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Abstract  

Cell growth and quiescence in eukaryotic cells is controlled by an evolutionarily conserved             

network of signaling pathways. ​Signal transduction networks operate to modulate a wide range             

of cellular processes and physiological properties when cells exit proliferative growth and            

initiate a quiescent state. How signaling networks function to respond to diverse signals that              

result in cell cycle exit and establishment of a quiescent state is poorly understood. Here​, we                

studied the function of signaling pathways in quiescent cells using global genetic interaction             

mapping in the model eukaryotic cell, ​Saccharomyces cerevisiae (budding yeast). We performed            

pooled analysis of genotypes using molecular barcode sequencing to test the role of ~3,900              

gene deletion mutants and ~11,700 pairwise interactions between all non-essential genes and the             

protein kinases ​TOR1 ​, ​RIM15​, ​PHO85 in three different nutrient-restricted conditions in both            

proliferative and quiescent cells. We detect nearly five-fold more genetic interactions in            

quiescent cells compared to proliferative cells. We find that both individual gene effects and              

genetic interaction profiles vary depending on the specific pro-quiescence signal. The master            

regulator of quiescence, ​RIM15 shows distinct genetic interaction profiles in response to            

different starvation signals. However, vacuole-related functions show consistent genetic         

interactions with ​RIM15 in response to different starvation signals suggesting that ​RIM15            

integrates diverse signals to maintain protein homeostasis in quiescent cells. Our study expands             

genome-wide genetic interaction profiling to additional conditions, and phenotypes, highlighting          

the conditional dependence of epistasis.  
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Introduction 

Most cells spend the majority of their lifetime in a quiescent state defined as the temporary and                 

reversible absence of proliferation ​(O’Farrell 2011; Lemons et al. 2010; Valcourt et al. 2012)​.              

Quiescence requires exit from the mitotic cell division cycle and initiation of a distinct G0 cell cycle                 

phase, during which cells remain viable and maintain the capacity to re-initiate proliferative growth              

(Valcourt et al. 2012)​. In multicellular organisms development, tissue renewal and long term survival is               

dependent upon the persistence of stem cells that are quiescent, but retain the ability to re-enter the cell                  

cycle to self-renew, or to produce progeny that can differentiate and re-populate the tissue ​(Miles and                

Breeden 2017)​. Exit from quiescence, and initiation of aberrant proliferation, is a hallmark of cancer               

(Hanahan and Weinberg 2011; Miles and Breeden 2017)​. Conversely, many cancer-related deaths are             

the result of quiescent tumor cells that are resistant to therapeutics and underlie tumor recurrence ​(Yano                

et al. 2017; Borst 2012)​. Thus, understanding cellular quiescence and how cells regulate the transition               

between proliferative and quiescent states is of fundamental importance to our understanding of cellular              

homeostasis and disease. 

Cells exit the cell cycle and enter quiescence when they are deprived of essential nutrients or                

growth factors ​(Valcourt et al. 2012; Daignan-Fornier and Sagot 2011; Klosinska et al. 2011)​. The               

quiescent state of the model eukaryotic organism, ​Saccharomyces cerevisiae ​(budding yeast) shares            

many important features with that of higher organisms ​(Valcourt et al. 2012; Dhawan and Laxman 2015)​,                

including cell cycle arrest, condensed chromosomes, reduced rRNA synthesis and protein translation,            

and increased resistance to stress. Therefore, the mechanisms that regulate cell cycle arrest and the               

establishment, maintenance and exit from a quiescent state, as well as the physiological processes              

associated with this state, are likely to be shared across eukaryotic cells.  

2 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 15, 2019. ; https://doi.org/10.1101/735720doi: bioRxiv preprint 

https://paperpile.com/c/l7VxzD/nOcM3+enJGy+CzLTe
https://paperpile.com/c/l7VxzD/CzLTe
https://paperpile.com/c/l7VxzD/Txyx0
https://paperpile.com/c/l7VxzD/Txyx0
https://paperpile.com/c/l7VxzD/uIQui+Txyx0
https://paperpile.com/c/l7VxzD/BFtRn+mKY3o
https://paperpile.com/c/l7VxzD/BFtRn+mKY3o
https://paperpile.com/c/l7VxzD/CzLTe+20jL4+KrsIA
https://paperpile.com/c/l7VxzD/CzLTe+jzmsl
https://doi.org/10.1101/735720
http://creativecommons.org/licenses/by/4.0/


 

Studies of quiescence in yeast typically examine stationary-phase cells, namely cells grown to             

saturation in rich, glucose-containing medium ​(Gray et al. 2004; Young et al. 2017)​. Such cells first                

exhaust available glucose through fermentative metabolism and then, following the diauxic shift, switch             

to respiration using ethanol as carbon source. Upon exhaustion of ethanol cells enter quiescence.              

However, in addition to carbon starvation, yeast cells can respond to a variety of nutrient starvations by                 

exiting the cell cycle and initiating quiescence ​(Lillie and Pringle 1980; Gresham et al. 2011; Klosinska et                 

al. 2011)​. Starvation for essential nutrients including nitrogen, phosphorus and sulfur result in many of               

the same characteristics as carbon starved cells including arrest as unbudded cells, thickened cell walls,               

increased stress resistance and an accumulation of storage carbohydrates ​(​Lillie and Pringle 1980 ​;             

Schulze et al. 1996)​. Although under laboratory conditions yeast primarily experience carbon starvation,             

in the wild yeast are likely to experience a diversity of nutrient deprivations. How the cell integrates these                  

diverse signals to mount the same physiological response, and establish cellular quiescence, remains             

poorly understood.  

The ability of stationary phase yeast cells to maintain viability has also been used as a model for                  

the chronological aging. Chronological lifespan (CLS) has been defined as the time a yeast cell can                

survive in a non-dividing, quiescent-like state ​(Fabrizio and Longo 2003; Kaeberlein 2010; Walter,             

Matter, and Fahrenkrog 2014)​. Therefore, CLS is closely related to the proportion of quiescent cells in                

stationary phase cultures because non-quiescent cells have a reduced ability to reenter the cell cycle               

(Allen et al. 2006; Walter, Matter, and Fahrenkrog 2014)​. Cells with a shortened CLS have reduced                

reproductive capacity upon replenishment of nutrients, while cells with an increased CLS have enhanced              

reproductive capacity under the same condition ​(Garay et al. 2014)​. Identification of genes that mediate               

CLS in yeast under different nutrient restrictions is potentially informative about the regulation of aging in                

higher organisms.  
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Genotype has a profound impact on the regulation of quiescence. Many studies of survival in               

stationary-phase cells, and their application to the study of CLS, have been conducted using auxotrophic               

strains. However, starvation for an engineered auxotrophic requirement results in a failure to effectively              

initiate a quiescent state and therefore leads to a rapid loss of viability ​(Boer et al. 2008; Gresham et al.                    

2011)​. This is likely due to the fact that yeast cells have not evolved a mechanism for sensing and                   

responding to lab engineered auxotrophic requirements. Thus, the identification of mutants that            

suppress the rapid loss of viability upon undefined starvation in auxotrophic strains may be of limited                

relevance for understanding the regulation of quiescence and CLS. Previous studies of quiescence             

using prototrophic yeast cells, and defined starvations, have shown that the genetic requirements for              

quiescence differ depending on the nutrients for which the cell is starved ​(Gresham et al. 2011;                

Klosinska et al. 2011)​. However, whether the genes required for proliferation in nutrient-limited             

conditions are they the same set of genes that are required for programming quiescence is not known.  

Multiple evolutionarily conserved nutrient sensing and signal transduction pathways, including          

the target of rapamycin complex I ​(​TORC1), protein kinase A (PKA), AMP kinase (AMPK) and PHO85                

pathways have been shown to regulate quiescence. ​The integrator of these diverse signalling pathways              

is thought to be the protein kinase RIM15, a great wall kinase with a mammalian homologue called                 

microtubule associated serine/threonine like kinase (​MASTL) ​(Castro and Lorca 2018)​. This regulator            

appears to be downstream of multiple signaling pathways and is required for the establishment of               

stationary phase. ​However, how different starvation signals are coordinately transduced via these            

pathways, and how RIM15 orchestrates the establishment of cellular quiescence is not known ​(de              

Virgilio 2012; Broach 2012)​.  

The relationship between different cellular processes and pathways can be investigated using a             

variety of methods that identify physical and functional interactions. One efficient approach to defining              

interactions between genes and pathways is through genetic interaction mapping. A genetic interaction             

4 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 15, 2019. ; https://doi.org/10.1101/735720doi: bioRxiv preprint 

https://paperpile.com/c/l7VxzD/jfOrf+1JEag
https://paperpile.com/c/l7VxzD/jfOrf+1JEag
https://paperpile.com/c/l7VxzD/1JEag+KrsIA
https://paperpile.com/c/l7VxzD/1JEag+KrsIA
https://paperpile.com/c/l7VxzD/F5FNW
https://paperpile.com/c/l7VxzD/g1qdH+pmICn
https://paperpile.com/c/l7VxzD/g1qdH+pmICn
https://doi.org/10.1101/735720
http://creativecommons.org/licenses/by/4.0/


 

is a relationship between two genes in which the phenotype of the double mutant diverges from that                 

expected on the basis of the phenotype of each single mutant ​(Costanzo et al. 2010; Tong et al. 2004)​.                   

A genetic interaction can be informative of the functional relationship between the encoded products.              

Positive genetic interactions may be indicative of genes that exist within pathways or complexes              

whereas negative genetic interactions often reflect genes that function in parallel pathways or processes              

that converge on the same function. Extension of genetic interaction mapping to testing genome-wide              

interactions between defined alleles enables definition of a genetic interaction profile, comprising the set              

of negative and positive genetic interactions for a given gene. The systematic application of this               

approach has demonstrated that genes that share similar functions, or operate in the same pathway,               

usually share similar genetic interaction profiles. As such, the similarity of a genetic interaction profile               

between two genes (typically quantified as a correlation coefficient) is informative about the similarity              

between the two genes’ functions. The culmination of genome-wide genetic interaction mapping in             

budding yeast is a global genetic interaction similarity network that serves as a functionally informative               

reference map ​(Costanzo et al. 2010; Costanzo et al. 2016)​. The completion of this comprehensive               

genetic interaction map leads to two related questions: 1) to what extent are genetic interactions               

dependent on environmental conditions? and 2) can genome-wide genetic interaction mapping be            

expanded to other phenotypes? To date, genome-wide genetic interaction mapping in yeast has             

primarily been performed in a single condition and assayed using a single phenotype - colony growth in                 

rich media. The extent to which genetic interactions defined by cell growth phenotypes depend on               

environmental conditions and the utility of using additional phenotypes in genetic mapping remains             

largely unexplored. A small number of studies suggest that functional relationships between genotype             

and phenotype are environmentally dependent ​(Díaz-Mejía et al. 2018; Jaffe et al. 2019;             

Bandyopadhyay et al. 2010) suggesting that a complete understanding of global genetic interaction             
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networks requires identification of genetic interactions in multiple conditions and using multiple            

phenotypes.  

Here, we have developed a robust method for quantifying phenotypes of pooled single and              

double mutants in different conditions using barcode sequencing. We applied this approach to quantify              

genetic requirements, and identify genetic interactions, in two different cellular states and three different              

nutritional conditions. Our experimental design entailed quantification of both fitness during proliferative            

growth and survival during prolonged defined starvation for each genotype. We find that the genetic               

requirements for quiescence differ depending on the nutrient starvation signal. Using genome-wide            

genetic interaction mapping for three key regulatory kinases, we find that these genes exhibit different               

interaction profiles in different growth conditions and in different cellular states. Finally, we find that the                

master regulator of quiescence, ​RIM15 shows distinct genetic interaction profiles and regulates different             

functional groups in response to different starvation signals. However, vacuole-related functions show            

consistent negative genetic interactions with ​RIM15 in response to different starvation signals            

suggesting that ​RIM15 controls quiescence by integrating diverse signals to maintain protein            

homeostasis. Our study points to a rich spectrum of condition-specific genetic interactions that underlie              

cellular fitness and survival across a diversity of conditions and introduces a generalizable framework for               

extending genome-wide genetic interaction mapping to diverse conditions and phenotypes. 
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Results 

Quantifying mutant fitness using pooled screens in diverse conditions 

Cellular quiescence in yeast can be induced through a variety of nutrient deprivations, but whether               

establishment of a quiescent state in response to different starvation signals requires the same genetic               

factors and interactions is unknown. Therefore, we sought to test the specificity of gene functions and                

genetic interactions in quiescent cells induced in response to three natural nutrient starvations: carbon,              

nitrogen and phosphorus. The use of prototrophic yeast strains is essential for the study of quiescence                

as unnatural, or unknown, starvations can confound results and their interpretation ​(Boer et al, 2008;               

Gresham et al. 2011)​. Therefore, we constructed haploid prototrophic double mutant libraries using a              

modified synthetic genetic array (SGA) mating and selection method (​Fig EV1A​). Briefly, double mutant              

libraries were constructed using genetic crosses between the ~4,800 non-essential gene deletion strains             

(Giaever et al. 2002) and query strains deleted for one of three genes encoding the catalytic subunit of                  

different regulatory protein kinases: ​TOR1 ​, ​RIM15​, and ​PHO85 ​(​methods ​). In addition, we constructed a              

single mutant library using the same method by mating the gene deletion collection with a strain deleted                 

for ​HO​, which has no fitness defects in haploids. We confirmed the genotype and ploidy of the resulting                  

three haploid double gene deletion libraries and the single mutant library using selective media and flow                

cytometry (​Fig EV1B ​).  

Previously, genome-wide genetic interaction mapping in yeast has been performed using colony            

growth phenotypes as a measurement of genotype fitness ​(Costanzo et al. 2010; Costanzo et al. 2016)​.                

In liquid cultures, the growth cycle of a population of microbial cells comprises a lag period, an                 

exponential growth phase, and a subsequent period in which growth is no longer observed, known as                

stationary phase. Initiation of stationary phase is indicative of cell growth and cell cycle arrest due to                 

starvation for an essential nutrient ​(de Virgilio 2012)​. To study each genotype over the complete growth                
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cycle in liquid cultures, we first analyzed the four libraries (​Fig 1A​) in three different defined                

nutrient-restricted media: carbon-restriction (minimal media containing 4.4mM carbon),        

nitrogen-restriction (minimal media containing 0.8mM nitrogen), and phosphorus-restriction (minimal         

media containing 0.04 mM phosphorus) (​Table EV2, ​methods and materials​). The composition of             

these media ensures that following an exponential growth phase cells experience either carbon, nitrogen              

or phosphorus starvation, respectively. In each of the three conditions media, 1.5 × 10 ​8 ​cells from each                 

of the four libraries (​Fig 1A​) of pooled mutants was used to inoculate cultures (t = 0). In nitrogen- and                    

phosphorus-restriction media, we observed that the starvation period commenced 24 hours after            

inoculation (​Fig EV1C​). Cells in carbon-restricted media underwent the diauxic shift after 24 hours, and               

reached stationary phase approximately 48 hours post inoculation (​Fig EV1C​). Beyond these time points              

we did not observe additional cell division or population expansion consistent with defined nutrient              

starvation and the initiation of quiescence.  

To compare the fitness of each genotype over the complete growth cycle in each condition, a                

1mL sample was removed from the culture at different time points and the subpopulation of viable cells                 

expanded using 24-48 hours of outgrowth in supplemented minimal media (​Fig 1A, method and              

materials​). This step is required to enrich for mutants that survive proliferation and starvation and to                

deplete those that have undergone senescence. Using an identical outgrowth step at every time point,               

and determining the rate of change in the relative abundance of viable mutants in the outgrown                

population, accounts for growth rate differences between mutants during the outgrowth ​(Gresham et al.              

2011)​. The abundance of each mutant in the heterogenous pool was estimated by sequencing DNA               

barcodes that uniquely mark each genotype using Bar-seq ​(Smith et al. 2009; Gresham et al., 2011;                

Robinson et al., 2014)​. In total, we studied the four libraries in the three conditions with between 3-5                  

independent experiments to account for biological and technical variability (total of 39 genetic screens). 
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To determine the fitness of each strain during the complete growth cycle, we initially applied               

linear regression modeling of the relative frequency of each mutant against time (t = 0, 24, 48, 96, 186,                   

368 hours) (​Fig EV1C​). To test the reproducibility of our fitness assay, we first estimated fitness for each                  

biological replicate separately and used PCA analysis to identify poorly behaved libraries            

(​Appendix_Fig1 ​). Hierarchical clustering of the filtered libraries show that for all 39 experiments             

biological replicates cluster as nearest neighbors (​Fig 1B​). Different libraries cultured in the same              

medium tend to cluster together, indicating that environmental conditions are a major determinant of              

fitness effects (​Fig 1B ​). In general, mutants in carbon-restricted media show the opposite fitness profile               

to that observed in nitrogen and phosphorus-restricted conditions. However, the ​TOR1 library in             

nitrogen-restricted media and the ​RIM15 library in phosphorus-restricted media were exceptions to this             

general trend (​Fig 1B​).  

To quantify fitness, and the associated uncertainty (expressed as a 95% confidence interval) of              

each estimate, we performed model fitting for each library in each condition using all biological               

replicates. We identified numerous cases in which the fitness of a single mutant significantly differs               

between conditions. For example, deletion of the autophagy gene ​ATG3 (​atg3Δ0 hoΔ0)​, ​results in              

reduced fitness in nitrogen- and phosphorus-restriction media, but not in carbon-restriction media (​Fig             

1C​). 
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Figure 1. Robust fitness estimation over the entire population growth cycle using pooled mutant libraries 
and Bar-seq.  
A)​ Experimental design for multiplexed mutant survival assay using Bar-seq. The synthetic genetic array (SGA) 
method was used to construct four genome-wide double-mutant prototrophic libraries (​Fig EV1A​). The yeast 
deletion collection (​xxx​n ​Δ::natMX ​) was mated with query strains deleted for one of three genes that encode 
regulatory kinases important in quiescence: ​TOR1(tor1Δ::kanMX)​, ​RIM15 (rim15Δ::kanMX)​, and ​PHO85 
(pho85Δ::kanMX)​. A control library was made by mating the deletion collection to a neutral gene deletion HO 
(​hoΔ::kanMX​) query mutant. To ensure library complexity, 1.5 × 10 ​8 ​cells from each library was used to inoculate 
(t=0) cultures restricted for glucose (-C, 4.4mM), ammonium sulfate (-N, 0.8mM), and potassium phosphate (-P, 
0.04mM) in 300mL cultures. The starvation period for -N and -P conditions commenced after 24 hours and after 48 
hours for -C condition  (​Fig EV1C​). At different time points we removed a ~2 × 10 ​5 ​cell sample from the culture and 
expanded the viable subpopulation using outgrowth in supplemented minimal media (​Table EV2​). DNA was 
isolated from the resulting outgrowth culture and the library composition was analyzed using Bar-seq.  
B)​ Representative gene (​ATG3​) for relative fitness estimation across the entire culturing period. The abundance of 
the ​atg3Δ0​ strain was determined at multiple timepoints on the basis of counts of its unique DNA barcode and 
fitness was determined using linear regression. Linear models (predicted value +/- 95% CI) fit to the data are 
shown on the left, coloured by condition. The coefficient (slope) of each model is shown in the dot plot on the right, 
with a 95% confidence interval indicated as an error bar (​Materials and Methods​).  
C) ​Hierarchical clustering of mutant fitness profiles computed for each replicate separately across the entire 
culturing period. White indicates that the strain has not changed in fitness compared to wild-type, blue represents 
increased fitness and red represents decreased fitness. Culture conditions are indicated by color (orange: carbon 
limited; green: nitrogen limited; purple: phosphorus limited). Three kinases mutant libraries (​TOR1​, ​RIM15 ​, ​PHO85 ​) 
and one control library (​HO​) are shown. 
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Distinct cellular functions are required for quiescence in response to          

different nutrient starvation signals 

The fitness of a genotype during proliferative growth in different media may differ from the survival of the                  

genotype in response to a specific starvation signal. Previous genome-wide genetic analyses of             

quiescence quantified the survival of each mutant in the absence of specific essential nutrients but did                

not assess the effect of each gene deletion on cellular proliferation prior to starvation ​(Klosinska et al.                 

2011)​. We test whether the genetic requirements for proliferation in nutrient-restricted media and             

quiescence in response to starvation for the same nutrient are distinct we separately modeled the               

relative abundance of each genotype during the growth phase (i.e. from t = 0 to t = 24 hours) and during                     

the starvation period (i.e. from t = 32 to t = 368 hours). This analysis distinguishes the effect of each                    

gene deletion in two distinct physiological states: proliferation and quiescence. As cells do not generate               

progeny when starved we refer to the phenotype during the starvation phase as “survival” and               

phenotype during proliferation as “fitness” (​Fig 2A​). We find that fitness in proliferation and survival in                

quiescence are poorly correlated in all three nutrient-restriction media (​Fig EV2A​). The fitness of the               

~3,900 mutants is distributed around 0 for each of the three proliferative conditions (​Fig 2B​), and the                 

majority of mutants do not show a significant fitness defects compared to wild-type during proliferation               

(​Fig 2B & ​Fig EV2B ​). By contrast, we find that many mutants show a survival defect in quiescent cells                   

when starved for specific nutrients (​Fig EV2B​) resulting in increased variance in the distributions of               

survival compared to the distributions of fitness (​Fig 2B​). Critically, many of the genes that are                

dispensable for proliferative growth in each of the three media conditions are required for quiescence.               

For example, ​deletion of genes involved in the cAMP-PKA signaling pathway, GPB1/2, RGT2, GPR1              

results in a profound survival defect in response to carbon starvation, but deletion of these genes does                 

not impact fitness in carbon-restricted media (​Fig 2B ​left-panel​). Similarly, the autophagy genes ​ATG4,              

ATG5, ATG7, and ATG12 have poor survival when starved for nitrogen, but do not have a fitness defect                   
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during ​proliferation in nitrogen-restricted media (​Fig 2B, mid-panel​). In response to phosphorus            

starvation, genes involved in response to pH have poor survival, but those same genes are dispensable                

for growth in phosphorus-restricted media (​Fig 2B right-panel​). Thus, the genetic requirements for             

growth in a specific nutrient-restricted media and induction of quiescence in response to starvation for               

that same nutrient are distinct.  

We identified gene functions that are specifically required for quiescence by performing Gene Set              

Enrichment Analysis (GSEA) ​(Yu et al. 2012; Subramanian et al. 2005) on gene lists ranked by the                 

phenotypic difference between survival in quiescent conditions and fitness in proliferative conditions (S​Qui             

- F​Pro​) (​methods ​). We identified significantly enriched GO terms (Benjamini & Hochberg adjusted             

p-value < 0.05) and find that functions involved in responding to the specific starvation signal are                

required for survival. For example, mutants defective in carbon metabolism have reduced survival when              

starved for carbon, but the impairment of this function does not impact survival when starved for nitrogen                 

or phosphorus (​Fig 2C​). ​Genes required for survival of nitrogen starvation are uniquely enriched for               

selective autophagy of nucleus related amino acid trafficking and recycling (​Fig 2C​). Some functional              

groups show similar requirements in response to both nitrogen and phosphorus starvation, such as              

autophagy and protein localization by the cytoplasm-to-vacuole targeting (CVT) pathway. By contrast,            

response to carbon starvation requires an entirely unique set of gene functions. ​Thus, the ​biological               

pathways and functions required for cellular quiescence differ between nutrient starvations. 
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Figure 2. Distinct functional requirements for quiescence in response to different starvation signals.  
A) ​Cells exist in two distinct states depending on nutrient availability. An example of fitness, determined during 
proliferation, and survival, determined during quiescence, in the three different nutrient-restricted conditions is 
shown for ​atg3Δ0​.  
B) ​Violin plot of the fitness and survival for each mutant during proliferation and quiescence in response to different 
nutrient restrictions. The indicated genes are examples of genes that are dispensable for proliferative growth in 
each of the three conditions but  required for quiescence.  
C)​ Enriched GO terms identified using Gene Set Enrichment Analysis (GSEA). GSEA was applied to a ranked 
gene list based on the difference in survival during starvation and fitness during proliferation (S​Qui ​ - F​Pro ​) estimated 
using ANCOVA. The false discovery rate (FDR) was set at 0.05. Positive enrichment scores (red) indicate 
functions that have increased survival when starved (S​Qui ​ - F​Pro ​> 0). Negative enrichment scores (blue) indicate 
functions that when impaired result in decreased survival (S​Qui ​ - F​Pro ​< 0) during nutrient starvation. Set size 
indicates the gene number in each enriched  term. 
D) ​Genes that are required for survival of starvation but dispensable for proliferation. We found 8 genes that are 
commonly required for survival of all three nutrient starvations (​Fig EV2D​); however, the overlap between 
conditions is not significant. 
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No evidence for common quiescence-specific genes 

We sought to determine whether a common set of genes are required for quiescence in all starvation                 

conditions. We identified a comparable number of quiescent-specific (hereafter: QS) genes detected in             

carbon (581) and phosphorus (609) restriction media. In nitrogen-restriction media, we identified about             

2.5 times fewer QS genes: 228 (​Fig 2D​). To define a common set of QS genes, we applied three                   

independent filtering criteria. We identified mutants that 1) are dispensable for proliferation in all three               

nutrient-restriction conditions (F​Pro >= 0, p.adj < 0.05), ​2) ​show significant defects in quiescence in all                

three conditions (S​qui < 0, p.adj < 0.05), and 3) for which there is a significant negative difference                  

between fitness and survival in all three conditions (S​qui - F​Pro < 0, p.adj < 0.05) (​Fig EV2C & ​methods ​).                    

Using these criteria, we found 8 genes that are commonly required for quiescence regardless of nutrient                

starvation (​Fig 2D & Fig EV2D​). However, this does not differ from what would be expected by chance.                  

Thus, we find no evidence for the existence of a common set of QS genes that are required for                   

establishing quiescence in response to carbon, nitrogen and phosphorus starvation. 

Detection of genetic interactions using pooled assays 

We aimed to identify the set of genetic interactions between each non-essential gene and the three                

query kinase genes in three different nutritional conditions (carbon, nitrogen and phosphorus restricted             

media) and two different cellular states (proliferation and quiescence). As there have been limited              

studies using pooled fitness assays and time course data for quantifying genetic interactions, we              

considered two possible approaches for data analysis. First, we used analysis of covariance (ANCOVA)              

to compute the genetic interactions score (GIS) defined as the fitness (in proliferation) or survival (in                

quiescence) difference between the double (​queryΔ::kanMX xxx​n​Δ::natMX ​) and single mutant          

(​hoΔ::kanMX xxx​n​Δ::natMX) (​methods ​). Briefly, in this case the two genotypes: single and double             
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mutant are treated as independent variables in the model, scaled time is the covariate, and the                

normalized frequency at different timepoints are the dependent variable.  

In a second approach, the genetic interaction score was calculated using the approach employed              

in previous genome-wide SGA which defines a null model based on a multiplicative hypothesis and               

defines a genetic interaction as a significant value of the observed and expected double mutant fitness:                

​(Costanzo et al. 2010)​. We computed the expected fitness for each double mutant by fɛ =  ab − f a · f b                

first computing the two single mutant fitness from the single deletion collection and then computing by                ɛ   

determining the difference between the expected and measured fitness of double mutants. We find that               

the agreement between the two approaches is high (pearson’s ​R > 0.9) when applied to both fitness in                  

proliferative cells and survival in quiescent cells (​Figure EV3A​). As ANCOVA has a well developed               

statistical framework for error estimation and significance testing, we elected to use ANCOVA to              

compute GIS for all subsequent analyses.  

Genetic interactions are condition dependent and common in quiescence 

A genetic interaction is defined as a phenotypic effect in a double mutant that diverges from that                 

expected on the basis of the same phenotype in each of the single mutants ​(Costanzo et al. 2010; Tong                   

et al. 2004)​. We find that genetic interactions between genes are frequently condition dependent and               

differ both as a function of cellular state and environmental conditions. For example, in quiescent cells,                

the autophagy gene ​ATG7 positively interacts with ​TOR1 in carbon starvation, but negatively interacts              

with ​TOR1 in phosphorus starvation (​Fig 3A ​& 3B​). ​ATG7 interacts negatively with ​PHO85 and ​RIM15 in                 

phosphorus starvation but these interactions do not occur in carbon or nitrogen starvation (​Fig 3A ​& 3B​).                 

This example is illustrative of the conditional dependence of genetic interactions, which we find is the                

case for the vast majority of genotypes (the raw data and model fitting for all tested genetic interactions                  

can be viewed in the associated web ​application ​). 
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Single mutants show stronger phenotypic defects in starvation conditions compared with growth            

conditions (​Fig 2B​). As single mutant fitness is predictive of genetic interaction propensity ​(Michael              

Costanzo et al. 2010)​, we find a weaker correlation between phenotypes of single (​hoΔ::kanMX              

xxxΔ::natMX) and double (​rim15Δ::kanMX xxxΔ::natMX​) mutants in quiescent cells compared to           

proliferative cell (​Fig 3C​, ​Fig EV3B ​). More genetic interactions are detected in quiescent cells compared               

to proliferative cells regardless of the starvation signal (​Fig 3D​). For example, at an FDR of 5%, 55                  

genes show significant interactions with ​TOR1 in proliferative cells growing in carbon-restricted media,             

whereas we identified 228 negative and 381 positive (~6 times more) genetic interactions with ​TOR1 in                

carbon-starved quiescent cells (​Fig EV3C​). This trend is observed for all three kinases (​TOR1​, ​RIM15​,               

PHO85​) in all starvation conditions (​Fig EV3C​). We detected both positive and negative interactions for               

each of the three kinases (​Fig 3D​) and an increase in total interactions for a given kinase as more                   

conditions are assayed (​Fig 3D & Fig EV3D​) indicating that each additional assay reveals unique               

genetic interactions. We did not detect a bias in the number of positive or negative interactions in either                  

cellular state. 

Genetic interaction profiles of kinases differ between cellular states 

Genes that are functionally related tend to share a common set of genetic interactions that define a                 

genetic interaction profile ​(Costanzo et al. 2010; Costanzo et al. 2016)​. As the activity of regulatory                

kinases depends on environmental signals, the functional consequences of deleting kinases is likely to              

be conditionally dependent, which may result in condition-dependent genetic interaction profiles. To            

identify the primary determinant of genetic interaction profiles in our study we quantified the similarity               

between all pairs of genetic interaction profiles for each kinase in each condition (C, N, P restricted                 

conditions) and cellular state (proliferation and quiescence). Clustering of genetic interaction profiles            

reveals a clear distinction between proliferative and quiescent cells (​Fig EV4A​).  
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Figure 3.  Identification of condition specific genetic interactions using pooled double mutant analysis.  
A)​ Genetic interactions for each gene were determined for three different query genes (​TOR1​, ​RIM15 ​, and ​PHO85​) 
in three different conditions (-C, -N, -P) and two different cellular states:  quiescence (shown) and proliferation (not 
shown) using pooled mutant time series analysis.  
B)​ Survival rate for each genotype indicated in A) and the statistical significance estimated using ANCOVA.​ ​The 
significance is estimated when setting false discovery rate (FDR) at 5%. 
C) ​Relationship between single mutant phenotype (​xxx​n ​Δ::natMX ​) and the corresponding phenotype of the mutant 
in the background of a ​RIM15​ deletion (​rim15Δ::KanMX xxx​n ​Δ::natMX ​) in two different cellular states (Pro - 
proliferation, Qui - quiescence). The dashed line is the line of equality. Blue dots are genes that show a significant 
negative interaction with ​RIM15​ and yellow dots depict significant positive interactions. 
D)​ At a false discovery rate (FDR) of 5%, different numbers of significant genetic interactions are  detected for 
three regulatory kinases in the three nutrient restrictions and two cellular states. Solid lines with circles indicate the 
cumulative total number of unique negative interactions and dashed lines with triangles indicate the cumulative 
total number of unique positive interactions. 
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In quiescent cells, genetic interaction profiles of different kinases cluster as a function of the               

starvation signal (​Fig EV4A​) suggesting that the specific starvation signal is the primary determinant of               

the survival rate of double mutants regardless of the deleted kinase gene. By contrast, in proliferative                

conditions ​TOR1 ​, ​RIM15​, and ​PHO85 ​genetic interactions profiles do not exclusively cluster by             

nutritional condition (​Fig EV4A​). These results indicate that genetic interaction profiles differ as a              

function of cellular state and that the impact of the environmental conditions on genetic interactions is                

variable.  

To visualize the correlation between genetic interaction profiles for each kinase in each condition,              

we constructed correlation networks for both proliferative and quiescent cells (​Fig 4​). The correlation              

networks emphasize the importance of cellular state in determining the similarity of genetic interaction              

profiles as the genetic interaction profile similarity network is drastically remodeled in quiescence (​Fig              

4B​) compared to proliferation (​Fig 4A​). For example, a negative correlation is detected between ​TOR1               

and ​PHO85 in proliferative cells growing in carbon-restricted condition, but their genetic interaction             

profiles are positively correlated in carbon-starved quiescent cells (​Fig 4B ​& Fig EV4C ​). For cells in the                 

same physiological state, the environmental conditions can also alter the functional relationship between             

the same pair of kinases. For example, ​RIM15 ​and ​PHO85 ​genetic interaction profiles are highly               

correlated during growth in carbon-restricted media, but this similarity is greatly reduced during             

proliferation in nitrogen- and phosphorus-restricted conditions (​Fig 4A​). These results suggest that            

environmental conditions alter the regulatory relationships among signaling pathways both in quiescent            

and proliferative cells.  
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Figure 4. Genetic interaction profile similarities are condition dependent.  
A)​ Correlation networks based on genetic interaction profiles for ​TOR1​, ​RIM15 ​, and ​PHO85​ in proliferating cells 
(Pro) in three different nutrient restricted media: carbon (-C), nitrogen (-N), and phosphorus (-P).  
B)​ Correlation networks based on genetic interaction profiles for ​TOR1​, ​RIM15 ​, and ​PHO85​ in quiescent cells (Qui) 
induced by three nutrient starvations: -C, -N, -P. Hexagons are color coded based on the restricted nutrient type 
(orange for -C, green for -N and blue for -P). Kinases with positive pearson correlation are connected with pink 
edges and kinases with negative pearson correlation scores are connected with blue edges. The thickness of the 
edge indicates the strength of the correlation (i.e.. a larger absolute correlation is represented by thicker edge).  

Genetic interaction profiles are functionally coherent 

To functionally annotate genetic interaction profiles for each kinase in each condition we used spatial               

analysis of functional enrichment (SAFE) ​(Baryshnikova 2016)​. SAFE maps quantitative attributes (i.e.            

the GIS) onto the reference network, defined by the correlation network of genome-wide genetic              

interaction profiles of 3,971 essential and non-essential genes, and tests for functional enrichment within              

densely connected regions, which define domains. Each of the 17 domains within this map comprises               

genes that share similar genetic interaction profiles and functional annotations (​Fig EV5​). We             

superimposed genetic interaction profiles of each kinase in each of the three nutrient-restricted media              
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and both cellular states onto the reference network using SAFE. We find that kinases that show higher                 

similarity in genetic interaction profiles (​Fig 4​) also show more similar enrichment patterns using SAFE               

analysis (​Fig 5​).  

Figure 5. Functional mapping of kinase genetic interaction profiles in proliferating and quiescent cells.  
A)​ Genetic interaction enrichment landscape of ​TOR1, RIM15, PHO85​ in proliferating cells under different nutrient 
restrictions: carbon (-C), nitrogen (-N), phosphorus (-P).  
B)​ Genetic interaction enrichment landscape of ​TOR1, RIM15, PHO85​ in quiescent cells in response to different 
nutrient starvations (-C, -N, -P). Each dot represents one gene. Blue dots represent genes have negative 
interactions with corresponding kinase (row-wise) in each condition (column-wise), and yellow dots represent 
genes with positive interactions. 

 
The functional annotation of genetic interactions for each kinase differs as a function of the               

cellular state. For example, functional domains related to respiration, oxidative phosphorylation,           

mitochondrial targeting, transcription, and chromatin organization are enriched for negative genetic           

interactions with ​TOR1 and ​PHO85 in carbon restricted proliferative cells (​Fig 5A​), but we find no                
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evidence for enrichment in quiescent cells starved for carbon (​Fig 5B​). Similarly, in nitrogen restricted               

conditions, ​TOR1, RIM15 ​and ​PHO85 share similar coherent functional interactions in proliferative cells,             

which are not observed in quiescent cells starved for nitrogen.  

In addition, the functional enrichment of genetic interactions for each kinase differs between the              

three different nutrient-restricted conditions. For example, ribosome biogenesis genes are enriched for            

negative interactions with ​TOR1 in nitrogen-restricted proliferative cells (​Fig 5A​), but in            

phosphorus-restricted proliferative cells ribosome biogenesis genes positively interact with ​TOR1 ​. We           

find multiple additional cases of enrichment within functional domains, in which the sign of the genetic                

interactions is opposite between nitrogen and phosphorus restrictions in ​TOR1 (​Fig 5A ​), suggesting that              

TOR1 ​ may play different regulatory roles in responding to nitrogen and phosphorus restriction.  

We have also found cases of functional enrichment that are maintained in the two different               

cellular states. For example, genes involved in peroxisome functions are enriched for negative             

interactions with ​RIM15 and ​PHO85 in carbon restricted proliferative cells and carbon starved quiescent              

cells (​Fig 5A​, cyan arrow/circle). This suggests ​that in ​carbon-restricted conditions, ​RIM15 and ​PHO85              

may function within the same or similar pathway to maintain long chain fatty-acid recycling and provide                

energy for cells in calorie-restricted conditions. 

Common and specific genetic interactions with ​RIM15 support its role          

as a central mediator of quiescence 

RIM15 has previously been identified as an integrator of quiescence signals that is downstream of               

TOR1, PHO85 and PKA ​(Pedruzzi et al. 2003; Wanke et al. 2005; Olivares-Marin et al. 2018)​.                

Therefore, we might expect that the genetic interaction profiles for ​RIM15 should show more functional               

coherence in response to different quiescence signals compared to ​TOR1 and ​PHO85​, which are              

upstream of RIM15. As the reference genetic interaction map used for SAFE does not include all genes                 
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in our genetic interaction dataset (only ~2,900 non-essential genes are present in the reference), we               

applied gene set enrichment analysis to the list of genes that significantly interact with each kinase                

(​method and materials​). Due to the limited number of significant interactions detected in proliferative              

cells (​Fig 3D ​and Fig EV3C ​), we do not find any enriched GO terms for any kinase. However, we                   

identified multiple significantly enriched functional categories in quiescent cells. As with SAFE analysis,             

the functional enrichment of the significant interacting genes for a given kinase depends on the               

starvation signal (​Fig 6A​).  

RIM15 shows more common genetic interactions in response to different starvation signals in             

comparison with the other two kinases. Three functional groups are shared among genes interacting              

with ​RIM15 in response to carbon/nitrogen or nitrogen/phosphorus starvations (​Fig 6A, ​lower panel)             

whereas there is no functional overlap detected for ​TOR1 or ​PHO85 genetic interaction profiles under               

the same conditions (​Fig EV6A​). This is consistent with a model in which RIM15 regulates quiescence                

through integration of diverse signals and execution of similar regulatory interactions. In quiescent cells,              

RIM15 ​shown consistent negative genetic interactions with genes involved in vacuolar functions            

regardless of the starvation signals perhaps reflecting a role for ​RIM15 in regulating autophagy and               

protein recycling in response to different starvations. 

Interestingly, we find that genes that function in the ​Endoplasmic-reticulum-associated protein           

degradation, luminal domain monitored (ERAD-L) pathway show coherent positive interactions with           

RIM15 specifically in nitrogen-starved quiescent cells (​Fig 6A​). This Includes each of the genes that is                

known to function in ERAD-L: ​USA1, YOS9, DFM1, HRD1, HRD3, CUE1, and DER1 ​(​Fig 6B and ​Fig                 

EV6B​). ERAD-L genes present in the genetic interaction reference data used for SAFE analysis; ​HRD1,               

HRD3, CUE1, and USA1 are found in the domain enriched for ubiquitin-dependent protein catabolic              

process (​Figure EV6C, ​red arrow) pointing to a specific function for RIM15 in proteostasis regulation in                

response to nitrogen starvation. 
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Figure 6.  ​RIM15​ genetic interactions profiles indicates it is an integrator of quiescence signals with 
nutrient-specific functions.  
A) ​GO term enrichment analysis for genes that significantly interact with ​RIM15​ in all nutrient starvation conditions. 
Only significantly enriched GO terms are shown (p.adjust < 0.05). (yellow - positive interaction, blue - negative 
interaction).  
B)​ Genetic interaction profile of the genes encoding the ERAD-L complex. ERAD-L genes show a unique cohesive 
set of positive genetic interactions with ​RIM15​ in nitrogen starvation-induced quiescent cells. Each column is the 
genetic interaction score between ERAD-L genes and ​RIM15​ quantified using ANCOVA, and each row is the 
genetic interaction score between ERAD-L genes and each of the other kinases in each nutrient restricted 
condition. 
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Discussion 

Cellular quiescence is the predominant state of eukaryotic cells. To study the genetic requirements of               

cellular quiescence in yeast cells we quantified the effect of each gene deletion in response to three                 

distinct nutrient starvation signals (carbon, nitrogen, phosphorus). To study how these signals are             

coordinated within quiescent cells we quantified genetic interactions with three regulatory kinases in             

each of the three starvation conditions. To undertake this study we quantified phenotypic differences in               

different cellular states (proliferation versus quiescence) and genotypes (single versus double mutational            

background) using multiplexed barcoded analysis to track thousands of different genotypes using time             

course analysis. By testing the contribution of ~3,900 yeast non-essential genes to fitness in proliferating               

cells and survival in quiescent cells in three different nutrient-restricted conditions we find no evidence               

for genes that are commonly required for quiescence. We extended our method for multiplexed analysis               

of genotypes to study ~11,700 ​double mutants encompassing three core kinases: TOR1, RIM15 and              

PHO85, which allowed us for the first time to test genome-wide for genetic interactions with regulatory                

kinases that mediate quiescence.  

Distinct gene functions are required for quiescence in response to different           

nutrient starvations  

The functional requirements for maintaining and exiting quiescence differ depending on starvation            

signals. Time course analysis of fitness during proliferation and survival during starvation (​Fig 2C​)              

support previous findings that yeast cells have distinct functional requirements for maintaining viability of              

quiescent cells in response to different nutritional starvations ​(Gresham et al. 2010; Klosinska et al.               

2011)​. In addition, our results show that a substantial fraction of the non-essential yeast genome is                
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required for survival during quiescence independent of their requirements for growth. For example, in              

carbon-restricted conditions, deletion of 713 (~15%) of the non-essential genes results in a significant              

defect in quiescence (​Fig 2D​). Clearly, the definition of an “essential gene” is dependent on the condition                 

in which essentiality is assessed.  

Across all starvation conditions, we found that only 8 genes are commonly required for              

quiescence, a result that is not significantly different from chance (​Fig 2D​). The absence of a common                 

set of genetic requirements for quiescence in response to different nutrient starvations is consistent with               

earlier work ​(Klosinska et al. 2011)​. Although there appears to be no common set of requirements for                 

quiescence, we do find that different nutrient starvations share genetic requirements for quiescence.             

Nitrogen- and phosphorus- starved quiescent cells tend to have more overlapping features compared to              

carbon-starvation induced quiescence. For example, 81 genes are commonly required for maintaining            

quiescence in response to nitrogen or phosphorus starvation, whereas only 57 genes are commonly              

required for quiescence in nitrogen and carbon starvation (​Fig 2D​). Results from functional enrichment              

analysis are consistent with the trend of greater overlap in genetic requirements in nitrogen and               

phosphorus starvation. For example, genes involved in protein localization by CVT pathway are required              

in response to nitrogen or phosphorus starvation. The lack of commonly required functions for response               

to nitrogen, phosphorus, and carbon starvations may reflect the different primary biological uses of              

carbon, nitrogen and phosphorus: carbon is the major energy source, whereas nitrogen and phosphorus              

are primarily required for macromolecular synthesis ​(de Virgilio 2012; Broach 2012 ​; ​Alberts et al. 2013;               

Wilson and Roach 2002)​.  

Expanding phenotypic space to identify novel genetic interactions  

To date, genome-wide genetic interaction mapping has primarily been performed in a single condition              

and assayed using a single phenotype - growth in rich media. Our genome-wide genetic interaction               
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mapping in different conditions and cellular states indicates that: 1) genetic interactions with regulatory              

kinases vary between conditions; 2) genome-wide genetic interaction mapping is extensible to additional             

phenotypes; and that 3) for a given physiological state, increasing the number of conditions results in an                 

increase in the number of significant GIs. This latter point is consistent with a recent study that                 

investigated genetic interactions in different growth conditions ​(Jaffe et al. 2019)​. Despite the fact that               

our genetic interaction data set is limited in its scale and is focused on regulatory kinase genes, we                  

anticipate that our methodology can be broadly applied to define genetic interactions in different              

conditions and cellular states. 

Novel function of RIM15 in autophagy and ERAD-L 

Endoplasmic-reticulum-associated protein degradation (ERAD) is a quality control mechanism that          

ensures only properly folded proteins leave the ER. Autophagy has been proposed to be a backup                

mechanism for ERAD. Previous study has shown that RIM15 plays a role in regulating autophagy and                

protein homeostasis ​(Waliullah et al. 2017; Huang et al. 2018)​. In our study we find that genes that                  

function in ERAD show coherent positive interactions with RIM15 in nitrogen starvation conditions,             

suggesting that RIM15 regulation of ERAD activity in response to nitrogen starvation is essential for               

quiescence. It is possible that RIM15 functions to regulate clearance of stress-induced misfolded             

proteins during nitrogen starvation by  mediating the balance between autophagy and ERAD.  

Implications for quantitative genetics 

Our study has important implications for our understanding of the genotype to phenotype map. The               

prevailing result from our study is that the effect of a given gene deletion on a phenotype (either fitness                   

or survival) is highly dependent on the specific environmental conditions of the cell. Although nitrogen,               

carbon and phosphorus starvation all lead to cell cycle arrest and the initiation of quiescence, the                
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genetic requirements for this behavior are distinct. We find that the conditional dependence extends to               

genetic interactions as we detect different sets of genetic interactions in different growth and starvation               

conditions. These results are consistent with our previous study of natural genetic variation in which we                

found that the effect sizes of QTL underlying fitness differences, and genetic interactions between QTL,               

are acutely sensitive to the composition of the growth media ​(Ziv et al. 2017)​. Identifying quantitative                

genetic effects and interactions that are insensitive to environmental variation appears challenging and             

may, in fact, be extremely rare.  

Implications for the study of cellular quiescence in yeast 

It has been argued that starvation for glucose is the relevant condition for studying quiescence ​(Sagot                

and Laporte 2019) and indeed the vast majority of quiescence studies are performed in conditions in                

which carbon starvation is the pro-quiescence signal ​(Laporte et al. 2011; Laporte et al. 2018)​. However,                

it has been appreciated for many decades that yeast cells can initiate a quiescence state in response to                  

different starvation signals ​(Lillie and Pringle 1980)​. Our study reiterates the importance of studying              

quiescence in response to different nutrient starvation conditions. Many important biological processes            

are likely to be missed - autophagy being a preeminent example - if carbon starvation is the only                  

condition studied. Organisms in the natural world experience a range of nutrient limitations and nitrogen               

and phosphorus appears to be the predominant limiting nutrients in most ecologies ​(Elser et al. 2007)​.                

Thus, a complete understanding of cellular quiescence requires the study of different nutrient starvation              

signals. 

Relevance to aging and cancer 

The study of cellular quiescence may inform our understanding of cellular aging and provide insight into                

the therapeutic challenge of dormant cancer cells. Our study supports previous findings that quiescence              
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establishment does not follow the same route depending on the nature of the inducing signal (Coller et                 

al. 2006; Klosinska et al. 2011). In addition, different ‘degrees’ of quiescence may exist (Gookin et al.                 

2017; Coller et al. 2006; Laporte et al. 2017) as we find that cells maintained longer in quiescence need                   

more time to return to growth (data not shown). Thus, quiescence may be viewed as a continuum that                  

ultimately leads to senescence (even if that may take thousands of years) unless conditions favorable               

for proliferation are met.  

Overall, our data highlight the fact that quiescence does not imply uniformity (O’Farrell 2011).              

The idea that quiescence establishment is the result of a universal program is clearly an               

over-simplification. ​Our study points to a rich spectrum of condition-specific genetic interactions that             

underlie cellular fitness and survival across a diversity of conditions and introduces a generalizable              

framework for extending genome-wide genetic interaction mapping to diverse conditions and           

phenotypes. ​Deciphering the underlying regulatory rationale and the hierarchical relationships between           

these signaling pathways in different conditions is critical for understanding cellular quiescence.  
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Materials and Methods 

SGA Library construction 

The haploid prototrophic double deletion collections were constructed using the synthetic genetic array             

method (Tong et al, 2001). The genotype and ploidy of double mutants are prototrophic haploid (​Fig                

EV1A​). For the single deletion collection (array mutants), gene deletion alleles are marked with the               

kanMX4 cassette conferring G418 resistance, which is flanked by two unique molecular barcodes (the              

UPTAG and DNTAG). For double deletion collection, an additional query allele is marked with NatR               

cassette conferring ​nourseothricin resistance. To construct the RIM15 and TOR1 SGA query strains we              

mated a MATa xxxΔ0::NATr strain (transformed from FY4 with a NATr PCR product targeting the xxx                

allele) with the Y7092 strain. A haploid prototrophic strain was identified following tetrad dissection and               

genotyping using selective media with G418 and ​nourseothricin ​. To construct the HO, and PHO85 SGA               

query strains we transformed a prototrophic strain containing the SGA marker with a NATr PCR product                

targeting the xxx allele. Insertion of NATr was confirmed via PCR and the genotype of the strain was                  

checked via replica plating onto selective media resulting in strains listed in ​Table EV1​.  

Growth conditions  

After growth of individual selected mutants on YPD agar plates, all mutants were pooled to a final                 

density around 1.7 × 10 ​9 cells/ml. Each agar plate contained single colonies of individual genotypes and                

replicated colonies of the control ​hoΔ strain. We inoculated 1.5 × 10 ​8 ​cells into 300ml of nutrient limited                  

medium: for glucose- (C, 4.4mM carbon), ammonia- (N, 0.8mM nitrogen), and phosphorus- (P, 0.04mM              

phosphorus) at 300ml. To define the fitness of ~ 4,700 mutants within each nutrient limiting conditions                

and growing stage, we performed three independent experiments for each mutant per nutrient limiting              
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conditions. In total, we had 4 mutant collections × 3 biological replicates × 3 nutrient limiting conditions in                  

bioreactors used to maintain the temperature at 30 degrees and pH at 5. To model the fitness of each                   

genotype at different states spanning both proliferative and quiescence stages, we collected five time              

points in each stage (based on growth curve (​Figure EV1B​). The duration of the experiment was 15~16                 

days, and populations were sampled at 0, 9, 14, 18, 24, 32, 48, 96, 187, 368 hours for outgrowth and                    

barcode sequencing. To isolate viable cells from the stationary phase culture, we transferred 1mL (i.e., 2                

× 10 ​5 cells) from the pooled library at each time point into 5 mL minimal cultures. Cells were grown for                    

24~32 hr to a final density of 3 × 10 ​8 cells/mL in all conditions. Cells were then washed with water once,                     

and then resuspended in 1mL sorbitol buffer for genomic DNA purification.  

DNA extraction and library preparation for Bar-seq 

Genomic DNA was isolated from 1 × 10 ​8 cells for each sample (3 nutrient-restriction × 3 biological                 

replicates × 4 deletion collections × 10 times points) using invitrogen PureLink™ Pro 96 Genomic DNA                

Purification Kit. We adapted the two-step PCR protocol for efficient multiplexing of Bar-seq libraries              

(David G. Robinson ​et al​, 2013). Briefly, UPTAGs and DNTAGs were amplified separately from the               

same genomic DNA template. In the first PCR step, a unique sample indices are added to each sample.                  

For each biological replicate, we used 120 unique sample indices that differed by at least two                

nucleotides to label each sample from 3 nutrient limiting conditions × 4 deletion collections × 10                

timepoints. We normalized genomic DNA concentrations to 10 ng/ml and used 100 ng template              

amplified barcodes using the following PCR program: 2 min at 98°C followed by 20 cycles of 10 sec at                   

98°C, 10 sec at 50°C,10 sec at 72°C, and a final extension step of 2 min at 72°C. PCR products were                     

confirmed on 2% agarose gels and quantified the concentration using a SYBRGreen staining followed              

by Tecan Freedom Evo and Infinite Microplate Reader. We combined 35 ng from each of the 120                 

different UPTAG libraries and, in a separate tube, 35 ng from each of the 120 different DNTAG libraries                  

for each condition/deletion collection. The multiplexed UPTAG libraries were then amplified using the             
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primers P5 (59-A ATG ATA CGG CGA CCA CCG AGA TCT ACA CTC TTT CCC TAC ACG ACG CTC                   

TTC CGA TCT-39) and Illumina_UPkanMX, and the combined DNTAG libraries were amplified using the              

P5 and Illumina_DNkanMX primers using the identical PCR program as the first step with 100 ng                

template. The 140-bp UPTAG and DNTAG libraries were purified using QIAquick PCR purification             

columns, quantified using a Qubit fluorometer for qPCR quantification, combined in equimolar amounts             

after qPCR, and adjusted to a final concentration of 4 nM mixture of pooled UPTAG and DNTAG. In                  

total, each sequencing library contained 120 UPTAG and 120 DNTAG libraries from 120 different              

samples. The library was sequenced on a single lane of an Illumina NextSeq 500 with HighOutput 1 x                  

75bp read configuration. 20% PhiX was spiked into each library for increasing the complexity of two                

color base calling on Illumina NextSeq500 platform. 

Data analysis, filtering and normalization 

Sequence reads were matched to the yeast deletion collection barcodes using re-annotated by Smith ​et               

al​. (2009). Inexact matching was performed by identifying barcode sequences that were within a              

Levenshtein distance of 2 from each read (Levenshtein 1966). Sample indices were similarly matched              

using a maximum Levenshtein distance of 1. The final matrix of counts matching the UPTAG and                

DNTAG of each of the 360 samples is provided as ​Table EV3 ​. 52 libraries with total read depth less                   

than 1 × 10 ​5 ​reads were removed from the 720 libraries. We merged the UPtag and DOWNtag counts                  

representing the same gene within each condition resulting in 311 libraries in total. A set of outliers was                  

identified that had fewer than 3,000 total reads across all 311 samples. These low-count matches were                

likely due to sequencing error and were removed. 1,996 mutants were removed with a coverage less                

than 3,000 or missing in either tag counts. After filtering, a matrix containing 3,931 mutants consistent                

with high quality counts data across 311 conditions was generated corresponding to 692,755,604             

sequence reads. This counts table was normalized using the function varianceStabilizingTransformation           
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in the DESeq2 package (Love et al, 2014) (version 1.8.1) with arguments blind = FALSE and fitType =                  

“local”.  

Fitness, survival, and phenotypic difference quantification  

The normalized frequency of each mutant within each library were used for linear regression modeling.               

For example, in HO library, the count for each mutant (​ho::kanMX xxx​n​::natMX​) is normalized by the                

count for the wild type control (​hoΔ::kanMX his3Δ1 can1Δ::STE2pr-Sp_his5) at corresponding time            

points​. In the other double mutant libraries, the counts for each double mutant (​query::kanMX              

xxx​n​::natMX​) is normalized by the counts of the query mutant (​queryΔ::kanMX his3Δ1            

can1Δ::STE2pr-Sp_his5) ​at corresponding time points​. ​For each mutant strain , fitness was         N   f n   

calculated as the coefficients of linear regression model calculated in R: 

,m(  T )l F n

Fwt 
~    

therefore,  

f n = T
 − δ

Fn 
Fwt    

with being the normalized counts of strain at each time point and is the normalized counts of F n        N       Fwt       

pseudo wild type strain at each time point. refers to timepoints, which was measured in days for         T           

quantifying the fitness in prolonged starvation.  is the error term.δ   

In order to compare the phenotypic difference for a given mutants between different cellular              

states, before building linear regression model for each mutant in proliferation or quiescence, we scaled               

the independent variable, time (hours) for each stage into the same unit but maintaining the natural                

interval using function in R. For example, the time point (independent variable) in proliferative  cale()  s              
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stage were scaled from 0h, 9h, 14h, 18h, 24h into 0, 0.5246676, 0.8161497, 1.0493353, 1.3991137, and                

the time point for sample collected during quiescence were scaled from 32h, 48h, 96h, 187h, 368h into                 

0.1553874, 0.2330811, 0.4661622, 0.9031894, 1.6995499. The, we are able to quantify the phenotypic             

difference between fitness in proliferation and survival in quiescence using ANCOVA  for a given mutant: 

m(  T  GS)l F n

Fwt 
~  *   

where is the scaled time and is the ​G​rowing ​S​tage (e.g. proliferation vs quiescence). The   T      S  G          

different growth stages in this function is the interaction term, which was tested for statistical               

significance.  

After quantifying the fitness difference between quiescence and proliferation for a given mutant,             

we ranked the mutants by fitness difference in a descending order and then applied gene set enrichment                 

analysis (GSEA) of ranked genes using clusterprofiler ​(Yu et al. 2012)​.  

To understand whether the common genes that required in response to different quiescent             

signals are statistically significant or not, we ​implemented ​the proposed multi-set intersection test             

algorithm in ​an R software package (Wang et al. 2015)​. ​This ​framework is used to      uperExactT est  S          

compute the statistical distributions of multi-set intersections based upon combinatorial theory and            

accordingly designed a procedure to efficiently calculate the exact probability of multi-set intersections.             

The inputs for ​SuperExactTest include three lists of genes that are essential in quiescence. The three                

lists corresponding to three conditions (-carbon, -nitrogen, -phosphorus) and the size of the background              

population from which the sets are sampled is 5,927.   
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Comparison of SGA genetic interaction quantification with ANCOVA 
SGA genetic interactions scoring method: 

We first computed genetic interactions using a method analogous to estimation of epsilon as defined             ɛ)  (    

in classical SGA screens from the Boone lab. The SGA-like score was quantified by testing the null                 

hypothesis based on a multiplicative model from single mutant fitness :  

 ​ (a - array mutant; q - query mutant)   fɛ = f aq − f a *  q   

In our case,  is calculated as the difference between the coefficients of linear modeling: ɛ  

where  

 ​is the coefficients generated by​ ,f aq m (  T )l F q  

F aq ~    

is the coefficients generated by​ ,  f a m (  T )l F a

Fwt 
~   

is the coefficients generated by​ , f q m (  T )l F q

Fwt 
~   

Therefore, , , ​should be normally distributed around 0 with positive (better than WT) and  f aq   f a   f q              

negative (worse than WT) fitness. To estimate the expected fitness in double mutant based on               

multiplicative model, we take the of the coefficients for each model to eliminate the discordance of    exp()               

the signs in fitness. Then we calculated the expected fitness using multiplicative model:  

exp (f ) xp (f )  f  aq
exp

 =  q × e a  
 

Therefore 
 

    ɛ = xp (f )   e aq − f  aq
exp
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The standard error are the standard error of each linear model. The standard error in expected    & S  Sa q               

fitness is calculated by propagating standard error from each individual model: 

 
S2
a+q = S2

a + S2
q  

  
Then, the statistical significance between expected (multiplicative model) and observed model was            

calculated by ​Welch’s t-test​: 

 

 t = f −faq
 
a+q

√ +
S2aq

Naq  
 

S2
a+q

Na+q  
 

 

  
where the degrees of freedom associated with this variance estimate is approximated using the              

Welch-Satterthwaite equation: 

 

υ ≈
( + ) 
S2
aq

Naq  
 

S2
a+q

Na+q  
 

2

+
S4
aq

N (N −1)aq  
2 

 aq  
 

S4
a+q

N (N −1)a+q  
2 

 a+q  
 

  

Genetic interactions quantification by ANCOVA: 

All libraries were normalized by the common query deletion. Therefore, our GIS can be calculated by                

looking at the difference between normalized fitness without worrying about the query mutant             

phenotype, 

,IS  G = f aq − f a   

Where 
 

 ​&​  ,m(  T ) f aq = l F q  

F aq ~   m(  T ) f a = l F a

Fwt 
~     
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In this case, the genetic interaction is calculated directly by testing whether the query mutation               

significantly changes the relationship between time and relative fitness for a given mutant. We applied               

ANCOVA using: 

m (  T  GT )l F n

Fwt 
~  *   

where is the scaled time and is the ​G​eno ​T​ype (e.g. vs ). The significance of the   T      T   G     F q  

F aq   F a

Fwt 
     

interaction term was determined using a standard ​ t test​. 

Functional annotation with clusterProfiler 

Gene Set Enrichment Analysis (GSEA) was applied on the ranked gene list based on phenotypic               

difference using clusterProfiler ​(Yu et al. 2012)​. GO overrepresentation test was applied to significantly              

interacting genes and quiescent specific gene list (Table EV13-18).  

Network Construction using Cytoscape 3.0 

The correlation among genetic interaction profiles were calculated by metScape 3 Correlation Calculator             

v1.0.1 using DSPC method and then visualized in Cytoscape 3.0.  

Spatial Analysis of Functional Enrichment (SAFE) 

The systematic functional annotation and visualization of interaction profile for all kinase under different              

conditions and cellular states was applied without any filtering on the interaction list. In this enrichment                

analysis we used all genes without filtering based on statistical interaction significance (from ANCOVA).              

This is because isolated false positives are scattered throughout the entire network, which do not               

typically result in significant enrichment anywhere in the network. Meanwhile, weak but consistent             

effects, e.g. genes having weaker or less significant GIs but clustering together in the network are very                 
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interesting. The visualization and local enrichment annotation was performed using SAFE           

(Baryshnikova 2016)​.  
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Data availability and analysis scripts  

Sequencing counts and normalized relative frequencies, as well as fitness, survival, interaction score             

estimates for each nutrient-restricted or starved condition can be found on OSF (​https://osf.io/6avpn/​).             

The custom Python and R scripts used to parse raw sequencing data, analyze results, build the shiny                 

web-app and generate manuscript figures are available on GitHub         

(​https://github.com/ss6025/GI-of-kinases-in-quiescence_2018 ​). All quantifiable genes can be queried       
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interactively using the shiny app available at: ​http://shiny.bio.nyu.edu/ss6025/shiny_Genetic_Interaction/​.        

The raw FASTQ files from Illumina sequencing are publically available under the NCBI BioProject under               

Accession Number PRJNA559194.  
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Expanded View tables  

Table EV1. List of strains used and generated in this study 

Strain ID Gene/Alias Genotype Notes 

Background Strain NA MATα can1Δ::STE2pr-Sp_his5 lyp1Δ his3Δ1 Prototrophic strain 
background 

YJR066W_y13791 TOR1 - MAT α tor1ΔNatR can1Δ::STE2pr-Sp_his5 
lyp1Δ his3Δ1  LYS2+ URA3+ MET3+ LEU2+  

Prototrophic SGA query 
strain 

YFL033C_y13792 RIM15 - MAT α rim15ΔNatR can1Δ::STE2pr-Sp_his5 
lyp1Δ his3Δ1  LYS2+ URA3+ MET3+ LEU2 + 

Prototrophic SGA query 
strain 

YDL227C_y13819 HO - MAT α hoΔ::NatR can1Δ::STE2pr-Sp_his5 
lyp1Δ his3Δ1 LEU2+ URA3+ MET15+ LYS2+ 

Prototrophic SGA control 
strain 

YPL031C_y13820 PHO85 - MAT α pho85Δ::NatR can1Δ::STE2pr-Sp_his5 
lyp1Δ0his3-1 LEU2+ URA3+ MET15+ LYS2+ 

Prototrophic SGA query 
strain 

 

Table EV2. Media used in this study 
Carbon restricted media ​(per 1L) 

Compound Carbon restricted Carbon supplemented 

40% Glucose 2.0 mL  50 mL 

1000X vitamin 1 mL 1 mL 

1000X metals 1 mL 1 mL 

10X carbon salts 10 mL 10 mL 

Final (C) concentration 0.08% 2% 

 
Nitrogen restricted media ​(per 1L) 

Compound Nitrogen restricted Nitrogen supplemented 

Glucose 20 g 20 g 

1000X vitamin 1 mL 1 mL 
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1000X metals 1 mL 1 mL 

50 mM (NH​4​)​2​SO​4 ​(solution) 8 mL  

10X nitrogen salts 10 mL 10 mL 

Final (N) concentration 800µM 38mM 

 
Phosphorus restricted media ​(per 1L) 

Compound Phosphorus restricted Phosphorus supplemented 

Glucose 20 g 20 g 

1000X vitamin 1 mL 1 mL 

1000X metals 1 mL 1 mL 

10g/L KH​2​PO​4 ​(solution) 0.5 mL 100 mL 

10X phosphorus salts 10 mL 10 mL 

Final (P) concentration 5 mg/L 1 g/L 

Expanded View table legends  
Table EV3: Filtered and variable stabilization transformed counts table. Original data for Fig 1C & Fig 
2A. 

Table EV4: Linear regression modeling of mutant fitness over prolonged starvation for each replicate. 
Original data for Fig 1B. 

Table EV5: Linear regression modeling of mutant fitness over prolonged starvation across all replicates. 
Original data for Fig 1C. 

Table EV6: Fitness and survival rate modeling for cells in different growth stages. Original data for Fig2B 
& FigS2A. 

Table EV7: Phenotypic difference between quiescence and proliferation quantified by ANCOVA. 

Table EV8: Fitness, survival rate and the difference in phenotype values.  

Table EV9: Quiescent Specific (QS) genes in different starvation conditions. Original data for Fig 2C. 

Table EV10: Core set of genes required for quiescence across different starvation conditions. Original 
data for Fig S2D 
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Table EV11: Gene Set Enrichment Analysis results for QS genes in three different conditions. 

Table EV12: Genetic interaction scores quantified by ANCOVA using different phenotypic readouts for 
proliferation and quiescence.  

Table EV13: Genetic interaction profiles for all kinases in all conditions during proliferation. Original data 
for Fig 4A. 

Table EV14: Genetic interaction profiles for all kinases in all conditions during quiescence. Original data 
for Fig 4B. 

Table EV15: Functional annotation of gene clusters that positively interact with RIM15 in quiescent cells. 
Original data for Fig 6A. 

Table EV16: Functional annotation of gene clusters that negatively interact with RIM15 in quiescent 
cells. Original data for Fig 6B. 

Table EV17: Functional annotation of gene clusters that positively interact with TOR1 in quiescent cells. 
Original data for Fig 6SA. 

Table EV18: Functional annotation of gene clusters that negatively interact with TOR1 in quiescent cells. 
Original data for Fig 6SB. 
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Expanded View figures 

Figure EV1 - Ploidy confirmation, growth curves and pipeline for data pre-processing.  
A) ​Ploidy confirmation for double mutant libraries assayed using Syto Green staining.  
B) ​Bar-seq data pre-processing pipeline for each library/sample.  
C) ​Growth curve of 12 mutant libraries, 4 different genotypes (HO, RIM15, TOR1, PHO85) x 3 replicates, in different 
media (orange - carbon restriction, green - nitrogen restriction, purple - phosphorus restriction).  
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Figure EV2 - Correlation between fitness in proliferation and survival in quiescence.  
A) ​Weak correlation between fitness in proliferation and survival in quiescence under three nutrient restricted 
conditions. The distributions of fitness and survival for thousands of mutant in different conditions are shown on the 
top (fitness) and right (survival). Pearson correlation score is labeled on the bottom left of plot with p-value < 0.05. 
All scatter plot, frequency plot and labels are colored based on media types (orange - carbon restriction, green - 
nitrogen restriction, purple - phosphorus restriction).  
B)​ ​The proportion of mutants with different fitness and survival compared to wild type in proliferation and 
quiescence across three nutrient-restrictions. Proportions were calculated based on the statistics summarized from 
linear regression modeling ​. Better than wild type - regression coefficients of those mutants are larger than 0 with 
corrected p-value less than 0.05; no difference compared to wild type are the mutants with corrected p-value of 
regression coefficient greater than 0.05; worse than wild type are the mutants whose regression coefficient is less 
than 0 with corrected p-value less than 0.05.  
C)​ Criteria used to screen for the core set of genetic factors required for cellular quiescence. Those genes that 
meet the criteria are connected across distributions of different cellular states (F​Pro ​, S​Qui ​) and phenotypic difference 
(S​Qui ​ - F​Pro ​). These genes share the following features: 1. no significant defects compared to wild type in 
proliferation, 2. strong survival defects in quiescence, 3. phenotypic difference between proliferation and 
quiescence is statistical significant.  
D)​ The 8 genes defined in ​Figure 2D​ and their corresponding phenotypic readout in different conditions and 
cellular states.  
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Figure EV3. Genetic interaction quantification comparison and summary.  
A)​ Comparison of genetic interaction score between kinase TOR1 and other non-essential genes estimated by 
ANCOVA and multiplicative model for different cellular states. Pearson correlation between ANCOVA and 
multiplicative model calculated GIS is labeled on the bottom left of the plot with p-value < 0.05. A linear regression 
line is plotted for each condition for each cellular state. Both scatter plot, linear regression line and labels are 
colored based on media types (orange - carbon restriction, green - nitrogen restriction, purple - phosphorus 
restriction).  
B)​ Scatter plot of fitness and survival estimated in double mutation background (tor1Δ0 xxxΔ0: y-axis) and single 
mutation background (xxxΔ0: x-axis). The dashed diagonal line is colored as grey. A similar trend is found for other 
query mutants  
C) ​Quantitative summary of significantly interacting genes (p.val < 0.05) with each kinase in proliferation and 
quiescence.  
D) ​Cumulative plot of unique genetic interactions detected with each kinase in three nutrient media (orange - 
carbon restriction, green - nitrogen restriction, purple - phosphorus restriction).  
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Figure EV4. Genetic interaction profiles with kinases across difference conditions.  
A)​ correlation heatmap of genetic interaction profiles for each kinase under two cellular states in response to 
different nutritional restriction or starvations. Samples are orders based on hierarchical clustering.  
B)​ Comparison ​ ​of​ ​genetic interaction profiles between PHO85 and RIM15 in carbon- (top) or nitrogen- (bottom) 
restricted proliferating cells. Pearson correlation score is labeled in the plot with p-value < 0.05 (color code: pink - 
positive correlation).  
C) ​comparison of genetic interaction profiles of TOR1 between different nutrient-restricted and -starved conditions. 
Calculate pearson correlation is plotted on the bottom right of each panel with p-value < 0.05 (color code: pink - 
positive correlation, purple - negative correlation).  
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Figure EV5. A global network of genetic interaction profiles similarities.  
A) ​A global genetic profile similarity network encompassing ~3,971 nonessential and essential genes from 
Costanzo et al., 2016.  
B) ​The global similarity network was annotated using the Spatial Analysis of Functional Enrichment (SAFE) 
(Baryshnikova 2016)​, identifying network regions enriched for similar GO biological process terms, which are 
color-coded (Costanzo et al., 2016). 
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Figure EV6. Functional analysis of significantly interacting genes with different kinase.  
A)​ GOterm enrichment analysis for genes that significantly interact with TOR1 in each different nutrient starvation 
condition. Only GOterms with significant representation are shown (p.adjust < 0.05). The same color schemes are 
used to represent different interaction types (yellow - positive, blue - negative). The intensity of the dot color 
represents the significance, e.g. the lighter the color is, the smaller p-value. The size of the dot represents the gene 
group size within each term, given the significant interacting genes under each condition (colored parentheses on 
x-axis).  
B) ​Relative ​ ​frequency of each double (​ERADΔ0 rim15Δ0​) and single mutant (​ERADΔ0​) as a function of time in 
response to nitrogen starvation.  
C) ​SAFE analysis for genes interacting with RIM15 in nitrogen starvation conditions. 
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