

independent filtering algorithm26,30. We implemented the modified DESeq and DESeq2 

algorithms into a method dubbed DEBRA (DESeq-based Barcode Representation 

Analysis), which is available through the CRAN portal (in submission, the script and a 
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workflow example are available through Github 

https://github.com/YevhenAkimov/DEBRA). 

To benchmark the modified algorithms, we first applied DEBRA to the OVCAR5 null 

subsamples. The modified methods correctly accepted the null hypothesis for virtually 

all the barcodes when the null subsamples were tested against each other (Fig. 3A), 

hence demonstrating a greatly improved control for false discoveries compared to the 

original algorithms. When the trended dispersion estimates were used, the proportion 

of identified DRBs were within the range of 0 - 1.5x10-3, while the shrunken estimates 

led to somewhat increased false positive DRB rate of up to 4x10-3.  

To test the accuracy of the modified algorithms at detecting DRBs, we used the perturbed 

subsamples to model experimental outcomes with varying proportions of enriched and 

depleted lineages. The ground-truth for the differential barcode representation in the 

perturbed subsamples was determined by assigning each barcode to the enriched or 

depleted group according to its presence either in Pool#1 or Pool#2, as defined by 

sequencing of the cell pools. The ground-truth information was used to generate 

experimental results (read count tables), with varying enriched-to-depleted barcode 

ratios (0.05, 0.15 and 0.5; 10 replicas for each size and perturbation degree; see 

Supplementary Fig. 3 for details). We tested each modelled experimental outcome for 

DRBs using the null subsamples as a control. The original algorithms showed again 

relatively high rates of false positives in the low-sized samples with enriched-to-

depleted barcodes ratios of 0.05 and 0.15 (Fig. 3b). Notably, the rates of false positives 

were higher than expected by the nominal FDR levels (Fig 3b, white circles), except for 

the samples with enriched-to-depleted ratio of 0.5, where the percentage of false 

positives dropped below the nominal FDR threshold with the original algorithms 

(Supplementary Fig. 4). However, in the low-sized samples, the rate of false positives 

detected by the original algorithms became very close to the results obtained when p-

values were randomly permuted over the barcodes (Supplementary Fig. 4). This  

suggests that the empirical significance testing of the original algorithms cannot 

properly control for the false positives when samples with high difference in  variance 

are being compared. In contrast, the false positive rates of the modified algorithms with 

trended dispersion estimates never exceeded the nominal FDR threshold, 

demonstrating an improved control for false discoveries when detecting DRBs in all the 

tested conditions (Fig. 3B; Supplementary Fig. 4).  

To systematically test their accuracy for DRB scoring, we further compared the 

performance of the algorithms using partial area under precision-recall curve (pAUC) as 

a summary performance metric (see Methods). In this analysis, the barcodes were 

ranked  by the unadjusted p-values from the algorithms, with low p-values indicating 

high statistical confidence that the barcode was either enriched or depleted. We found 

that the modified algorithms with trended dispersion estimates provided better barcode 

scoring in virtually all the tested scenarios, further supporting its improved 

performance (Fig. 3C). Among all the tested versions, the modified DESeq with trended 
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dispersion estimates showed the most robust scoring across all the tested conditions 

(Supplementary Figs. 5 and 6). When applied to the pancreatic PDX data7, the modified 

algorithms with trended dispersion estimates identified again substantially less number 

of DRBs  under the same FDR threshold than the original algorithms (Fig. 3D). 

Consistently with results from the benchmarking dataset,  the difference in the number 

of detected DRBs between the original and modified methods was larger for the higher-

variance sample (AZD6244; Fig. 3E) 
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Fig. 3 | Comparison of the algorithms’ performance. Circles left to the algorithms’ names indicate the 

modified algorithms. a, The percentage of DRBs identified by the modified algorithms in the OVCAR5 null 

subsamples using the same design as in Fig. 2D. b, The performance of the original and modified 

algorithms for detection enriched barcodes in the perturbed subsamples. Two replicas of the sample with 

perturbation degree of 35%, indicated size (top) and enriched-to-depleted ratio (right) were tested 

against four null subsamples (two Null-660 samples and two Null-330 samples). The bars represent the 
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percentage of the barcodes detected as enriched DRBs (fold change > 0; FDR < 0.25) by the indicated 

algorithm, with correctly detected barcodes marked in blue and incorrectly detected barcodes in red (see 

Supplementary Fig. 4 for other perturbation degrees and enriched-to-depleted ratios). White circles mark 

the percentage of barcodes corresponding to the nominal FDR level. c, The standardized partial area 

under the precision-recall curve (pAUC) calculated within intervals of [0,1] and [0,0.25] for precision and 

recall metrics, respectively. The panel shows the pAUC for perturbed subsamples of indicted size and 

perturbation degree with enriched-to-depleted barcodes ratio of 0.5 (see Supplementary Fig.s 5 and 6 for 

pAUCs and precision-recall curves for other sample sizes, perturbation degrees and enriched-to-depleted 

barcodes ratios). For calculating the precision and recall metrics, we ranked the barcodes with unadjusted 

p-values as classification scores, where the positive class was defined as correctly detected barcodes 

(correctly assigned to either enriched or depleted group; see Methods for details). d, The proportion of 

significant DRBs with FDR < 0.1 in the Seth et al. pancreatic PDX dataset7, as identified with the modified 

and original algorithms. e, Log fold change vs log mean plots  for the AZD6244 drug-treated samples 

tested against untreated control7 with the original DESeq and modified (trended) DESeq algorithms. Red 

dots mark barcodes with FDR < 0.1. 

Multidimensional phenotypic profiling of barcoded cells identify distinct cancer 

cell subpopulations 

To further widen the applicability of the lineage tracing technology, we introduce a 

novel concept of DNA barcoding-based high-throughput lineage phenomics. In this 

approach, multiple phenotypes are measured for each lineage in a population to produce 

a multidimensional phenotypic profile for single-lineage analysis. To illustrate this 

approach, we quantified multiple lineage-specific phenotypes for the barcoded OVCAR5 

cell line (Fig. 4A, Supplementary Fig. 7) by applying  a number of independent 

phenotypic assays that introduce differing selection pressure to barcoded OVCAR5 cells, 

and then analyzed the lineage-specific responses using DEBRA. We first validated the 

approach with measurements of lineage proliferation rate assessed by two independent 

readouts, lineage-specific KI67 protein expression31 and the number of lineage 

doublings. As expected, there was a positive correlation between lineage growth rates 

and lineage KI67 staining (Fig. 4B, Supplementary Fig. 8A), suggesting the feasibility of 

multidimensional lineage phenotyping via cellular DNA barcoding.  

Similarly, we found that the proliferation rate of the OVCAR5 lineages correlated 

positively with their efflux capacity and the ability of the lineages to attach to the 

substrate in FBS-free conditions (Fig. 4C). We tested if these phenotypes  show the same 

association on the cell subpopulation level.  Since the efflux and attachment assays were 

non-destructive to cells, we isolated populations of EffluxHIGH , EffluxLOW and 

AttachmentHIGH cells, and measured their growth rates. Consistently with the observed 

correlation on the single-lineage level, the isolated EffluxHIGH and AttachmentHIGH 

subpopulations showed higher proliferation rates when compared to EffluxLOW and bulk 

OVACR5 cells, respectively (Fig. 4D). These results suggest that a correlation between 

phenotypes identified at the level of individual lineages predicts phenotype-phenotype 

relationships at the level of cell subpopulations. 
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Fig. 4 | Validation of single-lineage phenotypic profiling approach. a, A schematic presentation of the 

experimental workflow for barcoding-based high throughput multidimensional lineage phenomics 

approach. Cells were barcoded and expanded to achieve reasonable representation of cells per barcode 

(e.g. 500-1000). Next, the population was divided into multiple samples and selection pressure was 

applied to each sample. Cells passing selection conditions were collected and used to prepare a NGS 

library. In the present study, we measured lineage-specific fold changes in barcode representation in the 

following assays: carboplatin response (7uM carboplatin for 3 days followed by 4 days regrowth), 

autophagy measured by autolysosomes load (FACS)32, ALDH activity (FACS), activity of efflux pumps 

(FACS), proliferation (7 days), 12 hours attachment assay in FBS-free media (attached and non-attached 

cells were collected), and KI67 staining (FACS sorting). b, Scatterplot of fold change in the barcode 

representation after 7 days growth versus fold change in representation between  KI67HIGH population and 

control. Each point represents a lineage with color indicating the local density of points. Displayed are 

only lineages with counts larger than 70. R, Pearson correlation coefficient. c, Scatterplot of barcode 

fraction fold changes after attachment in FBS-free condition and 7 days growth (left), or upon sorting by 

efficacy of fluorescent dye efflux and 7 days of growth (right), as described in Methods. d, The average 

doubling time of the phenotypic cell subpopulations separated by their attachment to substrate in FBS-

free conditions (left; 6 replicas for each group) or sorted by their efficacy to efflux fluorescent dye (right; 3 

replicas for effluxHIGH and 6 replicas for effluxLOW). P-values are from Wilcoxon test. 

 

Finally, we used the t-SNE dimensionality reduction algorithm33 to deconvolute cell 

subpopulations based on single-lineage phenotypes measured in  OVCAR5 cells. The t-

SNE projection enabled us to identify 4 clusters of lineages with distinct phenotypic 

characteristics (Fig. 5A-C). Interestingly, two of the identified clusters displayed 

carboplatin resistance phenotype (Fig. 5, clusters 2 and 4). Cells from cluster 2 (~8% of 

the population) exhibited an increased efflux capacity which is known to mediate the 
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carboplatin resistance34,35. Cells from cluster 4 (about 1.5% of the population) displayed 

slower proliferation rates, increased ALDH activity, higher autolysosomes load, and 

resistance to carboplatin (Fig. 5A-C). Such a phenotypic signature is typically attributed 

to cancer cells with stem-like characteristics36–40,41,42. Within the largest cluster of 

lineages (cluster 1), sensitivity to carboplatin showed a moderate correlation with 

proliferation rate (Supplementary Fig. 8B). The high-throughput phenotyping of the 

barcoded lineages suggests that the OVCAR5 cell resistance to carboplatin could emerge 

through various mechanisms mediated by different cell subpopulations. Together, these 

data suggests that the high-throughput lineage phenomics approach via DNA barcoding 

enable one to infer phenotypically distinct cell subpopulations, even within a cell line.  

 

Fig. 5 | Phenotypic state clustering of single-lineages identifies cancer cell subpopulations. a, t-SNE 

projection of the OVCAR5 single-lineage phenotypic profiles, where each point represents a lineage 

colored according to the manually gated clusters. The lineages with read counts of more than 75 were 

used for the statistical analysis. b, t-SNE projection of the OVCAR5 single-lineage phenotypic profiles. The 

lineages are color-coded according to the manifestation of the phenotype, calculated as log2 ratio of 

barcode fractions between (1) positively and negatively selected populations after ALDH, attachment, 

efflux capacity or autophagy assays; (2) treated and untreated samples for carboplatin treatment assay, or 

(3) day 8 and day 1 time points for proliferation assay. c, The distribution of log2 fold changes in barcode 

representations upon selection for the indicated phenotypes. *, p<0.05; ** p<0.01; ***, p<0.001; ****, 

p<0.0001; ns, non-significant, based on Wilcoxon test. 

Discussion 
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Lineage tracing via DNA barcoding is a promising method for the studies of 

intrapopulational heterogeneity of cellular systems. The method is already well-

established for tracing growth dynamics of single lineages, but the recent publications 

suggest a much wider scope of the method’s applicability6-15. However, there is a current 

lack of standardized and reliable frameworks for experimental execution and statistical 

analysis of the clone-tracing experiments. Towards this end, we implemented a modified 

algorithm (DEBRA) for reliable detection of DRBs, and demonstrated through systematic 

benchmarking against the state-of-the-art RNA-seq data analysis algorithms that DEBRA 

improves the accuracy of detection of differentially responding lineages by accounting 

for the statistical properties intrinsic to the DNA barcode read count data. The mixture 

control dataset and our analysis results provide a systematic foundation for 

benchmarking and improving future algorithms for DNA barcoding data. 

Our results showed that samples from lineage tracing experiments exhibit several 

differences, compared to the RNA sequencing samples, which may compromise the 

accuracy of DRB identification with the RNA-seq analysis algorithms. In lineage tracing 

experiments, the number of individual barcodes is close to the total number of cells, 

which results in around 105 times less of individual sequencing tags as compared to an 

RNA-seq sample produced from the same number of cells. Hence, we reasoned that any 

decrease in the cell numbers associated with treatment procedures could impose a 

sampling error on barcode representation in a manner dependent on the degree of the 

sample size reduction. Our results support this notion, as we observed strong 

dependency between sample variance and sample size (Fig. 2). It is also tempting to 

speculate that the observed deviance from negative binomial model at low counts region 

is caused by large values of sampling error for barcodes with low copy number. 

Although we prepared the sequencing libraries right after subsampling, we expect that 

the variation imposed by the sampling bottleneck is preserved also when the samples 

are allowed to regrow, something that may have happened in the Seth et al. 

experiments7. We note that increasing the cell expansion times to achieve higher lineage 

abundances is not a straightforward solution for the sampling error issue. In fact, the 

expansion time is an indispensable experimental parameter of a lineage tracing 

experiment, as lineage phenotypes are subject to change as a result of phenotypic 

plasticity1,43. Cellular plasticity may dilute phenotypes determined by non-genetic 

factors (e.g. epigenetics). Hence, limiting the expansion times is expected to improve 

quantification of single-lineage phenotypes. Therefore, there is a critical need for 

accurate detection of DRBs especially in samples with low lineage abundances, using  

DEBRA or similar algorithmic solutions.  

To benchmark the performance of the original and modified algorithms for DRB 

identification, we simulated lineage tracing experiments with rather challenging 

scenarios. In the benchmarking mixture cell pool experiments, we used a relatively low 

number of cells per barcode together with low effects sizes (perturbation degrees of 18, 

27 and 35%). These experimental setups are not merely simulated scenarios, in fact 

many applications of lineage tracing are carried out in the context of a very narrow 
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sample size bottlenecks (e.g. exposure to high doses of drug, xenografting, or cell  

sorting for rare subpopulations). The DEBRA algorithm was able to both prevent an 

excess of false discoveries, as assessed with the null and perturbed subsamples, as well 

as improve the accuracy of DRB classification, compared to the original algorithms, as 

evaluated with precision-recall analysis (Fig. 3).  

We found that DESeq with trended dispersion estimates outperformed the other 

modified versions, and this is the default option in the DEBRA R-package. The R-package 

also provides the user with a functionality to choose between two dispersion estimation 

algorithms - “shrinkage” and “trended” - as the former may be useful in certain 

experimental setups, e.g., in experiments where the sampling is followed by an extended 

regrowth. The “trended” method assumes a strict relationship between means and 

dispersions, whereas the “shrinkage” uses dispersions as estimated by the DESeq2 

algorithm. DESeq2 shrinks tagwise dispersion estimates towards dispersion trend using 

an empirical Bayes approach while allowing for dispersion outliers26. In RNA-seq 

experiments, this helps to deal with genes whose dispersions do not strictly depend on 

the mean and, therefore, cannot be approximated merely by the dispersion trend. The 

dispersion outliers are typically attributed to either technical or biological factors. 

However, it is not clear whether these effects arise also in the lineage tracing 

experiments. Further studies are needed to better understand the relative benefits of 

the different dispersion estimation methods in various experimental setups. 

Finally, we introduced a DNA barcoding-based lineage phenomics approach, which links 

multiple phenotypes to lineages in a high-throughput manner (Fig. 4 and Fig. 5). We 

expect this approach to expedite the inference of cellular subpopulations with distinct 

phenotypic properties, finding associations between multiple phenotypes and to 

improve the quantification resolution when analysing  intrapopulational phenotypic 

heterogeneity. The obtained information on the single-lineage phenotypic state could be 

further integrated with single-cell technologies. For instance, applications of integrated 

lineage phenomics and single-cell genotyping approaches, such as scRNAseq or 

scATACseq44–47,  could promote the discovery of genetic and non-genetic determinants 

of intrapopulation phenotypic heterogeneity in tumours.  

The DEBRA approach could also become useful in the analysis of positive selection 

CRISPR screens, where the selection pressure is applied to the screening pool (cells 

expressing Cas9 and sgRNA library), and the representation of sgRNAs in treatment pool 

is compared to the background distribution. Similar to the DNA barcodes, the sgRNAs 

may undergo significant representation bottleneck depending on the degree of the 

selection pressure. Therefore, appropriate control for the variance differences between 

control and treatment samples, as implemented in DEBRA, may be required for  accurate 

inference of the differentially represented sgRNAs. 

 

Online Methods 
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Generation of the lentiviral plasmid barcode library  

Semi-random single-stranded DNA template (Barc.LGMU6.templ; Supplementary Data 

3) from Merck (SigmaAldrich) was used in the work. The oligonucleotide was amplified 

with Barc.LGMU6.aarI.ampl.F and Barc.LGMU6.aarI.ampl.R primers (Supplementary 

Data 3), using SuperFI DNA polymerase (Thermo, catalog number 12351010) to include 

cloning overhangs compatible with Golden Gate cloning.  Five microliters of the reaction 

was transferred to a new 50 µl PCR reaction with an excess of Barc.LGMU6.aarI.ampl.F 

and Barc.LGMU6.aarI.ampl.R primers (Supplementary Data 3). The reaction was run one 

cycle (2 min at 98oC denaturation, 5 min 72oC annealing/elongation) to produce dsDNA 

barcodes with no mismatches. The barcode cassette was purified with AMPure XP SPRI 

beads (Beckman Coulter; catalog number A63880). The barcode cassette was then 

cloned into previously generated B-GLI-Barcoding plasmid22 (see Supplementary Fig. 9 

for the plasmid map and Supplementary Data 3 for the DNA sequence; the vector will be 

deposited to Addgene with publication of the paper22) by the Golden Gate assembly 

method48  (see Supplementary Table 2 for reaction composition and cycling conditions). 

In order to reduce contamination with uncut B-GLI-Barcoding plasmid, an extra 2 µl of 

the AarI enzyme was added to the reaction after the Golden Gate cycling, followed by 

incubation at 37oC for 16 h. The cloning reaction was purified with magnetic beads 

(Beckman Coulter; catalog number A63880) and incubated with Plasmid-Safe™ DNase 

(Lucigen, catalog number E3101K), according to the manufacturer’s instructions. The 

reaction was again magnetic beads-purified and transformed into electrocompetent 

Lucigen Endura™ E. coli (Lucigen; catalog number 60242-2) using Bio-Rad MicroPulser 

Electroporator (catalog number #1652100) with program EC1 following the 

manufacturer's instructions. The reaction was plated onto 5 x 15 cm LB-agar plates with 

100 µg/ml ampicillin. After incubation for 16 h at 32oC, bacteria were collected and 

plasmid DNA was extracted with NucleoBond® Xtra Midi kit (MACHEREY-NAGEL; 

catalog number 740410.50). The efficiency of transformation and approximate number 

of the unique barcodes in the library was assessed by plating 1/10000 of the reaction 

onto 15 cm LB-agar plate with 100 µg/ml ampicillin and counting colonies after 

overnight incubation at 37oC.  

High complexity DNA barcoding experiments 

OVCAR5 and Mia-PaCa-2 cells were seeded at a density of 2x104 cells/cm2 and 1x105 

cells/cm2, respectively, both in 6-well plates. Cells were incubated overnight with 

lentiviral barcoding library carrying ~5x106 unique barcodes in a presence of 8 mg/ml 

polybrene. The amount of added virus was selected to achieve a multiplicity of infection 

(MOI) of ~0.01. Cells were selected for 7 days in the presence of 150 µg/ml hygromycin. 

Cells were kept at a density of at least  1x104 cells/cm2 to improve viability during 

selection and expansion. 

NGS library preparation and sequencing. 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 14, 2019. ; https://doi.org/10.1101/735266doi: bioRxiv preprint 

https://doi.org/10.1101/735266
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

NucleoSpin® Tissue kit (MACHEREY-NAGEL) was used to isolate genomic DNA 

according to manufacturer’s instructions. Barcodes were amplified from genomic DNA 

with P5.seq-B-GLI.v1 and P7.seq-B-GLI.v1 primers using OneTaq® DNA Polymerase 

(NEB; catalog number M0480). Reactions were purified using NucleoSpin® Gel and PCR 

Clean-up kit (MACHEREY-NAGEL). Then, purified amplicons were amplified with 

primers, Illumina_indX_F and Illumina_indX_R (where X indicates the index sequence), 

to add Illumina adapters and indexes for sample multiplexing. This round of PCRs was 

performed using NEBNext® Ultra™ II Q5® Master Mix (NEB, catalog number M0544). 

Samples were purified using AMPure XP beads (Beckman Coulter; catalog number 

A63880). Next generation sequencing library was sequenced with HiSeq 2500 Illumina 

sequencer using 100 bp paired-end protocol (with 10% PhiX DNA spike-in). To improve 

cluster calling, we increased sequence diversity by using a 15 bp random sequence 

stagger in the P5.seq-B-GLI.v1 primer. 

Barcode retrieval from NGS data 

We used the previously developed22 custom Python script for retrieving original 

barcode counts from FASTQ files. 

Running DESeq, DESeq2 and edgeR 

Dispersion estimation in DESeq25 and DESeq225,26 algorithms was implemented using 

fitType=”local” parameter, as the “parametric” fit option resulted in frequent errors, 

possibly due to the statistical properties of the barcode count data. Furthermore, we 

used method=”per-condition” setting in DESeq algorithm. The in-built independent 

filtering option was switched off in DESeq2. The edgeR algorithm was run with its 

default parameters28. 

DEBRA implementation aspects 

The β threshold. The DEBRA algorithm identifies a threshold   β  - a lower count limit 

for an independent filtering step above which it is assumed that the read counts follow a 

negative binomial distribution. This threshold is used for removing results for barcodes 

with read counts not following negative binomial model and, hence, possibly incorrectly 

classified as differentially represented. To find a suitable β for a given data, the DEBRA 

algorithm samples read count data using a window of N barcodes ordered by their mean 

count values (Supplementary Fig. 10). For each sampling step, the algorithm estimates 

the parameters of the negative binomial (NB) distribution - dispersion (a) and mean 

(m). DEBRA uses these parameters to generate NB random variables X~NB(m,a) of the 

same size as the sampled data to calculate theoretical (expected) and empirical two-

sample Kolmogorov-Smirnov (KS) test statistics for each sampling window. The KS 

empirical test statistic was calculated between the sampled values and X~NB(m,a) 

random variables, whilst the theoretical KS statistics is calculated between two 

X~NB(m,a) random variables (see Supplementary Fig. 11A for examples). The β 

threshold was estimated by searching for the value of the mean read count at which the 

overlapping area between the empirical and theoretical density functions of the KS test 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 14, 2019. ; https://doi.org/10.1101/735266doi: bioRxiv preprint 

https://doi.org/10.1101/735266
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

statistic is close to the maximum overlap for the given data sample. For the estimation, 

both the theoretical and empirical test statistics are modelled as a Gamma-distributed 

random variables (see Supplementary Fig. 12) for each window of size N (here, 30 KS 

test statistics values on the mean ordered data). The overlap area was calculated 

separately for each window, and then combined from multiple windows by fitting a 

sigmoid function of mean read counts (see Supplementary Fig. 11B for examples of 

fitting the null subsamples) with 4 parameters (using drc::drm() function with 

fct=LL.4() parameter. If the sigmoid curve is ascending and the minimum overlap value 

is less than 0.25, then β threshold is estimated as the mean count at which the sigmoid-

fitted overlap takes the value of 0.8 of the maximum (see Supplementary Table 3 for full 

β threshold estimation rules).  

Dispersion estimation and inference of differentially represented barcodes. 

Tagwise dispersions were calculated separately for each condition. We created a 

DESeqDataSet object, where we pass only the condition-specific columns and calculate 

the dispersion using DESeq2::estimateDispersions() function using the intercept model 

(design = ~1) and fitType=”local” parameter. The trended dispersion estimates were 

derived from a local dispersion trend function as fitted with DESeq2 (parametrization 

first proposed in DEXSeq49). For calculation, the fitted model were extracted from 

DESeqDataSet object and used to calculate the tagwise dispersions for the base mean 

values. The shrunken estimates were extracted from DESeqDataSet object with 

DESeq2::dispersions() function. The dispersions for barcodes with counts less than β in 

the test samples were set to the maximum value of the calculated tagwise dispersions to 

reduce false positives from the barcodes not following NB model if the β thresholding 

step is not used. In the next step, the dispersions were passed to the DESeqDataSet 

(DESeq2) or CountDataSet (DESeq) object, containing full read count dataset (control 

and condition columns) that are required for inference of DRBs. This object was used to 

test the barcodes for differential representation with either nbinomWaldTest() or 

nbinomLRT() tests for DESeq2 implementation or with nbinomTest() for DESeq. 

Parameter independentFiltering was set to “FALSE” when calling results() function of 

DESeq2. 

Independent filtering. We applied the independent filtering procedure26,30 as a 

separate function, which uses DESeq2, DEseq or edgeR result table as an input. The 

filtering algorithm uses the genefilter::filtered_p function to find the number of null 

hypothesis rejections at a user-specified FDR cutoff (default parameter is set to 0.2) for 

the quantiles of the filter statistics (mean read counts). The search algorithm identifies 

the quantile threshold value that maximizes the total number of rejections in the 

quantile range of [β,1], where β is the previously estimated threshold for the given data. 

For the search, the number of rejections is fit as a function of the quantile threshold 

using a smoothing spline (R function smooth.spline), which enables finding the quantile 

value that corresponds to the maximum number of rejections. User can also set the β 

threshold value other than the one estimated by the algorithm (see the β threshold 

section). 
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Barcode classification and precision-recall curves 

A barcode is considered to be differentially represented if the Benjamini and Hochberg 

procedure-controlled FDR is less than a predefined threshold (here, 0.05, 0.10 and 0.25 

were tested). If the count fold change between the treatment and control groups is less 

than one, then the barcode is considered to be depleted, otherwise it is classified as 

enriched. Ground truth for the barcode representation in the perturbed subsamples was 

obtained by sequencing the barcode pools (Pool#1 and Pool#2; see Fig. 1B), which were 

used to produce the perturbed subsamples. For the ground truth assignments, a barcode 

is considered enriched if its read Pool#1 to Pool#2 counts ratio is more than 10; if the 

ratio is less than 0.1, then the barcode is considered depleted. False positive is defined as 

a barcode identified by the algorithm as enriched DRB, but which is non-enriched 

according to the ground truth. 

Precision-recall curves were constructed using the “precrec” R-package50. For 

calculations, the positive class was defined as a barcode correctly assigned by the 

algorithm to the group it belongs to (enriched or depleted), while the negative class was 

defined as a wrongly assigned barcode. We used the unadjusted p-values for the class 

assignment by the algorithms, i.e., ranking the barcodes against the ground-truth, with 

low p-values indicating high statistical confidence that the barcode belongs to the 

positive class (i.e., assigned to either enriched or depleted groups by the algorithm). To 

calculate the precision-recall metrics for simulated experiments with low enriched-to-

depleted barcodes ratios (0.05, 0.15), we used only barcodes with positive fold change 

values to assess the algorithms’ performance specifically for the enriched barcodes.  

t-SNE algorithm 

t-SNE33 was run using Rtsne::Rtsne R function51 with perplexity parameter of 30 and 

1500 iterations. Lineages with read counts > 75  were selected for the analysis. 

OVCAR5 single-lineage phenotypic profiling 

Barcoded OVCAR5 cells were grown to reach an average representation of ~4000 cells 

per barcode. After that, the pool of cells (5x107) was divided and cryopreserved in 5 

batches as a T0 pool. One batch was taken for subsequent phenotypic profiling 

experiments as outlined in Supplementary Fig. 7. 

Immunostaining. Cells were trypsinized, washed and resuspended in PBS. Then the 

cells were fixed and permeabilized with cold 96% ethanol for 30 min on ice, pelleted in a 

swinging rotor centrifuge at 1000×g for 15 min, rehydrated for 30 min in PBS, washed 2 

times in 10 ml of PBS, and blocked in PBS with 0.5% BSA for 1 h at room temperature. 

The staining was done overnight at 4 C in PBS/BSA. Rabbit anti-Ki67 antibody 

(ab16667, Abcam) was used at 1.5 μg/ml. Following 3 washes with PBS with 0.5%BSA, 

the cells were stained with secondary goat-anti-rabbit conjugated with Alexa555 at 

1/500 for 30 min at room temperature, washed three times and resuspended in PBS for 

subsequent sorting. 
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FACS. All the sorting experiments were carried out using SONY SH800Z Sorter at 

Biomedicum Helsinki FACS Core Facility and the data analysis was performed using 

Sony Cell Sorter software. 

ALDH activity assay. The cells in the log phase of growth were trypsinized, 

resuspended in medium, the concentration of cells was adjusted to 2x106/ml. The ALDH 

activity was measured using Aldefluor assay (StemCell Technologies, catalog number 

01700) according to the manufacturer’s protocol. Cells from the upper and lower 

quantiles of the Aldefluor fluorescence intensity range were sorted as ALDHhigh and 

ALDHlow populations, respectively. 

Efflux assay. Cells were trypsinized, resuspended in medium, and the concentration of 

cells was adjusted to 2x106/ml. The cells were incubated with CDy1 fluorescent dye 

diluted 1/1000 (Active Motif, catalog number 895) for 30 min at 37 C in a water bath in 

the presence or absence of the ABC pumps inhibitors tariquidar (1 μM) and probenecid 

(50 μM). Then the cells were washed three times in ice-cold PBS and resuspended in 

medium with or without the drugs. Control cells in medium with efflux inhibitors were 

left on ice for 2 h, while the test samples were incubated at 37 C for 2 h to allow the 

efflux of the dye. After 3 washes, the cells were resuspended in PBS, and sorted by the 

fluorescence intensity in the FL3 (PE-Texas Red) channel. The gating of the efflux-

positive cells was set based on the fluorescence intensity of the efflux-inhibited control. 

Autophagy assay. The autophagy was analyzed by the ratiometric FACS measurement 

of the amount of Acridine Orange-stained autolysosomes as described previously 32. 

Overnight-starved cells were used as a control for the induction of the autolysosomes 

formation. 4x105 cells with high autolysosomes load and 106 cells with low 

autolysosomes load were sorted by FACS for subsequent gDNA extraction. 

Proliferation assays. For quantification of the cell lineage proliferation rate, the 

barcoded OVCAR5 cells were propagated in RPMI-1640 medium for 7 passages. Samples 

for barcode representation analysis were collected at days 0, 5, 8, 11, 14, 18, 25, 29.For 

the analysis of proliferation rate in validation experiments (Fig. 4D), the cells were 

plated at 2x104 per well in 12-well plates (Costar), and imaged every 4 h in an IncuCyte 

HD live cell analysis system (Sartorius) until the cell confluence of all wells reached 

100%. The confluence values during the logarithmic growth phase were used to 

estimate the population doubling time using the formula H/Log2(CF/CI), where H is 

elapsed time in hours, CF is final confluence, CI is initial confluence. 

Attachment assay. OVCAR5 cells in the log phase of growth were starved for 16 h in 

serum-free RPMI supplemented with 2 mM L-glutamine. Upon starvation, the cells were 

trypsinized, washed in serum-free medium and counted using a Countess II device 

(Invitrogen). 5 millions of live cells were plated in serum-free medium to 15 cm cell 

culture dishes and allowed to attach for 12 h. Upon incubation, the non-adherent cells 

were collected for gDNA extraction by centrifugation at 500×g for 5 min. For the 

validation experiments, non-adherent cells were collected and replated, and both 
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adherent and non-adherent cells were allowed to recover in serum-supplemented 

medium for 24 h prior to the evaluation of their proliferation rate.  

Availability of the codes and data.  The scripts and a workflow example of the DEBRA 

implementation are publicly available at Github 

https://github.com/YevhenAkimov/DEBRA. All the data from the benchmarking and 

OVCAR5 phenotyping experiments are available in Supplementary Data 1, 2 and 4. 
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