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2 

Abstract 18 

 19 

13C-metabolic flux analysis (13C-MFA) allows metabolic fluxes to be quantified in living 20 

organisms and is a major tool in biotechnology and systems biology. Current 13C-MFA 21 

approaches model label propagation starting from the extracellular 13C-labeled nutrient(s), 22 

which limits their applicability to the analysis of pathways close to this metabolic entry point. 23 

Here, we propose a new approach to quantify fluxes through any metabolic subnetwork of 24 

interest by modeling label propagation directly from the metabolic precursor(s) of this 25 

subnetwork. The flux calculations are thus purely based on information from within the 26 

subnetwork of interest, and no additional knowledge about the surrounding network (such as 27 

atom transitions in upstream reactions or the labeling of the extracellular nutrient) is required. 28 

This approach, termed ScalaFlux for SCALAble metabolic FLUX analysis, can be scaled up 29 

from individual reactions to pathways to sets of pathways. ScalaFlux has several benefits 30 

compared with current 13C-MFA approaches: greater network coverage, lower data 31 

requirements, independence from cell physiology, robustness to gaps in data and network 32 

information, better computational efficiency, applicability to rich media, and enhanced flux 33 

identifiability. We validated ScalaFlux using a theoretical network and simulated data. We 34 

also used the approach to quantify fluxes through the prenyl pyrophosphate pathway of 35 

Saccharomyces cerevisiae mutants engineered to produce phytoene, using a dataset for which 36 

fluxes could not be calculated using existing approaches. A broad range of metabolic systems 37 

can be targeted with minimal cost and effort, making ScalaFlux a valuable tool for the 38 

analysis of metabolic fluxes.  39 
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3 

Author Summary 40 

 41 

Metabolism is a fundamental biochemical process that enables all organisms to operate and 42 

grow by converting nutrients into energy and ‘building blocks’. Metabolic flux analysis 43 

allows the quantification of metabolic fluxes in vivo, i.e. the actual rates of biochemical 44 

conversions in biological systems, and is increasingly used to probe metabolic activity in 45 

biology, biotechnology and medicine. Isotope labeling experiments coupled with 46 

mathematical models of large metabolic networks are the most commonly used approaches to 47 

quantify fluxes within cells. However, many biological questions only require flux 48 

information from a subset of reactions, not the full network. Here, we propose a new approach 49 

with three main advantages over existing methods: better scalability (fluxes can be measured 50 

through a single reaction, a metabolic pathway or a set of pathways of interest), better 51 

robustness to missing data and information gaps, and lower requirements in terms of 52 

measurements and computational resources. We validate our method both theoretically and 53 

experimentally. ScalaFlux can be used for high-throughput flux measurements in virtually any 54 

metabolic system and paves the way to the analysis of dynamic fluxome rearrangements. 55 
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4 

Introduction 56 

 57 

Metabolic flux analysis (MFA) with stable isotope tracers, typically a 13C-labeled carbon 58 

source, allows intracellular fluxes to be quantified in a wide range of organisms and is now a 59 

major tool in the fields of biotechnology [1-3], systems biology [4-6] and medicine [7, 8]. 60 

Current approaches rely on isotopic models to simulate tracer propagation through metabolic 61 

networks [1, 9-14]. Fluxes are then estimated by fitting experimental concentrations and 62 

isotopic profiles of metabolites. Current simulation frameworks require known and constant 63 

label input(s). The only constant label input(s) is (are) the isotopically-labeled nutrient(s) in 64 

the extracellular medium, which must therefore be included in the flux model. This 65 

requirement also applies to alternative 13C-MFA frameworks, such as metabolic flux ratio 66 

analysis [15, 16] and kinetic flux profiling [17]. In practice, this means that all metabolic 67 

models must explicitly include the labeled nutrient(s) initially provided to the biological 68 

system and all the pathways that distribute the isotopic tracer up to the pathway of interest. To 69 

ensure fluxes are identifiable, the extracellular fluxes and the intracellular concentrations and 70 

labeling of upstream metabolites must also be measured. This is a major limitation for 71 

investigating i) pathways far downstream of the labeled nutrient(s), ii) networks with reaction 72 

gaps (e.g. an uncertain network topology), iii) incomplete datasets, iv) experiments performed 73 

in rich media, or v) situations where the isotopic transitions remain uncertain or complex (e.g. 74 

2H tracer) [1, 18]. This also makes the entire experimental and computational workflow very 75 

time consuming, costly and error prone. Overall, the modeling requirement that the tracer has 76 

to be propagated right from the extracellular nutrient limits the application of flux 77 

measurements to pathways closely related to the label input. The vast majority of existing 13C-78 

flux studies focus indeed on central carbon metabolism, and most 15N-flux studies focus on 79 
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the nitrogen assimilation network [1, 4, 6, 17, 19]. There is therefore a need for more robust 80 

and scalable approaches to quantify metabolic fluxes in biochemical systems. 81 

Here, we propose a new isotope-based-MFA approach, named ScalaFlux, to measure fluxes at 82 

the level of any metabolic subnetwork of interest, in which label propagation is modeled 83 

directly from the metabolic precursor(s) of this subnetwork. ScalaFlux uses a limited amount 84 

of input data and increases the number of pathways that can be accessed, while significantly 85 

reducing experimental and computational requirements. We demonstrate the value of 86 

ScalaFlux with in silico simulations and its practical applicability by quantifying in vivo 87 

fluxes in the yeast prenyl pyrophosphate pathway. 88 

 89 

Results 90 

 91 

Basic principle: reconsidering label inputs 92 

Understanding the basic principle of the proposed approach requires some concepts and 93 

terminology that are introduced and illustrated using the example network shown in Fig 1. 94 

This network of 18 metabolites and 20 reactions includes three topological motifs classically 95 

found in metabolism: a linear pathway, a branching node and a cycle. We refer to the initial 96 

source(s) of label – i.e. the extracellular nutrient(s), here Xout – as the global label input(s) for 97 

the metabolic network. After Xout is switched from natural abundance to isotopically labeled, 98 

the isotopic tracer propagates through the metabolic network and the intracellular metabolites 99 

(Xin, A, …, O), which are progressively labeled as a function of metabolite concentrations and 100 

fluxes. Fluxes can then be estimated using a model-based approach by minimizing the 101 

difference between experimental labeling data and the labeling profiles simulated by the 102 

model. 103 

 104 
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 105 

 Fig 1. Principle of ScalaFlux. Panel A shows an example network in the Systems Biology 106 

Graphical Notation format (SBGN, www.sbgn.org) [20] to illustrate the basic principle of 107 

ScalaFlux. The flux models (and associated datasets) required to quantify the flux through 108 

reaction r16 using classical non-stationary 13C-MFA and ScalaFlux are compared in panel B. 109 

The ScalaFlux model, the set of measurements required for the flux calculation, and the flux 110 

calculation workflow are shown in panel C. 111 

 112 

Current non-stationary 13C-flux calculation frameworks require constant label input(s) so the 113 

global label input(s) must be included in the flux models. To specifically measure the flux 114 

through reaction r16 in the example network, the flux model (red boundaries in Fig 1A) must 115 

contain Xout and all the reactions that contribute to isotope propagation up to the product of 116 

r16. This flux model includes a total of 17 reactions, 1 (global) label input and 14 metabolic 117 

intermediates (Fig 1B). Measurements of metabolite concentrations and labeling at several 118 

nodes of the network as well as of extracellular fluxes and biomass composition are required 119 

to calculate the flux. 120 
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We propose a more scalable 13C-flux approach, named ScalaFlux for SCALAble metabolic 121 

FLUX analysis, to quantify fluxes through a subnetwork of interest using internal information 122 

from this network only. ScalaFlux does not require data on the extracellular labeled nutrient, 123 

upstream metabolites, or any other knowledge about the surrounding network. The flux model 124 

encodes a metabolic subsystem (i.e. a subset of the cellular metabolic network) and 125 

specifically contains the reaction(s) of interest, as illustrated in Fig 1 and described in detail 126 

below. All the metabolic substrates in this subsystem are considered local label inputs, and 127 

label propagation is simulated directly from these local label inputs. If the reaction of interest 128 

is r16, the labeling dynamics of M is defined as the local label input of the corresponding 129 

subsystem to simulate the labeling dynamics of N. In contrast to global label inputs, which are 130 

constant, known and controlled, the labeling of local label inputs changes with time, is not 131 

known a priori and cannot be controlled. Label incorporation can nevertheless be determined 132 

experimentally and be used for the downstream reactions. Using these discrete measurements 133 

as direct label inputs for simulations would result in sharp changes in label input at each 134 

measurement time and thereby yield stiff equations and simulation artifacts. The first step of 135 

the ScalaFlux workflow (Fig 1C) therefore consists in transforming the discrete measurements 136 

into a continuous (time-dependent) representation by fitting analytical functions, ensuring 137 

smooth variations as a function of time. A system of ordinary differential equations (ODEs) 138 

can then be constructed using conventional frameworks to simulate label propagation from 139 

the local label input(s). By combining this simulation approach with optimization routines, 140 

fluxes can be estimated by fitting experimental data. This workflow has been implemented in 141 

a major update of IsoSim [21] (see Methods for details). 142 

Importantly, the studied subsystem can include larger parts of the network, as detailed in the 143 

following sections. This means that any given (set of) flux(es) can be quantified 144 

independently of the rest of the metabolic network, with no additional measurements 145 
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(extracellular fluxes, growth rates, biomass composition, concentrations and labeling of 146 

upstream metabolites), and independently of the (often incomplete) knowledge of the 147 

metabolic network outside the boundaries of the subsystem under study. 148 

ScalaFlux exploits many concepts from non-stationary 13C-MFA and thus benefits directly 149 

from recent advances in the field, such as efficient mathematical frameworks for experimental 150 

design [13, 14, 22-24], simulation [14, 25-27], optimization [10, 28] and sensitivity analysis 151 

[14, 29]. Because it is based on detailed modeling of isotope propagation, ScalaFlux is generic 152 

with respect to the network topology (flux models can include branching nodes, cycles, or any 153 

other of the topological motifs that compose metabolic networks), the isotopic tracer (2H, 13C, 154 

15N, etc), and the type of isotopic measurement (MS, MS/MS, NMR, etc). The flux analyses 155 

presented in the rest of the article are based on mean molecular enrichment data collected by 156 

mass spectrometry in 13C-labeling experiments. 157 

 158 

Construction of flux models 159 

Flux models must precisely describe the topology of the subnetwork of interest while ensuring 160 

independence from the surrounding network. A generic procedure is presented in this section 161 

to streamline the construction of self-consistent flux models of any part of a metabolic 162 

network. 163 

We define a minimal subsystem SY as the minimal set of reactions required to simulate the 164 

labeling dynamics of a given metabolite Y. A metabolic network containing n metabolic 165 

intermediates can thus be decomposed into n minimal subsystems. The minimal subsystem SY 166 

must include all the reactions that produce Y (since they may all affect its labeling dynamics), 167 

with their substrates corresponding to local label inputs. For practical modeling reasons, a 168 

sink reaction consuming Y has to be included to avoid its accumulation, in keeping with the 169 

metabolic steady-state assumption (i.e. metabolite concentrations are constant). Each minimal 170 
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subsystem is self-consistent and can be incorporated into a flux model to estimate fluxes 171 

through the included reactions. This modular representation is the essence of the scalability of 172 

ScalaFlux. We used this procedure to decompose the example network shown in Fig 1A into 173 

17 minimal subsystems, as shown in Fig 2A. Note that reaction r6, which is reversible, is 174 

present in two subsystems (SB and SC) to account for its forward and reverse fluxes [21]. 175 

 176 

 177 

Fig 2. Network decomposition to construct flux models. The metabolic network shown in 178 

Fig 1A can be decomposed into 17 minimal subsystems (panel A) which are sufficient to 179 

simulate the labeling dynamics of metabolic intermediates (green circles) from the local label 180 

input(s) (red circles). Each minimal subsystem is self-consistent and can be used for 181 

independent flux calculations. These minimal subsystems can also be combined to analyze 182 

larger subsystems, as shown in panels B and C. 183 

 184 

To analyze larger subnetworks that include several reactions of interests, the individual 185 

minimal subsystems that compose this subnetwork should be combined (Fig 2). Two 186 

subsystems can be combined when they share a common metabolite, e.g. the two minimal 187 

subsystems SY and SZ can be merged if Y is a local label input of Z. The local label inputs of 188 

the resulting subsystem SYZ are all the local label inputs except Y, which is now an 189 

intermediate of SYZ. This ensures that all the reactions (and local label inputs) that contribute 190 
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to the labeling dynamics of Y and Z are included. For instance, to quantify fluxes through the 191 

set of reactions {r4, r9, r16, r17, r18} in the example network, SO can first be united with SN 192 

(since the metabolic intermediate N is a local label input of SO) (Fig 2B), and the resulting 193 

subsystem SNO can then be merged with SF (Fig 2C). The final subsystem SFNO contains all the 194 

reactions of interest and has three local label inputs (A, E and M) and three intermediates (F, 195 

N and O). 196 

 197 

Flux calculation in minimal metabolic subsystems 198 

The minimal set of measurements required to estimate fluxes in a minimal subsystem SY 199 

consists of i) the labeling dynamics of its local label input(s) (used to simulate tracer 200 

propagation) and ii) the labeling dynamics of Y (used for flux estimation). These transient 201 

label dynamics are thus sufficient to estimate the turnover rate of Y, i.e. the ratio between its 202 

pool and its biosynthetic flux. In a branched pathway, this information is also sufficient to 203 

determine the contribution of each converging reaction to the biosynthesis of Y. Absolute 204 

fluxes can be estimated when the absolute concentration of Y is available. The absolute in vivo 205 

flux through a given reaction in any linear pathway can thus be estimated from reactant data 206 

alone. 207 

ScalaFlux was tested on the metabolic network shown in Fig 1A. Metabolite concentrations 208 

and fluxes were initialized at the values listed in the Supporting information (S1 Table), and 209 

label propagation through this network was simulated to create a theoretical dataset (S1 Fig). 210 

We estimated fluxes in all minimal subsystems (Fig 3A) from these theoretical labeling 211 

dynamics. The transient 13C-enrichments of all local label inputs were accurately described by 212 

fitting a double logistic function (S2 Fig), and these analytical functions were used as label 213 

inputs for flux calculation. 214 

 215 
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 216 

Fig 3. Fluxes through each reaction of the example network (Fig 1A) estimated by 217 

analyzing all minimal subsystems. Fluxes were estimated independently in all the minimal 218 

subsystems shown in panel A. The estimated fluxes are in good agreement with the true 219 

values (R² = 0.98, p-value = 1.10-14, panel B). The distribution of fluxes estimated from 200 220 

noisy datasets are shown in panel C, with the true value used for simulation shown as a red 221 

dot and the median of the estimated fluxes shown as a white dot. 222 

 223 

The labeling dynamics of metabolic intermediates are accurately fitted by the flux models for 224 

all minimal subsystems (S3 Fig). The estimated fluxes are in good agreement with the true 225 

values used to run the simulations (R² = 0.98, Fig 3B), with an average relative error of 7 %. 226 

For the reversible reaction r6, both the forward and reverse reaction rates were determined. 227 

The robustness of ScalaFlux to measurement noise was assessed by estimating fluxes from 228 

200 datasets in which Gaussian noise was added to the theoretical data, assuming a typical 229 

precision 0.02 for 13C-enrichments and of 10 % for concentrations [30, 31]. The distribution 230 

of fluxes estimated from these datasets indicates that the precision of the method is good, with 231 

an average relative standard deviation of 13 % (Fig 3C). ScalaFlux is thus robust to 232 

measurement uncertainty. Overall, the proposed approach provides accurate estimates of 233 
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absolute fluxes, with no measurement of extracellular uptake or production fluxes having 234 

been provided as input. This proof of concept example validates the proposed approach. 235 

 236 

From individual reactions to metabolic pathways: combining minimal subsystems enhances 237 

flux identifiability and precision 238 

As well as quantifying fluxes in minimal subsystems, ScalaFlux can be used to analyze larger 239 

subsystems. Just like in minimal subsystems, the set of measurements required to estimate 240 

fluxes in larger subsystems consists of i) the labeling dynamics of local label input(s) and ii) 241 

the labeling dynamics of (at least one) metabolic intermediate(s). 242 

To illustrate the value of this scalability, we explored different options to estimate the flux 243 

through the pathway composed of the seven reactions {r10, …, r16} (Fig 4A). We identified a 244 

total of 29 subsystems (and associated datasets, Fig 4B) that potentially enable flux evaluation 245 

through this pathway. Of course, this flux can be estimated through each reaction 246 

individually, as demonstrated above, corresponding to subsystems SG, SH, SIJ, SK, SL, SM, and 247 

SN in Fig 4B. Several reactions in this pathway can also be combined into a single flux model 248 

(following the rules defined in section Construction of flux models), e.g. by merging two 249 

connected subsystems as done for subsystems SGH, SHK, SLM and SMN. 250 

 251 
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 252 

Fig 4. Demonstration of the scalability of ScalaFlux. The absolute flux through the 253 

pathway r10-r16 (orange reactions in panel A) can be quantified in 29 different subsystems 254 

(columns in panel B), each of which i) include different reactions (in blue) and ii) exploit 255 

different sets of measurements (labeling of local label inputs in red, and concentrations and 256 

labeling of metabolic intermediates in green). The fluxes estimated for each subsystem are 257 

shown in panel C and are compared to the true value (1, horizontal line). 258 
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 259 

The fluxes calculated for each subsystem are shown in Fig 4C and are all close to the true 260 

value (1.0). Increasing the size of the subsystem used for flux calculation improves both the 261 

accuracy and precision of the estimated fluxes. For instance, the flux was estimated at 262 

0.96±0.10 for the minimal subsystem SG and at 0.99±0.04 for the largest subsystem SGHIJKLM. 263 

This is because the reconciliation of larger datasets during flux calculation increases the 264 

robustness of the approach. Experimental and analytical efforts can thus be optimized 265 

depending on the required flux precision. 266 

Another advantage of this scalability is that it increases flux identifiability. For instance, 267 

estimating the flux through r16 is possible via the flux model of SN, provided the labeling 268 

dynamics of M is available (Fig 4B). If M cannot be measured, label propagation cannot be 269 

simulated and no flux can be estimated. However, if the labeling dynamics of L is available, 270 

the flux through r16 can still be estimated using the flux model of SMN for which the labeling 271 

dynamics of the local label input L is known. The most appropriate flux model can thus be 272 

selected based on the available data, without making the additional assumptions or 273 

oversimplifications required by current approaches (e.g. using hypothetical tracer atom 274 

transitions from upstream pathways, defining reversible reactions as irreversible, or lumping 275 

reactions). Since each subsystem can be investigated independently of the rest of the cellular 276 

network, poorly identified parts of the network (e.g. due to missing measurements or an 277 

uncertain topology) do not affect the reaction(s) of interest. 278 

 279 

Biosynthesis of prenyl pyrophosphates in yeast 280 

ScalaFlux provides the opportunity to reconsider published datasets from which fluxes could 281 

not be calculated because of the lack of an appropriate modeling framework. As an example 282 

application, we analyzed a published dataset on the metabolism of prenyl pyrophosphates, the 283 
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precursors of isoprenoids, in the yeast Saccharomyces cerevisiae [32]. Isoprenoid 284 

biosynthesis starts with isopentenyl pyrophosphate (IPP), which is isomerized into 285 

dimethylallyl pyrophosphate (DMAPP) (Fig 5A). DMAPP is then condensed with another 286 

IPP to generate geranyl pyrophosphate (GPP). Longer prenyl pyrophosphates are built by 287 

successive condensation of IPP onto each intermediate, giving farnesyl pyrophosphate (FPP) 288 

from GPP and geranylgeranyl pyrophosphate (GGPP) from FPP. 289 

 290 

Fig 5. 13C-metabolic flux analysis of prenyl pyrophosphate biosynthesis in 291 

Saccharomyces cerevisiae (wild type, S037 and S023 strains). The yeast prenyl 292 

pyrophosphate pathway contains five reactions for the successive condensation of IPP (in 293 
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grey) onto each intermediate (DMAPP, FPP, GPP and GGPP) (A). The labeling dynamics of 294 

IPP were fitted with a double logistic function, which was used as the local label input. Fluxes 295 

were estimated by fitting the metabolite concentrations and transient 13C-enrichments of GPP, 296 

FPP and GGPP. Experimental and fitted data are shown for each strain in panel B for the 297 

labeling dynamics (dots: experimental values; lines: best fit) and in panel C for the metabolite 298 

concentrations. The fluxes estimated in each strain are given with their standard deviations in 299 

panel D. The GGPP demand calculated from phytoene accumulation in strain S023 is shown 300 

in grey for comparison. The GGPP turnover rate estimated in each strain is shown in panel E. 301 

 302 

The published dataset contains i) steady-state concentrations of three prenyl pyrophosphate 303 

intermediates (GPP, FPP and GGPP) measured during exponential growth on glucose and ii) 304 

44 transient 13C-enrichments following a switch from unlabeled to U-13C-glucose (11 time 305 

points for GPP, FPP, GGPP, and combined pools of IPP and DMAPP). These data were 306 

collected in three different strains designed to enhance phytoene production. The GGPP pool 307 

of the wild-type (WT) metabolic chassis was first increased by constructing the strain S037, 308 

which overexpresses GPP and FPP synthase (ERG20) and GGPP synthase (CrtE). A 309 

heterologous phytoene synthase (CrtB from Pantoea ananatis) was then expressed to convert 310 

GGPP into phytoene in strain S023. The pools of all intermediates were higher in strains S037 311 

and S023 compared to wild type, suggesting higher fluxes, but this could not be verified 312 

because fluxes could not be inferred solely from these data. We therefore used ScalaFlux to 313 

estimate the in vivo flux through the prenyl pyrophosphate pathway in the three strains. 314 

The flux model is centered on the specific pathway of interest and thus only includes the five 315 

reactions shown in Fig 5A. We used a double logistic function to fit the transient labeling 316 

dynamics of IPP (i.e. mean molecular 13C-enrichment), from which accurate analytical 317 

representations were obtained (Fig 5B). This function was used as label input to estimate 318 
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fluxes by fitting the concentrations and dynamic 13C-enrichments of three other intermediates 319 

(GPP, FPP and GGPP). The good agreement between simulations and measurements (Figs 5B 320 

and 5C, R² > 0.98) indicates that the concentrations and isotopic data are consistent with the 321 

topology defined in the model. In wild-type Saccharomyces cerevisiae, the GGPP 322 

biosynthetic flux was estimated at 0.15±0.01 nmol/gDCW/min during exponential growth on 323 

glucose (Fig 5D). It increased to 0.94±0.04 nmol/gDCW/min in strain S037, hence confirming 324 

the relevance of the strain design strategy in improving the availability of GGPP, the 325 

precursor of phytoene biosynthesis. The flux was similar in the phytoene producing strain 326 

S023 (0.93±0.04 nmol/gDCW/min). This indicates that the increased demand for GGPP does 327 

not propagate upstream and does not affect its production, in agreement with the low 328 

reversibility of the prenyl transferase reactions. Importantly, we verified that the flux 329 

estimated by ScalaFlux in S023 was consistent with the GGPP demand for phytoene synthesis 330 

estimated from phytoene accumulation (1.33±0.16 nmol/gDCW/min, Fig 5D). The good 331 

agreement between these two independent methods demonstrates that ScalaFlux provides 332 

accurate flux measurements from datasets collected on just a few metabolic intermediates. 333 

Finally, while qualitative interpretations suggested that the turnover rate of GGPP was stable 334 

in the different strains [32], this could not be verified because the fluxes could not be 335 

estimated. We therefore evaluated this hypothesis by calculating the GGPP turnover from the 336 

estimated fluxes and metabolite concentrations. Results indicate that GGPP turnover (Fig 5E) 337 

is indeed very similar in the three strains (WT: 12.7±0.1, S037: 14.0±1.3, S023: 11.9±0.5 min-
338 

1), and thus confirm quantitatively that the GGPP pool increases roughly proportionally to its 339 

biosynthetic flux. 340 

  341 

Discussion 342 

 343 
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In current 13C-MFA approaches, label propagation has to be modeled starting from the 344 

extracellular nutrient(s), which limits their applicability to flux analysis of pathways close to 345 

this nutrient. Here, we present a novel MFA framework to investigate any reaction or set of 346 

reactions in a subnetwork of interest based on just a few targeted measurements in this 347 

subnetwork. 348 

The scalability of ScalaFlux stems from the modular decomposition of metabolic networks 349 

into minimal subsystems, which can be analyzed independently or merged together to analyze 350 

larger subnetworks, as demonstrated using a theoretical network and simulated data. The 351 

guidelines provided to decompose a network into minimal subsystems enable intuitive 352 

reasoning and facilitate experimental design (e.g. in terms of the measurements to perform), 353 

which can be supported further by in silico simulations. It is important to note that flux 354 

identifiability depends on the experimental setup used (e.g. type of isotopic data, accessible 355 

measurements, sampling frequency) and on biological constraints (e.g. network topology, 356 

fluxes). We refer to previous work [12-14, 22, 24, 33] for extensive discussion on these 357 

topics. 358 

We validated the practical applicability of ScalaFlux by reanalyzing a published dataset on the 359 

metabolism of prenyl pyrophosphates, from which fluxes could not be calculated using 360 

current MFA approaches. Indeed, GGPP is continuously used by different processes (such as 361 

protein geranylgeranylation and membrane biosynthesis) and does not accumulate in cells. Its 362 

biosynthetic flux cannot therefore be measured in vivo without using isotopic tracers. 363 

Moreover, measuring this flux using stationary 13C-MFA approaches would have been 364 

impossible because of the topology of the prenyl pyrophosphate pathway. Non-stationary 13C-365 

MFA approaches could have been used, but at much higher analytical and computational 366 

costs. The underlying model would have had to include many additional reactions involved in 367 

13C label propagation from glucose up to IPP, i.e. at least some of the central metabolic 368 
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pathways that contribute to the labeling of acetylCoA (glycolysis, the pentose phosphate 369 

pathway, and possibly anaplerotic reactions and the TCA cycle), and the entire mevalonate 370 

pathway that produces IPP from acetylCoA. This model would thus have contained several 371 

dozen reactions, for which the associated fluxes would have had to be estimated. Our 372 

approach significantly reduces the size of the model and the number of free parameters, and 373 

thereby the computational cost of the flux calculation. Moreover, the absolute pathway flux 374 

was estimated using the metabolite concentrations and 13C-enrichments collected for just a 375 

few metabolites using a single LC-HRMS platform [32]. Using traditional approaches, the full 376 

model would have been undetermined - and no flux could have been estimated - without 377 

additional experimental data on key points in the upstream pathways (e.g. the glucose uptake 378 

flux, and the pools and transient 13C-enrichments of upper intermediates), collected with 379 

different sampling times, and analyzed with different analytical platforms. Our approach thus 380 

also reduces experimental costs and processing efforts. 381 

ScalaFlux is fundamentally scalable, providing several different ways to quantify a given (set 382 

of) flux(es). The most appropriate flux model should be selected based on the biological 383 

question to be addressed (e.g. in terms of the fluxes to be measured or the required flux 384 

precision) and practical constraints (e.g. network knowledge or available data). For instance, 385 

fluxes through individual reactions in a linear pathway can be estimated independently using 386 

different datasets. ScalaFlux can thus potentially verify (or disprove) assumptions that are 387 

usually made in 13C-MFA (e.g. that all the reactions in a given linear pathway carry the same 388 

flux) and to identify gaps in the current knowledge (e.g. that an intermediate of an apparently 389 

linear pathway is actually consumed by another unknown reaction, or that the assumed 390 

network topology is not sufficient to explain the labeling dynamics of some of the 391 

intermediates). 392 
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ScalaFlux is also highly versatile in terms of the pathways that can be monitored. It can be 393 

used to measure fluxes through virtually any metabolic subsystem of interest: a single 394 

reaction, a pathway, or larger networks. Because it exploits concepts from non-stationary 13C-395 

MFA, ScalaFlux can be used to investigate C1-metabolism (e.g. CO2 fixation, methylotrophy, 396 

folate metabolism). It also allows the quantification of metabolic fluxes that are currently 397 

difficult to measure, e.g. in secondary metabolism (such as prenyl pyrophosphate 398 

biosynthesis, as demonstrated here), or the biosynthesis of co-factors (e.g. ATP or NADPH) 399 

or other global regulators (e.g. ppGpp). Its scalability offers new possibilities for high-400 

throughput flux profiling of a broad range of metabolic (sub)systems, at minimal cost and 401 

effort. ScalaFlux can easily be adapted to measure fluxes through other biological processes, 402 

such as protein turnover.  403 

Overall, in addition to broadening the range of metabolic systems that can be investigated, 404 

ScalaFlux enhances the following aspects of 13C-MFA: minimal data and analytical 405 

requirements (fluxes can be estimated robustly from just a few measurements from the 406 

metabolic subsystem of interest, which can typically be collected using a single platform since 407 

closely related metabolites often have similar physico-chemical properties); independence 408 

from physiology (no need to measure nutrient uptake fluxes, growth rates, or biomass 409 

compositions); computational efficiency and stability (smaller equation systems with fewer 410 

free parameters); short labeling times (no tracer incorporation required to reach steady state), 411 

which allows dynamically changing fluxes to be probed; applicability to rich media (where 412 

measuring the many extracellular fluxes and labeling patterns of all the nutrients is difficult 413 

and may create computational bottlenecks); and better flux identifiability (because of its 414 

intrinsic scalability and robustness to missing measurements and network gaps). 415 

ScalaFlux can be applied alone or in combination with other methods to address a broad range 416 

of biological questions. Combined with untargeted MS(/MS) approaches [34-36], ScalaFlux 417 
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paves the way to 13C-flux studies at the cellular level. The network coverage of untargeted 418 

MS(/MS) approaches is in general low and sparse, which results in poor flux identifiability 419 

when the complete dataset is integrated into metabolic reconstructions. In ScalaFlux, 420 

incomplete datasets can still be exploited to estimate fluxes through subsystems, and these 421 

flux measurements can be used to constrain genome scale metabolic models. Our approach 422 

should also be helpful to study poorly characterized organisms, for which simulations from 423 

carbon entry up to the pathway of interest may not be possible. 424 

From a computational point of view, the proposed approach shares many elements with 425 

traditional approaches, and is compatible with all current simulation frameworks - EMUs, 426 

cumomers, fluxomers, etc - [1, 14, 25]. The approach introduced here can be implemented in 427 

existing 13C-flux calculation software [10, 26, 28, 37] with minimal effort. As proof of 428 

concept, we have implemented it in IsoSim, a versatile modeling software designed to 429 

integrate proteomics, metabolomics and isotopic data with stoichiometric, kinetic, regulatory 430 

and thermodynamic constraints to enhance functional analyses of metabolic systems. 431 

ScalaFlux is fully compatible with kinetic modeling, and thereby offers the possibility of 432 

analyzing dynamic fluxome rearrangements.  433 

  434 

Methods 435 

 436 

Implementation of the ScalaFlux workflow 437 

We implemented the ScalaFlux workflow (Fig 1C) in a major update of IsoSim, an R 438 

software previously developed to couple kinetic and isotopic models of metabolism [21]. The 439 

source code of IsoSim v2 is freely distributed under open-source license at 440 

https://github.com/MetaSys-LISBP/IsoSim/. 441 
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Briefly, IsoSim includes functions to i) construct flux models, ii) design isotope labeling 442 

experiments, iii) define local label inputs, iv) simulate label propagation, and v) fit 443 

experimental data in order to estimate fluxes. Each of these steps is explained in detail in the 444 

following sections. 445 

All the scripts we used to construct the models, to perform the simulations and to generate the 446 

figures are provided at https://github.com/MetaSys-LISBP/IsoSim/ to ensure reproducibility 447 

and reusability. 448 

 449 

Construction of flux models 450 

IsoSim requires the following information to construct a flux model: i) the set of reactions of 451 

interest, ii) the tracer atom transitions of each reaction, and iii) the accessible isotopic data. 452 

IsoSim then automatically constructs the minimal system of ordinary differential equations 453 

(ODEs) required to simulate the accessible isotopic measurements. The detailed procedures 454 

and algorithms we used to construct the models can be found in the initial article on IsoSim 455 

[21], which has been enhanced with the EMU framework [27] to reduce the size of the 456 

equation system. 457 

Note that each flux can be defined either as constant or calculated using a kinetic equation 458 

which may depend on metabolite concentrations. IsoSim can thereby perform both 459 

stoichiometric and kinetic modelling. 460 

 461 

Design of isotope labeling experiments 462 

The present framework provides i) direct identification of the minimal set of label input(s) 463 

that need to be measured for a given flux model, and ii) simulations for different 464 

configurations (e.g. different pools, flux distributions or local label input dynamics). These 465 
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two features are crucial to support experimental design and ensure flux identifiability before 466 

performing the experiments [22]. 467 

 468 

Fitting local label input(s) 469 

The labeling dynamics of all the EMUs identified as local label input(s) must be measured or 470 

estimated. IsoSim implements methods to convert these discrete measurements into 471 

continuous analytical functions. It is important to note that neither the analytical function nor 472 

the estimated parameters have any biological meaning. The aim of this step is just to define a 473 

sufficiently accurate representation of the isotopic profiles of the local label input(s). 474 

Experimental 13C-enrichment dynamics of local label input(s) can be fitted by a logistic 475 

function (Eq. 1): 476 

���, �� � ��

������·�����	
       (Eq. 1) 477 

where p is the vector of parameters to estimate (here p1, p2 and p3), and t is time. We also 478 

implemented a double-logistic function (Eq. 2) to fit more complex labeling dynamics, as 479 

proposed by Elmore et al. [38]: 480 

���, �� � �� � ��� 	 �� · �� · � �

�����
��	/��
	 �

�������	/���
�  (Eq. 2) 481 

Parameter estimation is formulated as a constrained non-linear optimization problem (Eq. 3): 482 

������ ���� 

������� �� ���� � �       (Eq. 3) 483 

where p is the parameter vector, f is the objective function that evaluates the deviation 484 

between the simulated and measured data, g(p) is the constraint function, and c is the 485 

constraint vector. The objective function f (Eq. 4) is defined as the sum of squared weighted 486 

errors: 487 

���� � ∑ ���	
���,��
��

���       (Eq. 4) 488 
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where xi is the experimental value of data point i collected at time ti, with an experimental 489 

standard deviation σi, and yi(p,ti) is the corresponding simulated value. Constraints are defined 490 

for all parameters to be estimated (0 < p1 < 1, -100 < p2 < 100, -1000 < p3 < 1000 for the 491 

logistic function and -1 < p4 < 1, -1 < p5 < 1, -10 < p6 < 10, -1000 < p7 < 1000, -100 < p8 < 492 

100, -1000 < p9 < 1000, -100 < p10 < 100 for the double logistic function) to improve 493 

convergence by reducing the solution space. The optimization problem is first solved using 494 

particle swarm optimization (R 3.2.4, pso package v1.0.3), followed by an L-BFGS-B [39] 495 

search (with an upper limit of 1000 iterations) to improve convergence. A plot of measured 496 

versus fitted data is generated to allow visual inspection of the quality of fit, and the analytical 497 

functions describing local label inputs are provided as output. 498 

 499 

Simulation of label propagation 500 

IsoSim solves the ODE system to simulate label propagation through the metabolic 501 

subnetwork of interest, using as input i) the constructed model, ii) the analytical functions 502 

describing local label input(s), iii) the metabolite concentrations, and iv) the fluxes. The 503 

simulation engine is based on the fluxomer framework [25], as detailed in [21], and has been 504 

enhanced using the EMU framework [27]. This facilitates the identifiability analysis while 505 

significantly reducing the size of the equation system to be solved. 506 

 507 

13C-flux calculation 508 

Fluxes are estimated by fitting experimental data (the concentrations and labeling dynamics of 509 

metabolic intermediates). The objective function h (Eq. 5) is defined as the sum of squared 510 

weighted errors [40]: 511 
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�    (Eq. 5) 512 
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where v is the vector of fluxes, m is the vector of metabolite concentrations mj, xi is the 513 

experimental value of the labeling at data point i, with experimental standard deviation σi, 514 

yi(v,m) is the corresponding simulated value, nj is the experimental concentration of 515 

metabolite mj with standard deviation σj. Equality and inequality constraints can be defined 516 

for the fluxes (default constraints: -103 < v < 103) and metabolite concentrations (default 517 

constraints: 10-6 < m < 103). The objective function h is minimized using the nlsic 518 

optimization algorithm [10] (with 50 iterations). The goodness-of-fit is evaluated using a chi-519 

square test, and the mean, median, standard deviation and 95% confidence intervals of the 520 

calculated fluxes are estimated using Monte-Carlo sensitivity analysis. 521 
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Supporting Information 682 

S1 Table. Initial values of fluxes and metabolite concentrations. Values of fluxes and 683 

metabolite concentrations used to simulate label propagation through the example network 684 

shown in Fig 1A. 685 

S1 Fig. Simulation results. Labeling dynamics in response to a switch from unlabeled Xout to 686 

fully labeled Xout. 687 

S2 Fig. Fit of local label inputs. The labeling dynamics of the local label inputs in all the 688 

subsystems shown in Fig 3 were fitted with analytical functions. The dots represent the fitted 689 

data and the lines represent the best fits. 690 

S3 Fig. Flux calculation results. Fluxes were estimated by fitting the labeling dynamics of 691 

the metabolic intermediates of all the subsystems shown in Fig 3. The dots represent the fitted 692 

data and the lines represent the best fits. 693 
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