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  Abstract 

 Microbial organisms inhabit virtually all environments and encompass a vast 

biological diversity. The pan-genome concept aims to facilitate an understanding of diversity 

within defined phylogenetic groups. Hence, pan-genomes are increasingly used to 

characterize the strain diversity of prokaryotic species. To understand the interdependency of 

pan-genome features (such as numbers of core and accessory genes) and to study the impact 

of environmental and phylogenetic constraints on the evolution of conspecific strains, we 

computed pan-genomes for 155 phylogenetically diverse species using 7000 high-quality 

genomes. We show that many pan-genome features such as functional diversity and core 

genome nucleotide diversity are correlated to each other. Further, habitat flexibility as 

approximated by species ubiquity is associated with several pan-genome features, particularly 

core genome size. In general, environment had a stronger impact on pan-genome features than 

phylogenetic signal. Similar environmental preferences led to convergent evolution of pan-

genomic features in distant phylogenetic clades. For example, the soil environment promotes 

expansion of pan-genome size, while host-associated habitats lead to its reduction. 
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Introduction 

Sequenced prokaryotic species vary approximately 100 fold in genome size and gene 

content [1]. The gene content of bacterial and archaeal genomes is mainly shaped by gene 

duplication, neo-/sub-functionalization, and losses. Other sources of functional innovation 

include de novo emergence of genes, and horizontal transfers; all leading to a vast prokaryotic 

genetic diversity [2–4]. In order to characterize strain diversity within a species, pan-genome 

analyses have been proven useful [5]. The pan-genome is the non-redundant set of all genes 

(gene clusters or homologous groups) found in all genomes of a taxon [6, 7]. A species pan-

genome contains core genes (that are present in almost all isolates) and accessory genes, 

which can be further subdivided based on their prevalence. Each newly sequenced genome of 

a conspecific strain can contribute anywhere between 0 to more than 300 new genes to the 

pan-genome of a species [8]. This potentially infinite addition of new genes means that the 

accessory gene repertoire of a species can theoretically increase with no emerging upper 

boundary, making pan-genomes appear open. 

The pan-genome of a given species is potentially shaped by its respective habitat(s) 

(via selection and drift) and phylogeny (inherited gene content after speciation). For example, 

previous studies have observed a relationship between habitat and genome size (as a proxy for 

gene content): free-living soil bacteria tend to have the largest described genomes [9] while 

marine free-living and intracellular symbionts harbor the smallest ones [10–13]. Obligate 

symbiotic species tend to have small pan-genomes – almost equal to the genome size, while 

soil-associated and some highly abundant free-living marine bacteria tend to have the largest 

pan-genomes [14]. However, it is not well understood which aspects of a species’ pan-

genome are influenced by environmental factors and phylogenetic inertia. The overall 

architecture of a pan-genome can be described from various angles, using established 

quantitative measures of individual pan-genome features, such as pan-/core genome genome 

sizes, genome fluidity, and average nucleotide identity/diversity (also see Supplementary 
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Table 1 for definitions). Many of the pan-genome features describe the size of certain 

categories of genes, while others focus on a description of within species diversity. 

Pan-genome features are generally expected to be phylogenetically conserved as a 

result of the evolutionary history of a given species, and predefined by past exposures to 

different environments. Closely related species tend to share more genes, i.e. gene content 

similarity follows phylogeny [2, 15]. Further, habitat preferences are also phylogenetically 

predetermined [16] and dispersal capability varies across different taxa [17, 18]. On the other 

hand, environmental factors shape genome architecture and the pan-genome in general [19]. 

A (pan-)genome’s functional potential mirrors both niche and phylogenetic signals [20], 

consequently phylogenetic relatedness and genome functionality are mildly predictive of 

species ubiquity and genome size [21, 22]. Thus, pan-genome features exhibit both 

phylogenetic and environmental associations. Yet as phylogeny and habitat preference are 

themselves correlated, their association needs to be taken into account when disentangling 

their relative contributions to pan-genome features (Fig. 1).  

Recently, the pan-genome and its derivative measures (features) have been used 

extensively in comparative genomics of individual prokaryotic species to: (i) define species 

boundaries [23, 24], (ii) describe the genomic diversity of species [25], (iii) reveal origins of 

mutualistic and pathogenic strains [14] and (iv) characterize evolutionary and ecological 

mechanisms that shape genome architecture [8, 26]. To understand the general principles of 

pan-genome evolution and to disentangle the impact of environment and phylogeny, we 

performed a meta-analysis of over 7000 genomes, encompassing 155 prokaryotic species 

from 10 phyla and 83 environments (Fig. 1). We computed 21 previously established pan-

genomic features. The variation across these features was explored with respect to 

phylogenetic inertia and environmental constraints/preferences (as characterized by 83 habitat 

descriptors) of the studied species. Using this framework, we quantified interdependencies of 
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pan-genomic features, identified novel relationships among them, and estimated how 

environment shapes pan-genome architecture. 

 

Methods 

Genomic data 

In this study we used 7104 genomes from 155 species (defined using 40 universal 

marker genes - specI clusters [27]) obtained from the proGenomes database [28] (see 

Supplementary Table 2). For reliability of further analysis, we included only high-quality 

genomes with 300 or fewer contigs. Only one genome from any pair of genomes was retained 

for downstream analysis when pairwise nucleotide identity in core genome was 100% and 

pairwise gene content overlap (Jaccard index) > 99%. We used only species that contained at 

least 10 high-quality genomes in the proGenomes database [28].  

Habitat annotation 

Habitat metadata for isolates/strains were obtained from the PATRIC database [29], 

the Microbe Atlas Project database (JF Matias Rodrigues et al, in preparation) and Global 

Microbial Gene Catalog (LP Coelho et al, submitted), resulting in the reliable annotation of 

species to one or more habitats (83 total habitats). Ubiquity was estimated as the sum of all 

positive associations (Fisher’s Exact Tests, Benjamini-Hochberg-correction, p≤0.05) across 

all habitats in the Microbe Atlas Project dataset. The final annotation is available as 

Supplementary Table 3. 

 Pan-genome reconstruction 

Pan-genomes for the 155 species studied were constructed using the Roary pipeline 

[30]. Input genomes for pan-genome construction were first annotated using Prokka [31]. We 

identified homologous gene clusters at an amino acid identity threshold of 80% [32–35]. Pan- 

and core genome curves were generated via 30 input order permutations (similar to the 

approach in the GET_HOMOLOGUES pan-genome pipeline [36]. Fitting of non-linear 
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regressions was performed in R v.3.3.2 [37] using “nls package”. The total number of genes 

in the pan-genome of a given species, the number of new genes added per genome and the 

total number of core genes were modeled using equations [1], [2] and [3] respectively to 

estimate openness of pan-genome [6, 7].  

[1]  � � ��� � �, 

[2]  � � ����, 

[3]  � � ����� � �, 

where G – number of genes; N – genome number that is added to analysis; k, c, - constants; α 

and γ – saturation coefficients. When γ≤0 in equation [1] – pan-genome is closed (saturated) 

(Fig. 2a); 0<<γ≤1 – pan-genome is open (Fig. 2a). When α<1 in [2] – pan-genome open, α>1 

– pan-genome is closed. 

Classification thresholds for pan-genome subcomponents were defined as follows: 

core genes – present in all strains; extended core – present in > 90% of genomes; cloud genes 

– present in < 15% (includes unique genes in pan-genome); the remaining part of pan-genome 

were considered “shell” genes (Supplementary Figure 1). These thresholds are based on 

default parameters of the Roary pipeline [30], although we readjusted the extended core 

threshold to 90%, as suggested by the distribution frequency of genes within the pan-genomes 

in our dataset (Supplementary Figure 2). The R package “micropan” [38]  was used to 

compute genomic fluidity [39], Chao’s lower bound for gene content in the pan-genome [40] 

and Heaps’ alpha (equation [2]) [6]. Functional distance between strains within each pan-

genome was estimated as jaccard distance based on eggNog v4.5 annotations [41] of pan-

genome gene clusters. 23 parameters (21 pan-genome features, plus the number of conspecific 

isolates and species ubiquity) were compared using Spearman’s rank correlation to investigate 

the relationship between sample sizes, subcomponents of pan-genome, saturation parameters 

(γ and α) from equations [1], [2], [3], genome fluidity functional distance and core genome 

nucleotide identity (see Supplementary Table 1 for definitions of pan-genome features). To 
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obtain unbiased estimates of core and pan-genome size we rarefied to 9 genomes as suggested 

previously [36]. Hierarchical clustering of a subset of pan-genome features was performed on 

absolute values of pairwise Spearman Rho values as displayed in Fig. 2a. 

 

Phylogenetic signal and phylogenetic generalized least squares 

An approximate maximum likelihood phylogenetic tree of all 155 species was 

generated using the ete-build concatenation workflow “clustalo_default-trimal01-none-none” 

and “sptree-fasttree-all” from ETE Toolkit v3.1.1 [42], using protein sequences of 40 

conserved universal marker genes [27, 43, 44] and default parameters for the ClustalOmega 

aligner [45] and FastTree2 [46] with the JTT model [47]. 

To estimate the phylogenetic signal of genomic traits, we used the R package 

“phylosignal” [48] with Pagel’s Lambda [49], following guidelines for phylogenetic signal 

analysis [50, 51] (Supplementary Figure 3). The “Caper” R-package was used for 

phylogenetic generalized least squares regression [52]. 

Variance quantification 

The cophenetic distance matrix obtained from the phylogenetic tree and the binary 

habitat association matrix were each decomposed using the “FactoMineR” R package [53]. 

The first 5 phylogenetic principal components (PCs, accounting for ~80% of phylogenetic 

variance) and 10 habitat PCs (accounting for ~50% of habitat variance) were used for 

variance partitioning. PCs were selected using the “broken stick” model utilizing a computer 

program made available by Borcard et al 2011 [54]. The first two principal components for 

phylogenetic and habitat matrices decompositions are visualized in Supplementary Figure 4 

and Supplementary Figure 5. The fraction of the variance explained by habitat and phylogeny 

were estimated using the CAR metric which performs a decorrelation of predictors [55] 

implemented in the “car” R-package with the following models: 
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[4] Pan-genome feature = number of genomes in each species + 5 phylogenetic PCs + 

10 habitat PCs  

 

[5] Pan-genome feature = number of genomes in each species + genome size + 5 

phylogenetic PCs + 10 habitat PCs  

 

[6] Pan-genome feature = number of genomes in each species + core genome 

nucleotide diversity + 5 phylogenetic PCs + 10 habitat PCs  

 

We also performed the model fitting procedure [4] on 1000 permutations of the first 5 

phylogenetic PCs and first 10 habitat PCs to ensure that the actual habitats and phylogeny 

data explained a higher fraction of the variance than randomized models (Supplementary 

Figure 6). 

 

Results 

Delineation of pan-genomes and habitats descriptors 

 The foundation of this study is a large collection of pan-genomes from a diverse set of 

prokaryotic species. To establish this foundation, we filtered the proGenomes database of 

annotated prokaryotic genomes [28] to select species (see Methods, also [27]) for which at 

least 10 high-quality genomes (conspecific isolates/strains/genomes; further referenced as 

strains or genomes) were available (Fig. 1, also see Methods). For each of the resulting 155 

species, we computed 21 pan-genome features (ranging from pan-genome saturation to 

functional distance, see Fig. 2a and Supplementary Table 1). These features have been shown 

to characterize different aspects of the pan-genomic structure and have been previously used 

in pan-genome analysis projects on individual microbial species [6, 39]. Partitioning of the 

pan-genome into subcomponents (“core”, “shell”, “cloud”; see Methods) enabled us to relate 
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the evolutionary adaptations of core and accessory genome features to environmental 

pressures separately. Pan-genome features varied in size, for example, average core genome 

size was in the range of 443-5964 genes; average pan-genome size – 959-17739 genes; 

average shell 18-2409; average cloud – 5-839 genes. We annotated each species’ habitat 

preferences (operationally defined as the set of habitats where species were observed) by 

merging information obtained from the PATRIC database [29], the Microbial Atlas Project 

database (http://devel.microbeatlas.org/ see also Supplementary Table 3) (JF Matias 

Rodrigues et al, in preparation) and the Global Microbial Gene Catalog 

(https://gmgc.embl.de) (LP Coelho et al, submitted), resulting in assignments of each genome 

(strain) to one or multiple of 83 habitat descriptors (see methods). On average, each species 

was present in 16.5±7.8 habitats in Microbial Atlas Project (JF Matias Rodrigues et al, in 

preparation); 2.4±1.1 from manually curated PATRIC habitat annotations; and 3.6±2.8 in the 

Global Microbial Gene Catalog (LP Coelho et al, submitted). (Supplementary Table 3). 

 

Interdependencies of pan-genome features 

The relationships between different pan-genomes features can be an indication of 

similar evolutionary pressures acting on the related features. Further, correlations between 

different features can decrease the accuracy of analyses when not considered. Hence, we 

estimated interdependencies for (i) the number of conspecific strains (the number of genomes 

per pan-genome), (ii) the 21 computed pan-genome features, (iii) species ubiquity, and (iv) 

habitat preference (see Supplementary Table 3 for estimates of pan-genome features, 

Supplementary Table 1 for definition and Supplementary Table 4 for correlation summary) 

(Fig. 2a). Estimates of pan-genome size and the size of its components (core, shell, cloud) are 

strongly correlated with each other (Fig. 2a). As expected, mean genome size strongly 

correlated with several features, including core-genome size (Spearman Rho 0.955, 

p<0.00001), pan-genome size (0.963, p<0.00001) and core-genome nucleotide diversity 
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(0.373, p=0.00003), indicating that a species’ genome size is highly predictive of its pan-

genome features, especially pan-genome size. 

Unexpectedly, several pairs of conceptually related pan-genome features did not 

correlate. For example, the correlation between genome fluidity (average ratio of unique gene 

clusters/families to the sum of gene families over random subset pairs of genomes, see 

Supplementary Table 1 [39] and pan-genome saturation (a representation of the number of 

new genes are expected for every new genome sequenced, see Methods) was not significant 

(0.15, p=0.72), despite the fact that both measures are commonly used to estimate the 

openness of pan-genomes [8, 39]. This might indicate that these two measures characterize 

different aspects of pan-genome openness. A possible explanation of this observation is an 

implicit bias of the pan-genome saturation  estimate due to under-sampling [39]. 

Furthermore, the average pairwise functional distance (average Jaccard distance based 

on orthologous groups) between conspecific strains positively correlated to the vast majority 

of pan-genome features. Only three pan-genome features were not significantly correlated to 

the average pairwise functional distance, namely the size of the extended core, the number of 

conspecific strains (number of conspecific genomes used to compute pan-genome features) 

and ubiquity (see Supplementary Table 4 for Spearman Rho and p-values). We also found that 

species with larger genomes tend to have a higher functional diversity (Spearman Rho = 0.48, 

� � 6.5 � 10��), mainly driven by changes in the size of the pan-genome shell. This 

relationship is not biased by the number of sampled strains (Fig. 2a). 

  We observed associations of sample size (number of conspecific strains) with core 

genome saturation, total pan-genome size, and the sizes of “cloud”, “unique genes”, and 

“extended core”, indicating a sampling bias for a subset of the species analyzed. To 

compensate for this potential bias, we performed variance partitioning on 9 out of 21 features 

representing qualitatively different pan-genome properties are not significantly affected by 

sample size (non-significant correlations with Spearman Rho close to 0, see Fig. 2a). We 
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explored the interdependencies of these nine pan-genome features by clustering them 

according to their correlation strengths and identified two subgroups (Fig. 2b, see also 

Supplementary Table 5). These subgroups split the features into diversity estimates (core 

genome nucleotide diversity, functional distance, genome fluidity) and size estimates (average 

genome, pan-genome, core, shell, cloud), implying differing evolutionary dynamics for these 

feature groups. Specifically, size-related pan-genome features were better explained by 

phylogenetic and environmental preference compared to diversity estimates (Fig. 2b). 

 

Species ubiquity is related to core genome size 

All surveyed species are abundant in multiple habitats and the transition between free-

living and host-associated lifestyles is frequent on both micro- and macroevolutionary (and 

ecological and evolutionary) timescales, imposing multidirectional pressures on the evolution 

of their genome architecture [56]. Species ubiquity is a potentially important factor 

contributing to the evolution of specific pan-genome features that needs to be considered, 

because species with broad ecological niche are likely to have different evolutionary 

constraints compared to specialists [57]. We operationally defined species ubiquity as the sum 

of all positive associations with each habitat in the Microbe Atlas Project dataset (see 

Methods). Broader ecological niches and higher ubiquity tend to be associated with larger and 

more functionally versatile genomes [58]. Therefore, we investigated the relationship between 

the ubiquity of each species with its pan-genome features in depth and found several 

associations (Fig. 2a). We observed a moderate, but significant association of species ubiquity 

(Fig. 3a) with average normalized core genome size (operationally rarefied to 9 genomes to 

obtain an unbiased average of core genome size and its s. d., see Supplementary Figure 1) and 

on pan-genome saturation (exponent coefficient α in Heap’s law model, equation [2] in 

Methods), but not on any other pan-genome features after correcting for phylogenetic effects 

(Fig. 3a, Supplementary Table 6). This suggests that a larger core genome may be important 
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to facilitate persistence and proliferation in multiple habitats. The core genome of highly 

ubiquitous species was enriched in genes coding for proteins involved in lipid metabolism and 

secondary metabolite biosynthesis (I and Q in Fig. 3b, respectively). This is congruent with 

earlier studies, suggesting that secondary metabolite biosynthesis might be implicated in 

adaptation to multiple environments [58].  

 

Dissecting the impact of phylogenetic inertia and environment on pan-genome 

features 

We next quantified differential contributions of evolution and environmental factors to 

pan-genome architecture. Pan-genome features were modeled as a combination of the number 

of conspecific genomes considered, phylogenetic placement and habitat preference. For this 

we used an abstract representation of phylogeny and habitats as principal components (PCs), 

accounting for dimensionality, collinearity and redundancy within these data. The respective 

relationships were approximated using a linear model (Methods), which allowed us to 

estimate the variance of pan-genome features between species explained by phylogenetic 

effect and habitat preferences: 

 

Pan-genome feature ~ Number of genomes + [Genome size or diversity] + 5 

phylogenetic PCs + 10 habitat PCs. 

 

Together, habitat and phylogenetic effects explained large parts of the variance (up to 

49% by habitat and 17% by phylogenetic effect) in all selected features (Fig. 2b, 

Supplementary Table 5). This remained true, even when controlling for genome size or 

diversity of the core genome (as evident when these were included in the model as predictors 

as in the second and third set of stacked charts of Fig. 2b) (Supplementary Table 6). Habitat 

and phylogeny have considerable independent effects on pan-genomic features, although the 
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impact of habitat preferences was consistently stronger (Fig. 4). Diversity estimates, in 

contrast, were explained to a lesser degree by habitat preferences of species and phylogenetic 

inertia, as they likely reflect spatio-temporal (microevolutionary) variation of sub-populations 

within species due to local adaptation and/or genetic drift [25, 59]. For example, a higher 

fraction of core genome size (and genome size) variance was explained by species habitat 

preference than any other pan-genome feature (including accessory genome size when 

considered separately), implying that core genome size might be linked to a species’ ecology 

while the accessory genome might often be more affected by random gene acquisition and 

loss. The observed signals were robust to technical and annotation noise, as random 

permutations of habitat and phylogenetic principal components did not exceed the observed 

data in variance explained (except for genome fluidity (Supplementary Figure 6)). The 

strongest phylogenetic effects were observed for average core, pan-genome and genome sizes 

(confirmed using Pagel’s Lambda estimate to test the strength of the phylogenetic signal [49] 

(Supplementary Figure 3). Altogether, up to 65% of the variance of different pan-genome 

features was explained by habitat and phylogeny (Fig. 2b and Fig. 4). Overall, habitat and 

phylogeny effects contributed differentially to diversity- and size-based pan-genome features 

(Fig. 2b).  

 

Environment-driven, convergent evolution of pan-genome features 

We next tried to narrow down the habitat effects of selected major habitat groups (soil-

associated, aquatic, animal-host associated and plant-host associated habitats) in relation to 

genome/pan-genomes sizes and diversity, accounting for phylogenetic background (Fig. 2a). 

Soil and plant-host habitats were associated with larger pan- and core genomes, while animal 

host habitats were associated with smaller ones. Aquatic habitats were not a good predictor 

for size-related pan-genome features, which might be indicative of their heterogeneous nature 

[19, 60]. The distribution of core genome sizes across the phylogenetic tree of species studied 
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showed that large core genomes have independently evolved (Kruskal-Wallis test, chi-squared 

= 32.194, df = 1, p-value = 1.395e-08) in soil-inhabiting species from at least four (out of ten 

analyzed) phyla (Proteobacteria, Actinobacteria, Spirochaetes and Firmicutes, Fig. 5). Small 

core genome sizes independently evolved at least 3 times (Proteobacteria, Actinobacteria, 

Firmicutes) in our dataset. Nucleotide diversity of the core genome was, in contrast to size, 

less affected by habitat and phylogenetic signals (Fig. 4, Supplementary Figure 3). 

Nevertheless, species with a higher nucleotide diversity within their core genome were 

positively associated with aquatic habitats (Fig. 5) (Kruskal-Wallis test, chi-squared = 25.69, 

df = 1, p-value = 4.01e-07), in line with earlier observations from metagenomics [16]. In 

conclusion, core genome sizes and (to a lesser degree) diversity in prokaryotic species depend 

on broad habitat type(s) and range, implying that adaptation to a given habitat range leads to 

convergent evolution towards habitat-specific core genome sizes (e.g. soil-associated species 

have larger genomes, Fig. 5). Our findings were consistent when using larger cohort of over 

4500 species for which we explored the relationships between genome size and habitat as well 

as phylogeny (Fig. 4, also see Supplementary Table 6 and Supplementary Table 7). As 

expected, habitat had a much greater effect (34.6% variance explained) than phylogeny (9.8% 

variance explained). This implies that our findings across 155 diverse species (Fig. 3a) are 

likely to be generalizable. 

 

Discussion 

The question of how environments shape biological diversity is central to modern 

biology, extending beyond evolutionary biology. Microbial evolution is particularly affected 

by ecological constraints due to the broad distribution of microbial life across virtually all 

environments on Earth. Our understanding of microbial species and their evolution has been 

extended by the pan-genome concept [5, 6]. By analyzing microbial pan-genomes in the 

context of their environmental preferences and phylogeny, we were able to dissect major 
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forces that shape microbial genomes. Our results suggest that habitat and phylogeny explain 

the majority of variation across different pan-genomic features, with differential contributions 

to size and divergence measures. Different theories and concepts have been postulated to 

explain microbial evolution in response to the environment. For example, it has long been 

thought that a large pool of accessory genes would be beneficial in certain habitats (and 

habitat combinations), but the role of the pan-genome as an adaptive evolutionary entity has 

been recently disputed. In the respective debate [8, 61–66], analyses of pan-genome size 

estimates (Fig. 2b) have led to the conclusion that pan-genomes are adaptive [8], while studies 

focusing on diversity measures such as genome fluidity led to the conclusion that pan-genome 

evolution is predominantly neutral [61]. Our analysis shows that environmental conditions 

and phylogenetic inertia affect size-related pan-genome features to a higher degree (than 

diversity features), suggesting that the adaptiveness of pan-genomes is at least partially 

explained by environmental preferences of species and their phylogenetic inertia (Fig. 2b). 

Mechanistically, it is likely that ecological constraints imposed by habitats drive pan-genome 

evolution, through natural selection, genetic drift and/or both and most likely in dependence 

on the species’ effective population size [67]. Yet, pan-genome size and other features are 

also partially determined by phylogenetic inertia: we observed that core genome size and 

average genome size (number of protein-coding genes) were most affected by phylogenetic 

position (Fig. 2b, Fig. 4). The conservation of the core genome in a given clade is likely due 

to the fact that it consists of essential genes that are under strong negative selection pressure 

[68–70], which leads to vertical “heritability” of its content and size from ancestral species to 

descendants during speciation events. 

Building on a previous study, which showed a weak positive relationship between the 

ubiquity of species and overall genome size [58], we found that the strongest (albeit still 

moderate) correlation was with core genome size.  Our more detailed observations suggest 

that genes that facilitate ubiquity (i.e., present across many habitats) are usually present in the 
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core genome, which is further supported by the absence of a significant correlation between 

average intra-species pairwise functional distance and ubiquity (Fig. 2a). If functional 

diversity of accessory genome was highly important for ubiquity, we would expect a positive 

correlation between intra-species pairwise functional distance and ubiquity. In other words, 

the expansion of a species into additional habitats requires almost all strains to have genes that 

facilitate survival and proliferation in all or most species habitats. 

Overall, our results indicate important relationships between the environment, 

macroevolutionary patterns, and microevolutionary (pan-genome) features, exemplified by 

the association between ubiquity and core-genome size. Hence, multi-feature predictive 

modelling is able to predict the ubiquity and environmental preferences of microbial species 

from pan-genomic information and phylogenetic placement, whereby accuracy will increase 

as more (pan)genomes become available. Functional knowledge of the genes within the pan-

genome will also help to predict habitat ranges as well as required or desired environmental 

conditions, in the context of the respective phylogenetic placements.  
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Fig. 1. Study design. We used the proGenomes database v.1 [28] of high-quality genomes to 

compute pan-genomes, pan-genomic features and assigned preferred habitats to species (see 

methods). As many pan-genome features are interdependent (covariates) or affected by 

sampling bias, we used a multivariate analysis framework to disentangle habitat properties 

from phylogenetic inertia. This allows for the quantification of environmental and 

phylogenetic factors that impact strain diversity within species.  

 

 

Fig. 2. Relationship between different pan-genome features. a. Correlation matrix between (I) 

the number of conspecific genomes used to estimate pan-genome features, (II) 21 pan-genome 

features, (III) the ubiquity of species as an environmental feature computed from habitat 

preference of strains, and (IV) major habitat groups from the Microbial Atlas project. The 

heatmap visualizes Spearman Rho values for correlations between sample size (I), 21 pan-

genome features (II) and species ubiquity (III). Four major habitats (aquatic, animal host, 

plant host, soil (IV)) were correlated to the (I) number of conspecific genomes, (II) pan-

genome features and (III) ubiquity via point-biserial correlation. Statistical significance of 

correlations was determined using adjusted p-values (using Benjamin-Hochberg correction) < 

0.05.  

b. Clustering of a subset of nine pan-genome features based on their pairwise correlation 

strengths. Horizontal stacked charts present amount of variance explained by various 

predictors (number of genomes, phylogeny and habitat represented by their principal 

components (PCs), and genome size or diversity). The first set of stacked charts (“no 

correction”) shows variance explained in pan-genome features by the number of genomes 

used to compute pan-genome features as well as species’ phylogeny and habitat preferences; 

the second and the third sets of stacked charts represent the amount of variance explained (see 

Methods) by the same set of predictors when correcting for genome size or nucleotide 
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diversity in core genome respectively. Size and diversity estimates form distinct feature 

groups. 

 

 

Fig. 3. Effect of ubiquity on core genome size and functional content. a. Species ubiquity 

(number of habitats a species was assigned to), a habitat feature, is linked to core genome 

sizes after correction for phylogenetic effect (Phylogenetic generalized least squares, p-

value=0.00005, λ=0.98 (95% C.I. 0.957, 0.992), partial r^2 (for ubiquity coefficient) 0.09, see 

also Supplementary Table 6). b. Correlation of ubiquity with the relative frequency of 

functional categories (COG categories assigned by eggNog v4.5 [41]) in core and accessory 

genomes. Species of high ubiquity tend to encode more proteins involved in Lipid 

Metabolism (I) and Secondary Metabolite Biosynthesis (Q). 

 

 

Fig. 4. Partitioning of variance in pan-genome features by phylogeny and habitat (R-

square(car score)) based on model [1] from Fig. 2b. 

 

 

Fig. 5. Phylogenetic tree of 155 microbial species with scatterplots of core genome size and 

average nucleotide diversity of core genomes. Species with large core genomes (> ~3000 

genes) are marked in red within the tree, highly diverse species (> ~0.035) in blue. Tree labels 

and scatter plots are colored by their taxonomic annotations. Bottom panel: Relationships 

between habitats and core genome size and average nucleotide diversity of core genomes. 
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