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Abstract	

Background:	Coexpression	analysis	is	one	of	the	most	widely	used	methods	in	genomics,	with	

applications	to	inferring	regulatory	networks,	predicting	gene	function,	and	interpretation	of	

transcriptome	profiling	studies.		Most	studies	use	data	collected	from	bulk	tissue,	where	the	effects	of	

cellular	composition	present	a	potential	confound.	However,	the	impact	of	composition	on	coexpression	

analysis	have	not	been	studied	in	detail.	Here	we	examine	this	issue	for	the	case	of	human	brain	RNA	

analysis.	

Results:	We	found	that	for	most	genes,	differences	in	expression	levels	across	cell	types	account	for	

a	large	fraction	of	the	variance	of	their	measured	RNA	levels	in	brain	(median	R2	=	0.64).	We	then	show	

that	genes	that	have	similar	expression	patterns	across	cell	types	will	have	correlated	RNA	levels	in	bulk	

tissue,	due	to	the	effect	of	variation	in	cellular	composition.	We	demonstrate	that	much	of	the	

coexpression	in	the	bulk	tissue	can	be	attributed	to	this	effect.	We	further	show	how	this	composition-

induced	coexpression	masks	underlying	intra-cell-type	coexpression	observed	in	single-cell	data.	

Attempt	to	correct	for	composition	yielded	mixed	results.			

Conclusions:	The	dominant	coexpression	signal	in	brain	can	be	attributed	to	cellular	compositional	

effects,	rather	than	intra-cell-type	regulatory	relationships,	and	this	is	likely	to	be	true	for	other	tissues.	

These	results	have	important	implications	for	the	relevance	and	interpretation	of	coexpression	in	many	

applications.		

Keywords:	Coexpression,	cellular	composition,	cell-type	expression,	single-cell	coexpression,	

transcriptomic	data	analysis,	coexpression	inference.	
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Coexpression	analysis	is	among	the	most-used	methods	in	transcriptome	data	interpretation.	The	

biological	underpinnings	of	coexpression	are	well-established.	Within	a	cell,	genes	whose	products	work	

together	(either	directly	or	indirectly)	must	be	expressed	together.	This	implies	some	commonality	of	

regulation.	Indeed,	it	is	observed	that	genes	with	similar	functions	tend	to	be	coexpressed	(Eisen	et	al.,	

1998;	Langfelder	et	al.,	2011;	Lee	et	al.,	2004;	Gaiteri	et	al.,	2013).	Based	on	these	observations,	

coexpression	is	used	in	inferential	frameworks	(often	via	network-based	approaches)	to	aid	prediction	of	

gene	function	and/or	regulation	(Li	et	al.,	2016;	Rotival	and	Petretto,	2013;	Amar	et	al.,	2013;	de	la	

Fuente,	2010;	Saha	et	al.,	2017).	In	this	paper,	we	examine	assumptions	that	underlie	such	applications	

of	coexpression	to	“bulk”	samples	of	tissues	containing	multiple	cell	types.	In	particular,	we	explore	the	

role	played	by	variation	in	cellular	composition.	

In	bulk	brain	tissue	transcriptome	datasets,	gene	expression	clusters	(sets	of	genes	which	are	

observed	to	be	coexpressed)	are	often	enriched	for	cell-type	markers	(Oldham	et	al.,	2008).	Recently	it	

has	been	proposed	that	variation	in	cell	type	composition	between	individual	samples	explains	a	

substantial	degree	of	variation	in	gene	expression	in	human	brain	(Kelley	et	al.,	2018).	In	general,	cell-

type	“deconvolution”	methods	rely	on	the	idea	that	cell-type	markers	can	be	used	to	infer	cellular	

composition	(Newman	et	al.,	2015;	Patrick	et	al.,	2019).	Inferred	cellular	composition	is	also	used	for	

adjusting	statistical	models,	as	in	some	expression	quantitative	trait	locus	(eQTL)	analyses	(Westra	et	al.,	

2015;	Ng	et	al.,	2017).	Thus	there	is	at	least	implicit	awareness	that	cellular	composition	is	a	factor	in	

transcriptome	data	(Gaiteri et al., 2013; Crow et al., 2016).	However,	to	our	knowledge	the	connection	

between	these	observations	and	the	interpretation	of	coexpression	network	analysis	has	not	been	

described	in	detail.		

In	this	study,	we	document	the	effect	of	cellular	composition	variability	among	samples	in	bulk	

nervous	system	tissue,	and	its	downstream	effect	on	network-based	functional	analysis.	Using	a	
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combination	of	bulk	tissue	and	single-cell	data	analysis,	supplemented	by	simulations,	we	demonstrate	

that	for	a	given	gene	the	variance	of	its	expression	level	in	bulk	tissue	is	directly	related	to	its	variability	

across	cell	types.	We	then	show	that	this	is	strongly	related	to	coexpression	of	genes	with	each	other,	

such	that	the	dominant	signal	in	bulk	tissue	is	simply	due	to	variation	in	cellular	composition	across	

samples.	Because	many	gene	functions	are	highly	associated	with	specific	cell	types,	our	results	provide	

a	major	reason	why	clusters	enriched	for	functions	are	observed	in	expression	data.	A	further	

implication	is	that	the	utility	of	bulk	tissue	coexpression	to	infer	transcriptional	regulatory	networks	

beyond	uncovering	cell-type	specific	expression	patterns	is	greatly	complicated.	While	our	study	focuses	

on	expression	in	the	human	nervous	system,	the	phenomena	we	document	are	likely	to	play	an	

important	role	in	analyses	of	other	tissues.	

Results		

Variance	of	gene	expression	is	highly	affected	by	variation	of	cellular	composition	

Our	work	builds	on	two	empirically-founded	concepts.	The	first	is	that	many	genes	are	expressed	at	

different	levels	in	different	cell	types	in	the	brain.	The	second	is	that	brain	tissue	samples	vary	in	their	

precise	cellular	composition.	The	latter	occurs	due	to	technical	(e.g.	sampling	variability)	and	biological	

effects	(von	Bartheld	et	al.,	2016).	The	connection	between	the	two	in	the	context	of	bulk-tissue	

transcriptomics	can	be	formalized	in	the	following	simple	model,	schematized	in	Figure	1	(for	

mathematical	details	see	the	Supplement).	For	each	gene,	we	define	a	Cell	Type	(CT)	expression	profile,	

which	is	a	vector	of	expression	levels	of	the	gene	in	each	of	k	cell	types.	In	the	model,	the	CT	profile	is	

treated	as	a	fixed	intrinsic	feature	of	the	gene.	Second,	each	bulk	tissue	sample	has	a	specific	cellular	

composition	for	those	same	k	cell	types.	This	forms	a	cellular	composition	vector	of	length	k	for	each	

sample,	where	each	element	represents	the	proportion	of	a	cell	type	in	the	sample.	The	observed	
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expression	level	of	a	gene	in	the	sample	can	be	modeled	as	a	weighted	sum	of	the	values	in	the	CT	

profile,	where	the	weights	are	given	by	the	cellular	composition	vector	of	the	sample.	In	the	toy	

example	shown	in	Figure	1,	Gene	1	is	only	expressed	in	cell	type	B	and	therefore	its	relative	expression	

in	the	data	precisely	tracks	the	proportion	of	cell	type	B	present	in	the	samples.	This	special	case	is	used	

in	many	approaches	to	“cell	type	deconvolution”,	where	Gene	1	is	considered	a	“marker	gene”	for	cell	

type	B.	In	contrast,	Gene	5	is	expressed	equally	in	all	cell	types,	so	it	is	completely	insensitive	to	

differences	in	cellular	composition	and	its	expression	level	is	the	same	in	all	the	samples	(for	further	

mathematical	details	see	Supplement	section	1).	The	expression	pattern	becomes	more	complicated	for	

a	case	like	Gene	4,	which	is	expressed	at	different	levels	in	each	of	the	two	cell	types,	but	because	it	is	

expressed	at	higher	levels	in	cell	type	A,	its	pattern	in	the	bulk	tissue	is	positively	correlated	with	the	

proportion	of	cell	type	A.	Furthermore,	genes	that	have	correlated	CT	profiles	will	also	be	correlated	in	

the	bulk	tissue	(illustrated	in	Figure	1	by	genes	1	and	2,	and	genes	3	and	4).	

In	general,	the	model	predicts	that	the	more	variable	the	elements	in	gene’s	CT	profile,	the	more	its	

measured	expression	in	bulk	tissue	will	be	affected	by	variability	in	cellular	composition	of	the	samples	

(see	supplement	section	1	for	simulation	results	demonstrating	this).	It	is	important	to	note	that	this	

model	ignores	all	other	potential	sources	of	variability	including	noise	or	technical	artifacts,	as	well	as	

interactions	between	genes	or	cells	that	can	influence	expression.	Our	goal	is	to	explore	how	well	this	

effect	explains	the	observed	variance	and	correlation	of	genes	in	bulk	tissue	data.		
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Figure	1.	Schematic	of	cellular	composition	effects	on	
gene	expression	variance	in	bulk	tissue.	Top:	Cell	type	
(CT)	profiles	for	five	genes	in	a	hypothetical	tissue	with	
two	cell	types.	Genes	1	and	2	are	marker	genes	for	cell	
type	B.	Gene	3	is	a	marker	gene	for	cell	type	A.	Gene	4	
is	expressed	in	both	cell	types,	but	at	different	levels,	
while	Gene	5	is	expressed	at	equal	levels.	Middle:	
Hypothetical	cellular	compositions	of	five	bulk	tissue	
samples.	Each	sample	(alphai)	has	the	same	amount	of	
biological	material	but	different	proportions	of	each	
cell	type.	Bottom:	The	expected	observed	expression	
levels.	Gene	1	and	Gene	2	are	positively	correlated	and	
negatively	correlated	with	Gene	3	and	4.	Gene	5	is	
expressed	at	the	same	level	in	all	the	bulk	tissue	
samples	as	it	is	equally	expressed	in	all	cell	types.		

	

As	an	initial	assessment	of	whether	this	model	is	broadly	explanatory,	we	estimated	CT	profiles	for	

human	cortex	from	single	nucleus	RNA-seq	data	(snuc-RNAseq	data,	see	Methods),	yielding	expression	

levels	for	16,789	genes	in	each	of	75	different	cell	types,	including	all	of	the	major	classes	of	cells	

expected	to	be	present	in	bulk	cortex.	We	compared	these	data	to	a	bulk	cortex	transcriptome	dataset	

from	GTEx	(GTExBulk,	see	Methods).	As	predicted	by	the	model,	the	variance	of	a	gene’s	expression	in	

GTExBulk	is	correlated	with	the	variance	of	its	CT	expression	profiles	(Spearman’s	rho	=	0.18;	

Supplementary	Figure	3).	Given	the	many	potential	sources	of	error,	including	noise	in	the	CT	profiles	as	

well	as	the	GTExBulk	data,	the	agreement	with	the	naive	model	is	striking.	

We	next	applied	an	approach	related	to	many	deconvolution	methods	to	estimate	the	amount	of	

variance	attributable	to	cellular	composition	effects	for	each	gene.	As	demonstrated	in	Figure	1,	

expression	levels	of	cell-type	marker	genes	in	bulk	tissue	will	reflect	the	variation	of	cellular	composition	

among	the	samples.	Therefore,	the	cellular	composition-induced	variance	of	the	genes	could	be	
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modeled	by	the	variation	of	marker	genes	in	a	dataset.	Here	we	used	Principal	Component	Regression	

(PCR)	using	the	expression	of	marker	genes	to	predict	the	variation	of	the	non-marker	genes	in	the	

GTExBulk	dataset	(see	Methods).	The	amount	of	variance	explained	by	the	model	for	each	gene	(R2)	is	

an	estimate	of	the	degree	to	which	the	gene’s	expression	pattern	is	due	to	variability	in	cellular	

composition.	In	our	first	analysis,	we	used	sets	of	marker	genes	from	a	high-quality	snuc-RNAseq	dataset	

for	five	major	brain	cell	types	(Pyramidal,	Microglia,	Astrocyte,	Oligodendrocyte	and	Endothelial;	see	

Methods).	The	resulting	gene-level	values	of	R2	range	up	to	0.91	(90th	quantile	is	0.79)	with	a	median	of	

0.46.	In	contrast,	the	same	models	fit	to	the	snuc-RNAseq	data,	where	we	expect	no	effect	of	cellular	

composition	(barring	contamination	of	individual	nuclei),	the	mean	R2	is	0.018,	with	only	38	genes	

having	values	greater	than	0.2.	

As	predicted	by	our	model,	R2	values	are	correlated	with	the	variance	of	the	CT	expression	profiles	(rho	

=	0.28).	To	check	the	robustness	of	these	findings,	we	tested	another	set	of	(largely	non-overlapping)	

marker	genes	from	Mancarci	et	al.	(2017)	with	similar	results	(rho=	0.3;	see	Supplement	section	2).	We	

also	tested	randomly	selected	sets	of	non-marker	genes	instead	of	markers	and	found	that	R2	values	are	

significantly	higher	for	the	marker	genes	when	PCs	are	obtained	from	marker	genes	compared	to	the	

random	selection	of	genes	with	similar	average	expression	levels	(p	<	0.01	for	average	of	R2	of	marker	

genes	for	100	trials,	see	supplementary	Figure	02).	Likewise,	the	two	marker	sets	also	generated	higher	

R2	values	for	each	other	than	the	random	gene	sets	despite	their	small	overlap.	

Motivated	by	reports	that	coexpression	clusters	are	often	associated	with	tissue-relevant	gene	

functions,	we	next	examined	the	relationship	between	gene	function	and	cellular	expression	patterns.	

We	observed	that	genes	associated	with	brain-related	functional	terms	(see	Methods)	tend	to	have	

higher	R2	values,	consistent	with	expected	cell-type	specific	expression	patterns	in	the	brain	(see	Figure	

2A).	That	is,	genes	with	a	brain-related	function	tend	to	have	more	varying	CT	profiles	--	they	are	
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enriched	in	particular	cell	types	--	which	leads	to	high	variation	in	bulk	tissue.	For	example,	genes	

involved	in	synaptic	transmission	are	expressed	in	neurons,	while	genes	involved	in	myelination	are	

expressed	in	oligodendrocytes.	Examples	are	genes	annotated	with	“Regulation	of	synaptic	plasticity”	

(GO:0048167,	mean	R2	=	0.76)	and	genes	annotated	with	“Axon	ensheathment”	(GO:0008366,	mean	R2:	

0.68;	see	Additional	file	01).	In	contrast,	terms	for	housekeeping	functions	tend	to	be	associated	with	

genes	with	lower	R2	values	(Examples:	“Histone	demethylation”,	mean	R2	value:	0.61	–	GO:0016575;	

“spliceosomal	snRNP	assembly”,	average	R2	value:	0.53	–	GO:0000387–	see	Additional	File	02).	In	a	

closer	examination,	we	also	see	that	genes	associated	with	the	brain-specific	term	“Regulation	of	

synaptic	plasticity”	have	significantly	higher	variance	in	GTExBulk	dataset	compared	to	genes	associated	

with	the	housekeeping	term	“Histone	demethylation”	(p	=	0.005,	ttest).	In	contrast,	in	the	snuc-RNAseq	

cell	population	(a	dataset	expected	to	not	have	cellular	composition	effects)	they	have	significantly	

lower	variance	(p	=	4e-4;	see	Figure	2B).	In	summary,	these	results	demonstrate	that	some	of	the	

observed	variance	of	genes	can	be	attributed	to	cell	type	composition	variation,	and	this	is	especially	

true	for	genes	with	tissue-specific	functions	due	to	their	tendency	to	also	have	cell-type	specific	

expression	patterns.		
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Figure	2.	Much	of	the	observed	variance	of	brain-specific	genes	in	bulk	tissue	is	explained	by	cellular	
composition	effects.	(A)	Groups	of	genes	associated	with	brain-specific	functional	terms	tend	to	have	
higher	cellular	composition-associated	variance	(indicated	by	higher	average	R2	values)	compared	to	
groups	of	genes	associated	with	housekeeping	terms.	The	average	R2	values	for	two	example	terms	
are	highlighted	with	black	and	blue	dots.	(B)	Distribution	of	gene-level	variance	in	the	GTExBulk	and	
snuc-RNAseq	cell	population	(Exc	L2-3	LINC00507	FREM3)	for	two	groups	of	genes.	Genes	associated	
with	brain-specific	term	“Regulation	of	synaptic	plasticity”	have	higher	variance	than	genes	associated	
with	the	housekeeping	term	“Histone	demethylation”	in	the	GTExBulk	dataset,	while	they	have	
slightly	but	significantly	lower	variance	in	the	sunc-RNAseq	cell	population.		

	

Much	bulk	tissue	coexpression	is	explained	by	cellular	composition	variation	among	

samples		

In	the	previous	section	we	demonstrated	that	variation	in	gene	expression	can	be	partly	accounted	

for	by	variation	in	cellular	composition.	As	illustrated	in	Figure	1,	genes	which	have	similar	patterns	of	

expression	across	cell	types	(as	evidenced	by	correlated	CT	profiles)	are	also	expected	to	have	correlated	

expression	in	bulk	tissue.	Importantly,	this	phenomenon	will	be	observed	for	any	gene	which	has	

variability	in	expression	across	cell	types,	not	just	highly	cell-type	specific	marker	genes.	For	any	two	

genes,	in	the	absence	of	other	factors,	as	the	correlation	between	their	CT	expression	profiles	

approaches	one	(or	minus	one),	their	correlation	in	bulk	tissue	is	expected	to	approach	one	(or	minus	
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one	–	See	supplementary	section	1,	Figure	1	and	Figure	3C).	We	call	this	“cellular	composition-induced	

coexpression”,	to	be	distinguished	from	coexpression	due	to	“within-cell”	co-regulation.	We	

hypothesized	that	it	is	a	major	source	of	observed	coexpression	in	bulk	tissue.	

We	first	performed	clustering	of	the	GTExBulk	gene	expression	profiles,	yielding	69	clusters	

(minimum	20	genes	each;	see	Methods).	As	expected,	some	clusters	are	enriched	with	markers	for	one	

cell	type	(Figure	3A).	While	many	of	the	other	genes	in	these	clusters	are	not	markers,	they	tend	to	be	

“quasi-markers”	–	they	are	enriched	in	expression	in	a	cell	type	(as	for	Genes	1,2	and	3,4	in	the	

simplified	model	Figure	2	–	see	supplementary	Figure	5	for	expression	levels	of	genes	from	clusters	

associated	with	different	cell	types,	compared	to	marker	genes).	Furthermore,	clusters	that	are	enriched	

for	markers	for	the	same	broad	cell	types	and	most	of	their	neighboring	clusters	have	correlated	

average	CT	expression	profiles	(0.993	>	rho	>	0.42,	all	p	<	5e-4,	Figure	3A	and	B).	In	addition,	the	average	

R2	values	from	the	regression	model	are	generally	high	for	the	marker-enriched	clusters,	consistent	with	

composition-induced	variance	in	expression	(9/10	marker	enriched	clusters	have	average	R2	greater	

than	the	median	for	all	clusters	(median	=	0.65),	Figure	3A;	see	Additional	file	03	for	all	values).		

The	results	so	far	make	it	apparent	that	some	of	the	observed	coexpression	in	the	bulk	brain	tissue	

is	explainable	by	cellular	composition	variation.	Since	cell-type	specific	patterns	of	expression	are	likely	

to	be	relatively	fixed	and	therefore	reproducible,	composition-induced	coexpression	is	also	likely	to	be	

reproducible,	and	therefore	contributing	to	the	reported	reproducibility	of	coexpression	clusters	among	

different	bulk	brain	datasets.	We	examined	this	by	comparing	brain	bulk	tissue	coexpression	networks	

with	each	other	and	also	with	coexpression	networks	from	other	tissues.	In	the	GTExBulk	coexpression	

network,	the	intra	cluster	coexpression	links	in	the	clusters	enriched	with	brain	marker	genes	contain	

49%	of	the	total	links.	This	is	up	to	40	times	higher	than	the	null	expected	value	for	the	count	of	genes	in	

the	clusters	for	the	given	density	of	this	network	(see	Figure	3D).	The	same	set	of	genes	have	a	high	
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count	of	links	in	multi-dataset	brain	coexpression	networks	we	previously	described	(Farahbod	and	

Pavlidis,	2019),	confirming	that	much	of	the	reproducibility	among	bulk	brain	networks	can	be	explained	

by	cellular	composition-induced	coexpression.	Importantly,	while	most	(60-80%)	of	the	genes	in	these	

clusters	are	also	expressed	in	blood	and	liver,	the	high	degree	of	observed	coexpression	among	these	

particular	genes	is	a	phenomenon	specific	to	the	brain.	We	also	see	a	large	increase	of	links	between	the	

genes	in	marker	enriched	clusters	in	our	simulated	bulk	tissue	data	upon	the	introduction	of	cellular	

composition	variation	(Figure	3D	–	see	methods	for	details).		

Apart	from	the	marker-enriched	clusters,	many	clusters	in	the	GTEx-derived	network	are	enriched	

with	housekeeping	genes	and/or	functions	(see	Figure	3).	Most	of	these	clusters	have	low	mean	R2	

values	(18/28	have	mean	R2	less	than	the	median	of	all	clusters	(0.65)	–	see	Additional	files	03,	04),	

suggesting	that	their	genes	have	small	variability	in	their	CT	expression	profiles	and	their	coexpression	is	

less	likely	to	be	affected	by	the	cellular	composition	variation	(like	gene	5	in	Figure	1).	We	hypothesized	

that	some	of	the	coexpression	signal	among	genes	from	these	clusters	could	have	remained	obscured	

due	to	the	prevalence	of	high	correlation	values	induced	by	cellular	composition	variation	among	other	

genes.	To	investigate	this,	we	compared	counts	of	links	in	different	clusters	in	GTExBulk	with	counts	of	

links	in	the	GTExBulk	residual	network	(GTEx_residual,	a	network	built	from	the	residuals	of	the	PCR	

fits).	We	observed	large	drops	in	the	count	of	links	in	the	marker-enriched	clusters	and	an	increase	in	

the	count	of	links	in	clusters	with	low	R2	values	(Figure	3E).	The	magnitude	of	these	changes	highlight	

how	cellular	composition-induced	coexpression	can	mask	underlying	coexpression	within	cell	types.	We	

discuss	the	use	of	the	GTEx_residual	network	as	a	“corrected	network”	in	the	next	section.		
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Figure	3.	Much	coexpression	is	explained	by	cellular	composition	effects.	(A)	Coexpression	clusters	
from	GTExBulk	dataset	network.	Clusters	are	labeled	with	their	IDs.	Color	indicates	if	the	cluster	has	
markers	of	a	specific	cell	type,	or	if	it	is	enriched	with	housekeeping	functional	terms	or	genes.	
Thickness	of	the	border	reflects	the	mean	R2	value	for	genes	in	the	cluster.	(B)	Coexpression	of	mean	
CT	expression	profiles	for	a	group	of	clusters	affiliated	with	Pyramidal	cell	expression	patterns	and	a	
group	of	clusters	affiliated	with	Astrocyte	cell	expression	patterns	(affiliation	is	indicated	with	
presence	of	markers,	high	R2	or	high	inter	cluster	links)	(C)	Results	from	simulated	bulk	tissue	data.	
Each	dot	represents	data	from	a	pair	of	genes.	Plot	shows	data	for	1000	gene	pairs,	sampled	from	a	
bulk	tissue	dataset	with	100	samples	and	10	hypothetical	cell	types.	As	demonstrated,	for	a	given	pair	
of	genes,	their	Pearson	correlation	in	the	bulk	tissue	is	highly	correlated	with	the	Pearson	correlation	
between	their	CT	expression	profile.	Also	the	higher	the	correlation	between	their	CT	expression	
profiles,	the	more	likely	their	correlation	in	the	bulk	tissue	is	the	same	as	the	correlation	of	their	CT	
expression	profiles.	(D)	Proportion	of	coexpression	involving	the	set	of	genes	from	the	clusters	
enriched	with	marker	genes.	(D1)	The	two	brain	networks	(GTExBulk	and	the	TAN-brain)	and	the	
brain-specific	network	(TSN-brain)	have	between	~30-50%	intra-cluster	links	in	clusters	enriched	with	
marker	genes.	(D2)	Portion	of	links	in	the	same	set	of	clusters	in	two	groups	of	synthesized	bulk	tissue	
networks,	modeling	the	effect	of	cellular	composition	variation.	(E)	Percentage	of	links	increased	or	
decreased	for	GTExBulk	clusters	in	the	residual	network	(GTEx_residual).	Cluster	color	code	as	in	A.	
The	range	for	average	R2	is	shown	in	the	color	bar.	Many	housekeeping	clusters	(orange)	with	low	
average	R2	values	yield	more	links	in	the	residual	network.	
	

Cellular	composition	effects	can	mask	underlying	intra-cell-type	coexpression		

We	have	shown	that	a	major	coexpression	signal	in	bulk	tissue	comes	from	cellular	composition	

effects.	In	our	view	this	presents	a	shift	from	the	usual	interpretation,	and	raises	the	question	of	

whether	there	is	substantial	coexpression	attributable	to	other	sources.	This	is	especially	relevant	to	

attempts	to	infer	coregulation.	Specifically,	the	question	remains	as	to	whether	coregulatory	

relationships	in	the	sense	typically	sought	are	“visible”	in	bulk	tissue	data	in	the	background	of	cellular	

composition	effects.	We	do	not	attempt	to	fully	address	this	question	here,	instead	concern	ourselves	

with	a	simpler	one:	in	the	common	modes	of	coexpression	analysis	of	bulk	brain	tissue,	are	coexpression	

patterns	present	within	a	cell	type	detectable?	Composition-induced	coexpression	could	in	principle	

mask	or	amplify	the	bulk-tissue	visibility	of	intra-cell-type	coexpression.	In	this	section,	we	examine	the	

difference	between	robust	intra-cell-type	coexpression	as	measured	in	the	snuc-RNAseq	data	and	the	

observed	coexpression	in	GTExBulk,	and	show	that	much	of	the	difference	can	be	attributed	to	the	
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cellular	composition	effect.	We	also	examine	the	GTEx_residual	network	as	a	form	of	“corrected	

network”	in	retrieving	intra-cell-type	coexpression.	

As	a	preliminary	step,	we	examined	the	general	agreement	of	the	coexpression	networks	built	from	

different	snuc-RNAseq	populations	and	the	GTExBulk	dataset,	and	found	that	the	agreement	of	network	

links	is	up	to	two	times	(and	in	few	cases	3-5	times)	higher	for	most	of	snuc-RNAseq	populations	than	

that	expected	by	chance	(see	supplementary	Figure	6).	For	reference,	for	our	two	bulk	brain	networks	

TAN-brain	and	GTExBulk	this	measure	of	agreement	is	14.	Conversely,	some	of	the	observed	

coexpression	clusters	in	the	GTExBulk	are	also	reproducible	in	the	larger	snuc-RNAseq	cell	populations	

(see	supplementary	Figure	7),	including	those	of	many	of	the	housekeeping	and	some	of	the	brain-

specific	clusters.	This	shows	that	there	is	some	level	of	agreement	between	coexpression	observed	in	

snuc-RNAseq	and	bulk	data,	in	agreement	with	prior	work	(Crow	et	al.,	2016).	

We	then	hypothesized	that	some	of	the	differences	between	the	observed	coexpression	in	snuc-

RNAseq	data	and	GTEx	bulk	could	be	explained	by	the	cellular	composition	effect,	in	a	way	that	is	shown	

schematically	in	Figure	4A.	To	test	this,	we	compared	bulk	tissue	coexpression	with	robust	intra-cell-type	

coexpression	patterns	and	found	that	for	most	part,	differences	between	the	two	are	explained	by	the	

effect	of	cellular	composition	variation.	To	identify	robust	intra-cell-type	coexpression	patterns,	we	

combined	64	snuc-RNAseq	coexpression	networks	built	from	neuronal	cell	types	(both	excitatory	and	

inhibitory)	and	obtained	a	consensus	(sum)	“intra-cell-type”	network	(see	Methods	and	Additional	file	

05	for	list	of	links).	We	focused	on	the	highest-confidence	set	of	links	that	were	present	in	10	or	more	

networks,	leading	to	a	set	of	464	genes	with	7,678	highly	robust	links.	Of	these	links,	32%	have	

correlation	values	above	the	95th	quantile	in	the	GTExBulk	network	but	only	63%	have	correlation	values	

above	the	median.	This	sub-network	forms	two	very	distinct	clusters	(Figure	4B).	The	gray	cluster	is	

enriched	with	multiple	functional	terms	associated	with	neuronal	processes	and	the	black	cluster	is	
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enriched	with	a	few	house-keeping	functions	(see	the	complete	list	of	functions	in	Additional	file	06).	

We	then	looked	at	the	coexpression	of	these	genes	in	the	GTExBulk	network	(Figure	4C).	While	the	

genes	in	the	two	clusters	have	partly	distinguishable	coexpression	patterns	in	GTExBulk,	a	large	number	

of	inter-cluster	links	are	present;	that	is,	the	clusters	are	not	as	clearly	separated.	Indeed,	the	464	genes	

appear	in	multiple	clusters	in	the	GTExBulk	network	(Figure	4D).	We	hypothesized	that	this	is	due	to	

similarity	of	CT	expression	profiles	among	some	of	the	genes,	causing	composition-induced	coexpression	

that	“blurs”	the	underlying	cell-type-specific	coexpression	pattern.	In	support	of	this	hypothesis,	

correlations	of	the	CT	profiles	are	high	for	some	of	the	genes	(Figure	4C	and	D).	In	particular,	this	can	

explain	the	differentiation	between	the	two	clusters	ID253,	ID168	and	Excitatory	cell	clusters	(indicated	

by	green	color	bar	in	Figure	4D	-	these	are	the	clusters	enriched	with	Pyramidal	markers	–	see	Figure	3	

for	reference).	The	differentiation	is	even	clearer	when	CT	expression	profiles	are	obtained	from	

neuronal	cells	only	(Figure	4E),	indicating	different	expression	patterns	among	neuronal	cell	types	for	

genes	in	clusters	ID253,	ID168,	ID64	and	Excitatory	clusters	(Figure	4E).	Our	conclusion	is	that	the	intra-

cell-type	coexpression	patterns	observed	in	single	cell	data	can	be	distorted	and/or	masked	in	bulk	

tissue	by	the	effects	of	cellular	composition.		
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Figure	4.	(A)	Schematic	showing	a	coexpression	cluster	in	a	specific	cell	type	could	be	divided	into	
multiple	clusters	in	the	bulk	tissue	dataset,	as	its	genes	might	have	different	CT	expression	profiles.	
Each	circle	represents	a	group	of	genes.	Colors	blue,	yellow	and	coral	represent	different	“modes”	of	
CT	expression	profiles,	similar	to	the	mean	CT	expression	profiles	for	the	bulk	tissue	clusters	in	Figure	
3.	(B)	The	heatmap	shows	part	of	the	sum	network	from	64	neuronal	snuc-RNAseq	datasets	where	
two	coexpression	clusters	are	identified.	Clusters	1	and	2	(color	bar	grey	and	black)	are	well	
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distinguished	from	each	other.	(C)	Heat	map	shows	the	same	set	of	genes	with	the	same	order	in	the	
GTExBulk	tissue	dataset.	While	the	two	clusters	are	somewhat	distinguished,	a	great	amount	of	inter-
cluster	links	is	present.	(D)	The	heatmap	shows	the	network	for	the	genes	in	cluster	1,	from	the	
coexpression	network	built	from	the	correlation	of	the	CT	expression	profiles	obtained	from	the	75	
snuc-RNAseq	datasets.	Genes	are	ordered	based	on	their	belonging	to	different	GTExBulk	clusters,	
identified	by	the	colorbar	and	cluster	IDs	from	Figure	3A.	Three	sub-clusters	are	mildly	distinguished,	
separating	two	groups	of	house-keeping	clusters	from	the	Pyramidal	clusters	(orange	versus	green).	
(E)	Same	plot	as	D,	but	the	CT	expression	profiles	are	obtained	from	the	64	neuronal	cell	types	only.	
The	distinguished	clusters	demonstrate	the	group	of	genes	with	different	expression	levels	in	the	
neuronal	cell	types.		
	

In	the	previous	analysis,	we	showed	that	cellular	composition	effects	can	mask	intra-cell-type	

coexpression	especially	when	there	is	a	conflict	between	the	correlation	of	the	CT	expression	profiles	

and	the	intra-cell-type	coexpression,	resulting	in	loss	of	the	intra-cell-type	pattern.	In	general,	there	are	

various	scenarios	that	could	occur,	and	intra-cell-type	coexpression	patterns	might	happen	to	be	

observed	in	bulk	tissue	to	varying	degrees	and	for	varying	reasons.	Here	we	demonstrate	this	complexity	

with	two	genes,	CALM3	and	NRGN	(Figure	5).	They	are	robustly	correlated	in	the	snRNA-seq	excitatory	

neurons	(a	link	is	present	in	11	out	of	23	of	the	networks	for	excitatory	neurons),	but	there	is	no	

correlation	between	them	in	Inhibitory	neurons,	since	NRGN	is	not	expressed	in	Inhibitory	neurons	

(Figure	5A,	B).	Accordingly,	they	have	relatively	highly	correlated	CT	expression	profiles	(rho	=	0.46),	

driven	by	their	high	expression	in	excitatory	neurons	and	close	to	zero	expression	in	the	non-neuronal	

cell	types,	but	moderated	by	their	disjoint	expression	in	inhibitory	neurons.	This	suggests	they	might	be	

coexpressed	in	bulk	tissue,	but	for	a	reason	different	from	that	driving	their	coexpression	within	

excitatory	cells.	As	it	happens,	their	correlation	in	bulk	tissue	is	relatively	high	(97th	quantile),	but	not	

nearly	high	enough	to	pass	our	original	99.5	quantile	filter	for	link	selection.	Their	correlation	ranks	drop	

to	the	82.3th	quantile	in	the	GTEx_residual	network.	We	conclude	that	the	observed	coexpression	of	

CALM3	and	NRGN	in	the	bulk	tissue	is	primarily	caused	by	correlation	of	their	cell	type	expression	

profiles,	rather	than	a	reflection	of	their	coexpression	in	excitatory	cells.	Also,	although	their	

coexpression	in	the	bulk	tissue	resembles	their	coexpression	in	excitatory	cells,	it	is	in	disagreement	with	
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their	lack	of	coexpression	in	other	non-neuronal	cell	types.	In	general	there	is	no	simple	relationship	

between	coexpression	within	a	cell	type,	and	coexpression	in	a	tissue	in	which	that	cell	type	is	one	of	

several	present.	

	
Figure	5.	Coexpression	of	NRGN	and	CALM3	in	Excitatory	cell	types.	(A)	From	snuc-RNAseq	data:	
NRGN	is	only	expressed	in	the	Excitatory	cell	types	(B)	From	snuc-RNAseq	data:	CALM3	is	expressed	in	
both	Inhibitory	and	Excitatory	cell	types	(C)	The	two	genes	are	highly	correlated	in	the	Excitatory	cell	
types	–	based	on	coexpression	networks	built	from	snuc-RNAseq	data.	They	are	correlated	in	
GTExBulk	dataset	but	do	not	meet	the	threshold	for	the	network	(threshold	is	marked	by	the	red	line,	
it	is	the	995th	quantile).		

	

Given	that	the	effects	of	cellular	composition	on	coexpression	can	be	viewed	as	a	confound,	it	is	

natural	to	consider	whether	the	data	can	be	corrected.	In	the	previous	section	we	observed	that	many	

of	the	clusters	from	GTExBulk	had	a	much	higher	count	of	links	in	the	residual	network.	In	our	

framework	a	natural	choice	for	such	a	correction	are	the	residuals	from	our	PCR	model	fits	used	to	

obtain	the	R2	estimates.	We	observe	that	most	of	the	GTExBulk	clusters	are	significantly	reproduced	in	

the	GTEx_residual	network	(see	supplementary	Figure	6)	and	many	of	the	brain-specific	and	

housekeeping	terms	are	enriched	in	the	GTEx_residual	network	(Additional	file	07).	However,	there	is	no	
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overall	significant	improvement	in	agreement	of	the	links	in	snuc-RNAseq	populations	with	the	

GTexBulk_residual	compared	to	the	GTExBulk	network	(supplementary	Figure	7),	indicating	that	

correction	for	composition	may	not	be	a	panacea.	But	there	is	improvement	of	the	precision	in	

recovering	snuc-RNAseq	coexpression	links	for	some	of	the	GTExBulk-driven	clusters.	Results	for	the	

largest	snuc-RNAseq	population	is	presented	in	supplementary	Figure	7.	As	an	example	we	can	consider	

the	neuronal	clusters	with	IDs	239,	242	and	243.	These	clusters	are	enriched	for	pyramidal	cell	markers,	

and	their	genes	have	high	mean	R2	values	of	0.72,	0.74	and	0.75,	respectively,	suggesting	that	correction	

will	have	a	large	effect.	In	GTEx_residual	the	link	density	among	the	genes	in	these	clusters	decreases	to	

approximately	1/2,	1/6	and	1/14	of	the	density	in	the	GTExBulk	network,	while	the	link	overlap	with	the	

snuc-RNAseq	cell	populations	increases	24	to	175	percent.	We	also	see	that,	for	the	most	robust	snuc-

RNAseq	clusters	(from	Figure	4B),	which	were	substantially	degraded	in	GTExBulk	(Figure	4C),	their	

separation	is	largely	restored	in	the	GTexBulk_residual	network	(Figure	6).	However,	the	restoration	is	

mostly	due	to	the	removal	of	inter-cluster	links,	rather	than	an	increase	in	the	intra-cluster	cluster	links.	

These	findings	suggest	that	correction	for	cellular	composition	effects	can	be	beneficial,	but	confidence	

in	the	results	are	uncertain	without	matched	single-cell	data.	
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Figure	6.	Reproducibility	of	robust	correlation	clusters	from	snuc-RNAseq	networks	in	GTExBulk	and	
the	residual	network.	Inter	and	intra	cluster	density	values	are	overlaid	in	black,	and	fold-changes	in	
blue.	The	null	density	is	0.005	for	all	the	networks	(A)	Sum	network	as	in	Figure	4B.	For	visualization,	the	
data	are	scaled	to	be	comparable	to	B	and	C.	Intra	cluster	density	is	more	than	15	times	the	inter	cluster	
density	for	both	black	and	gray	clusters.	(B)	As	in	Figure	4C.	Intra	cluster	density	is	less	than	the	inter	
cluster	density	for	the	black	cluster,	for	the	gray	one	it	is	less	than	2.	(C)	Intra	cluster	density	is	more	
than	10	times	higher	than	the	inter	cluster	density	for	both	black	and	gray	clusters.	Notice	that	the	
dramatic	effect	in	the	density	(from	GTExBulk	to	GTEx_residual	network)	is	mostly	explained	by	the	
relative	reduction	of	inter-cluster	links	rather	than	an	increase	in	the	intra-cluster	links.		
	

Discussion	

The	term	“coexpression”	refers	to	two	tightly	linked	concepts,	one	defined	in	the	realm	of	molecular	

biology	as	the	coordinated	transcription	of	genes	by	regulatory	mechanisms	occurring	within	a	cell	

(coregulation).	The	other	is	an	observation	of	correlation	of	RNA	levels	in	transcriptomic	data;	for	clarity	

we	can	refer	to	the	latter	as	“observed	coexpression”.	Coregulation	has	formed	a	foundation	for	

understanding	genome	function	for	decades:	that	genes	with	collaborating	products	need	to	be	

expressed	at	the	same	time	and	are	thus	coregulated.	Meanwhile,	coexpression	detected	in	high-

throughput	datasets	has	proven	to	be	a	reproducible	signal	with	biological	relevance:	genes	which	are	

coexpressed	have	a	higher	probability	of	having	related	function	than	those	which	are	not	co-expressed.	

It	is	often	assumed	that	observed	coexpression	is	due	to	coregulation	and	therefore	the	latter	could	be	

reversed	engineered	from	the	former.	Our	work	highlights	a	challenge,	in	that	coexpression	from	bulk	

samples	of	a	heterogeneous	tissue	are	likely	to	be	dominated	by	cellular	composition	effects.	This	has	

important	implications	for	the	interpretation	of	coexpression.	

Coexpression	in	brain	tissue	is	highly	reproducible	–	that	is,	there	are	strong	patterns	of	

coexpression	that	are	observed	in	many	independent	data	sets		(Farahbod	and	Pavlidis,	2019;	Oldham	et	

al.,	2008).	Our	results	suggest	that	this	is	mostly	due	to	the	reproducibility	of	cell-type	expression	

patterns,	and	the	pervasive	presence	of	variability	in	cellular	composition	between	samples	(Figure	1	
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and	3).	We	have	shown	that	when	coexpression	is	observed	across	cell	types	or	tissues,	the	dominant	

patterns	are	due	to	cell-type	or	tissue-specificity	of	expression,	and	coexpression	is	merely	a	proxy	for	

differential	expression	across	cell	types	or	tissues.	While	genes	which	are	expressed	specifically	in	one	

cell	type	(for	example)	can	be	thought	of	as	having	a	“shared	function”,	that	function	is	broad,	only	

reflecting	the	function	of	that	cell	type.	There	is	little	expectation	that	function	at	the	level	of	individual	

molecular	interactions	or	pathways	would	be	captured:	the	distinctness	of	a	cell	type	cannot	be	fully	

described	by	the	activity	of	a	single	pathway.	Likewise,	even	for	these	genes	their	coregulation	may	

reflect	the	broad	epigenetic	state	of	the	cell	type	(Yoshida	et	al.,	2019),	and	finer-grained	details	of	co-

regulation	are	unlikely	to	be	easily	captured.		

We	have	also	shown	that	cellular	composition-induced	coexpression	can	mask	apparently	robust	

cell-type	specific	coexpression	patterns	(Figure	4).		Despite	this,	a	remaining	question	is	whether	

correction	for	cellular	composition	would	enable	more	efficient	extraction	of	coregulation.	For	this	to	be	

the	case,	underlying	patterns	due	to	coregulation	would	have	to	be	present	in	the	data,	and	sufficiently	

separable	from	cellular	proportion	effects.	For	this	to	be	effective,	the	regulation	should	ideally	not	be	

cell-type	specific	(otherwise	the	signal	would	be	that	much	weaker;	Figure	6),	so	the	genes	involved	

would	have	to	be	expressed	in	most	cells.	Since	genes	which	are	not	cell-type	specific	tend	to	have	

housekeeping	functions,	it	stands	to	reason	that	the	most	apparent	coregulatory	relationships	would	be	

those	among	housekeeping	genes.	We	note	that	schemes	for	correcting	bulk	tissue	data	for	cell	type	

proportions	(either	directly	or	indirectly)	are	often	used	in	expression	QTL	studies,	and	have	been	shown	

to	increase	the	number	of	cis-eQTLs	that	can	be	recovered	(Ng	et	al.,	2017).	This	suggests	that	correcting	

for	cell	type	proportions	and	recovering	underlying	biological	signals	is	possible,	but	eQTL	studies	

require	large	sample	sizes	(generally	at	least	100	but	often	far	more,	especially	for	trans-eQTLs).	We	

expect	that	identification	of	coregulatory	relationships	from	bulk	tissue	data	will	similarly	require	very	

large	samples	sizes	and	still	be	most	effective	at	extracting	regulation	of	housekeeping	genes	rather	than	
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cell-type	specific	genes.	Giving	these	constraints,	it	would	seem	preferable	to	use	coexpression	data	

from	a	single	cell	type	to	extract	regulatory	relations.	However,	limitations	of	the	most	commonly-used	

single-cell	transcriptome	methods	suggest	extracting	high-quality	regulation	information	is	a	challenge	

(Crow	and	Gillis,	2018).	Furthermore,	the	most	commonly	used	computational	method	for	doing	so	is	

designed	to	simultaneously	identify	cell	types	along	with	building	a	regulation	network,	so	that	the	

strongest	patterns	observed	are	likely	dominated	by	differential	expression	across	cell	types,	not	

coexpression	within	cell	types	(Aibar	et	al.,	2017).	

Our	study	does	have	some	limitations.	First,	our	analysis	of	cell-type-level	coexpression	is	based	on	a	

single	(albeit	large	and	unusually	deeply	sequenced)	data	set	that	used	different	samples	than	the	bulk	

tissue.	Thus	we	cannot	rule	out	that	the	failure	to	recover	some	snuc-RNAseq	coexpression	patterns	in	

bulk	tissue	might	reflect	data-specific	effects.	This	might	be	resolved	in	the	future	with	additional	data	

sets.	Second,	we	only	considered	the	phenomenon	in	brain.	Intuitively,	cellular	composition	effects	

should	impact	any	bulk	tissue	coexpression	analysis,	but	determining	whether	the	inferred	effects	in	

other	tissues	are	weaker	or	stronger	than	those	we	observe	for	brain	should	be	a	topic	of	future	

research.	Finally,	the	actual	cellular	composition	of	the	bulk	tissue	samples	we	used	is	not	known.	While	

the	approach	of	using	cell-type	markers	to	infer	composition	has	been	validated	many	times	(Newman	

et	al.,	2015;	Patrick	et	al.,	2019;	Mancarci	et	al.,	2017)	,	we	do	not	claim	it	is	a	perfect	substitute	for	

accurate	direct	counts.	It	remains	formally	possible	that	some	of	the	variation	we	attribute	to	cellular	

composition	is	instead	due	to	complex	patterns	of	gene	regulation	that	mimic	compositional	effects,	but	

we	feel	the	most	parsimonious	interpretation	of	the	data	is	that	cellular	composition	is	a	major	

contributor.	It	is	also	worth	noting	that	imperfect	cell-type-effect	measurement	could	just	as	easily	

cause	us	to	underestimate	the	impact	of	composition,	as	the	residual	would	still	contain	compositional	

effects.	
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Beyond	the	implications	for	the	goal	of	inferring	regulation,	our	results	have	important	implications	

for	any	use	of	expression	data-based	gene	clustering	or	module	identification	in	which	the	patterns	are	

driven	by	cellular	composition	effects.	First,	the	representation	of	the	data	as	a	network	is	potentially	

misleading,	because	it	is	tempting	to	interpret	a	network	as	representing	physical	relationships.	In	

particular,	the	idea	that	“hubs”	in	coexpression	models	are	especially	interesting	is	highly	questionable	if	

that	pattern	is	simply	a	reflection	of	the	cellular	distribution	of	those	transcripts.	Second,	if	cellular	

composition	is	of	interest,	it	would	be	reasonable	to	analyze	composition	more	directly	by	inspecting	

the	expression	of	known	markers	rather	than	by	using	indirect	means	via	clustering	and	enrichment	

analysis.	This	parallels	the	situation	for	analysis	of	differential	expression,	where	changes	in	measured	

expression	levels	can	be	due	to	changes	in	composition	(Mancarci	et	al.,	2017;	Toker	et	al.,	2018).	On	

the	other	hand,	machine	learning	applications	of	coexpression	to	tasks	such	as	gene	function	prediction	

are	not	directly	affected	by	our	findings,	as	success	in	prediction	does	not	necessarily	depend	on	the	

biological	meaning	of	the	features	used.		

Conclusions	

For	more	than	two	decades,	coexpression	analysis	has	been	among	the	most	widely	applied	

methods	in	genomics.	Its	popularity	is	based	on	the	assumption	that	it	is	a	window	into	gene	regulation.	

Here	we	have	shown	that	coexpression	in	bulk	tissue	could	better	be	described	as	providing	a	window	

into	the	distribution	of	transcripts	with	respect	to	cell	types.	While	this	is	useful	information,	this	shift	in	

interpretation	should	be	considered	in	future	studies.	Coexpression	remains	an	interesting	phenomenon	

worthy	of	study,	and	our	work	contributes	to	greater	understanding	of	its	meaning	and	limitations,	and	

we	hope	it	leads	to	more	informed	data	analyses.	
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Methods	

Data	

We	have	three	main	sources:	1.	A	single-nucleus	dataset	from	

	Allen	Brain	Atlas	from	Middle	Temporal	Gyrus	(©	[2018]	Allen	Institute	for	Brain	Science.	Cell	

Diversity	in	the	Human	Cortex.	Available	from:	[http://celltypes.brain-

map.org/download#transcriptomics])	2.	GTEx	RNA-seq	expression	dataset	from	brain-cortex	(Lonsdale	

et	al.,	2013).	3.	A	set	of	coexpression	networks:	binary	coexpression	networks	were	built	from	GTEx	

RNA-seq	blood	and	liver	and	a	set	of	Tissue	Aggregated	Networks	(TANs)	from	blood,	brain	and	liver,	

from	our	previous	study	(Farahbod	and	Pavlidis,	2019).	The	TAN	networks	are	built	by	aggregating	

several	networks	from	each	tissue,	built	from	datasets	on	Affymetrix	platform.	The	TSN-brain	network	is	

a	subset	of	the	TAN-brain	network,	where	the	links	are	identified	as	specific	to	the	brain,	blood	or	liver.	

Supplementary	table	1	provides	counts	of	genes	and	links	in	each	of	the	networks.	All	data	and	scripts	

used	for	the	analysis	are	available	from	the	authors.	

Single-nucleus	data	

The	snuc-RNAseq	dataset	has	records	from	15,928	nuclei	for	a	total	of	50,281	genes,	grouped	into	

75	cell	types.	We	used	the	read	counts	from	exons	only	and	did	not	use	the	intronic	reads.	We	used	the	

labels	for	the	cell-types	based	on	the	clustering	provided	by	the	Allen	Institute.	We	removed	nuclei	

which	had	data	for	less	than	2000	genes	and	nuclei	for	which	the	total	read	count	was	more	than	3	

times	or	less	than	1/3	times	the	median.	Genes	were	filtered	for	NeuN	negative	and	NeuN	positive	

samples	separately.	We	selected	genes	expressed	in	at	least	2%	of	the	nuclei	or	expressed	at	the	highest	

quartile	in	the	nuclei	it	is	expressed	in.	The	final	dataset	has	data	for	16,789	genes	and	15,646	nuclei.	

Supplementary	Figure	2	shows	the	count	of	cells	in	each	group	of	the	75	cell	types.	To	construct	Cell	
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Type	(CT)	vectors	for	each	gene,	we	obtained	the	mean	expression	level	of	that	gene	in	each	of	the	75	

cell	types.	Each	of	the	16,789	genes	yields	a	CT	expression	profile	vector	of	75	elements.	

We	built	coexpression	networks	for	69	of	the	75	cell-types	in	the	snuc-RNAseq	data	set	(six	cell-

types	had	too	few	cells).	For	each	cell	type,	correlations	were	computed	for	each	pair	of	genes	using	

only	nuclei	in	which	expression	was	greater	than	zero	to	reduce	the	impact	of	drop-outs.	Gene	pairs	

with	less	than	20	usable	nuclei	were	removed.	Because	of	differences	in	sample	size	for	the	correlations	

(causing	different	null	distributions	for	the	correlation),	we	omitted	the	correlation	threshold	filtering	

step	used	for	the	other	data	sets,	and	therefore	filtered	the	one-sided	p-values	of	the	correlations	

(METHOD	FOR	PVALUES)	to	identify	the	0.5%	of	the	gene	pairs	with	smallest	p-values.	Supplementary	

Table	2	has	the	link	count	and	gene	count	for	the	69	networks.			

To	construct	combined	networks,	we	summed	the	64	binary	coexpression	networks	built	from	

Inhibitory	and	Excitatory	neurons.	Robust	coexpression	links	were	identified	as	those	present	in	10	or	

more	of	the	networks,	between	genes	with	more	than	two	such	links.	The	total	of	490	genes	passed	this	

criterion	and	were	clustered	using	topological	overlap	and	hierarchical	clustering.	Sixteen	mitochondrial	

genes	and	10	unclustered	genes	were	removed	(the	presence	of	mitochondrial	genes	is	likely	due	to	

variable	mitochondrial	contamination	of	the	nuclei).	The	remaining	grey	and	black	clusters	have	286	and	

178	genes	respectively.		

GTEx	datasets	and	networks	

The	read	counts	per	million	reads	(CPM)	values	from	each	of	the	three	GTEx	datasets:	brain-cortex,	

liver	and	blood	were	filtered	to	include	the	genes	with	CPM	>	0	in	>	20%	of	the	samples.	Expression	

values	were	log2	transformed	and	binary	coexpression	networks	were	built	using	the	Pearson	

correlation,	filtered	to	include	the	0.5%	of	the	links	with	highest	correlation	values	in	each	of	the	three	

networks.	The	counts	of	links	and	genes	included	in	each	network	are	provided	in	Supplementary	Table	
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1.	To	cluster	the	GTExBulk	network,	we	applied	hierarchical	clustering	to	the	Topological	Overlap	(TOP)	

(Zhang	and	Horvath,	2005).	An	initial	set	of	253	clusters	were	identified	for	12,416	of	genes,	of	which	69	

clusters	had	at	least	20	genes	and	were	retained	for	further	study.	Clustering	labels	are	in	Additional	file	

08.	Counts	of	marker	genes	for	different	cell	types	for	each	cluster	are	in	supplementary	Figure	2.			

Identification	of	marker	genes	

Marker	genes	were	selected	based	on	two	sources.	From	snuc-RNAseq	data,	for	each	of	the	five	

major	cell	types	Astrocyte,	Oligodendrocyte,	Microglia,	Endothelial	and	Pyramidal	(labeled	as	Excitatory	

cell	types),	we	identified	genes	with	mean	count	per	million	³	2	fold-change	in	all	other	cell-types	as	

marker	genes.	Additional	file	09		has	list	of	markers	identified	by	this	manner	for	each	of	the	five	cell	

types.		

As	the	second	source,	we	used	1,208	marker	genes	for	18	mouse	cerebral	cortex	cell	types	identified	by	

Mancarci	et	al.	(2017).	We	mapped	the	the	marker	genes	to	their	human	orthologs	using	the	Ensembl	

database	(Zerbino	et	al.,	2018).	Mancarci	et	al.	further	refined	these	markers	based	on	their	

coexpression	in	bulk	human	tissue.	To	remain	consistent	with	their	method,	for	each	cell	type	we	only	

considered	the	subset	of	its	marker	genes	which	were	highly	correlated	with	each	other,	using	the	

hierarchical	clustering	with	topological	overlap	on	the	marker	genes	for	each	cell	type.	Genes	in	the	

cluster	with	highest	count	of	links	were	selected	as	the	markers	of	the	cell	type.	Our	final	list	includes	

256	markers	for	five	major	cell	types	(Additional	file	10).	Supplementary	figure	2	shows	overlap	of	the	

marker	gene	sets	from	the	two	sources.	

Modelling	expression	level	of	genes	in	the	GTExBulk	dataset	

We	used	linear	models	to	estimate	the	expression	level	of	genes	based	on	the	variation	of	the	

marker	genes	in	each	of	the	samples,	using	the	first	seven	principal	components	of	the	whole	set	of	
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marker	genes	(the	snuc-RNAseq	and	Mancarci	(2017)	marker	sets	separately)	in	the	bulk	tissue	dataset.		

Therefore,	the	expression	level	of	gene	A	in	sample	j	of	the	GTExBulk	dataset	is	modeled	as:	

𝐸𝑥𝑝$ 𝐴 = 𝜇( + 𝛽+𝑠+ + 𝛽-𝑠- + ⋯+ 𝛽/𝑠/ + 𝜀(,$ 	

Where	µA	is	the	average	expression	level	of	gene	A,	si’s	are	the	principal	component	scores	for	

sample	j,	bj’s	are	the	parameters	of	the	model	and	eA,j	is	residual	error.			

Enrichment	of	functional	terms	

For	a	given	network,	each	functional	term	is	marked	as	enriched	if	the	density	of	the	links	between	

the	genes	associated	with	the	term	are	significantly	higher	than	the	density	of	the	network,	where	the	

hypergeometric	distribution	is	used	as	the	null.	The	FDR	was	controlled	at	0.1	using	the	method	of	

Benjamini	and	Hochberg	(Benjamini	and	Hochberg,	1995).	Brain-specific	functional	terms	were	

identified	as	the	terms	enriched	in	either	of	the	TAN-brain	networks	for	GTExBulk	network,	but	not	

enriched	in	TAN-liver	and	TAN-blood	networks.	Likewise,	housekeeping	terms	were	identified	as	terms	

enriched	in	either	of	the	TAN-brain	or	GTExBulk	networks,	as	well	as	the	TAN-blood	and	TAN-liver	

networks.	

Synthesized	bulk	datasets	

Each	of	synthesized	sample	was	built	using	snuc-RNAseq	samples	(nuclei)	from	the	Allen	data	described	

above,	as	follows.	First,	nuclei	were	grouped	into	five	major	cell	types	based	on	their	provided	labels.	

Then,	for	each	synthetic	sample,	nuclei	were	randomly	sampled	with	the	following	baseline	proportions:	

Pyramidal	(20%),	Inhibitory	(20%),	Oligodendrocyte	(43%),	Astrocyte	(12%)	and	microglia	(5%),	based	on	

the	estimates	of	Von	Bartheld	et	al.	(2016),	and	their	gene	expression	values	were	added	and	divided	by	

the	total	count	of	nuclei,	yielding	a	final	synthetic	sample.	This	was	repeated	to	create	multiple	synthetic	
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data	sets	with	100	samples	each.	To	add	composition	variability,	the	baseline	proportions	were	

randomly	varied	by	drawing	each	proportion	from	a	normal	distribution	with	variance	33%	of	its	mean.		
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Additional	files	

• Additional	file	1		
• .tsv	
• functional	terms	enriched	in	brain	network	
• The	file	contains	list	of	Gene	Ontology	terms	that	are	identified	as	brain-specific.	It	has	four	

columns:	GOID	[Gene	Ontology	ID],	GOTerm	[Gene	Ontology	term],	Gene	Count	[count	of	
genes	associated	with	that	term],	MeanRsqrd	[mean	Rsquared	value	of	the	genes	associated	
with	the	term]	

	

• Additional	file	2	
• .tsv	
• functional	terms	enriched	in	brain	and	at	least	one	other	tissue	(common	terms)	
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• The	file	contains	list	of	Gene	Ontology	terms	that	are	identified	as	brain-specific.	It	has	four	
columns:	GOID	[Gene	Ontology	ID],	GOTerm	[Gene	Ontology	term],	Gene	Count	[count	of	
genes	associated	with	that	term],	MeanRsqrd	[mean	Rsquared	value	of	the	genes	associated	
with	the	term]	

	

• Additional	file	3	
• .txt	
• Summary	information	for	GTExBulk	clusters	
• The	file	has	three	columns:	ClusterID	[ID	of	the	cluster],	memberCount	[count	of	genes	in	

the	cluster],	averageR2	[average	of	Rsquared	value	for	genes	in	the	cluster]	

	

• Additional	file	4	
• .txt	
• Functional	terms	enriched	in	GTExBulk	clusters	
• For	each	cluster	ID,	enriched	functional	terms	are	written.	Only	terms	with	FDR		≥	0.1	were	

included.	The	file	has	three	columns:	GOID	[Gene	Ontology	ID	for	the	enriched	term],	
GOTerm	[the	enriched	term],	pvalue	[pvalue	of	the	enrichment].		

	

• Additional	file	5	
• .txt	
• Robust	snuc-RNAseq	links	
• Each	row	has	information	about	one	of	the	links	and	the	file	has	nine	columns:	gene_1	[gene	

symbol	of	one	of	the	genes],	gene_2	[gene	symbol	of	the	other	gene],	totalRep	[total	count	
of	snuc-RNAseq	networks	that	the	link	is	present	in],	inhRep	[count	of	Inhibitory	neuron	
networks	that	the	link	is	present	in],	excRep	[count	of	Excitatory	neuron	networks	that	the	
link	is	present	in],	GTExCorrRank	[rank	of	the	link	in	GTExBulk	network,	1000	is	the	highest	
correlation	values	and	0	is	lowest],	TAN_presence	[the	link	is	present	in	TAN-brain	network	
or	not],	gene1_r2	[Rsquared	value	for	gene_1],	gene2_r2	[Rsquared	value	for	gene_2]	

	

• Additional	file	6	
• .txt	
• Functional	terms	enriched	in	robust	snuc-RNAseq	cluster	–	the	gray	cluster	
• The	file	has	three	columns:	GOID	[Gene	Ontology	ID],	GOTerm	[Gene	Ontology	term],	FDR	

[FDR	from	the	enrichment]	

	

• Additional	file	7	
• .txt	
• Functional	enrichment	results	for	GTExBulk	and	GTEx_residual	networks	
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• The	file	has	four	columns:	GOID	[Gene	Ontology	ID],	GOTerm	[Gene	Ontology	term],	
GTExBulk_p	[corrected	p	value	for	GTExBulk	network],	GTEx_residual_p	[corrected	p	value	
for	GTEx_residual	network]	

	

• Additional	file	8	
• .txt	
• Clustering	label	and	R2	values	for	genes	in	GTExBulk	
• The	file	has	three	columns:	GeneSymbol,	clusterID,	R2	

	

• Additional	file	9	
• .txt	
• List	of	cell	type	markers	from	snuc-RNAseq	
• Each	column	is	labeled	with	a	cell	type	and	contains	list	of	marker	genes	obtained	from	

snuc-RNAseq	data	

	

• Additional	file	10	
• .txt	
• Final	list	of	marker	genes	from	Mancarci	et	al.		
• Each	column	is	labeled	with	a	cell	type	and	contains	the	final	list	of	markers	obtained	from	

Mancarci	et	al.	
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