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Abstract: Homologous sequence alignments contain important information about the constraints1

that shape protein family evolution. Correlated changes between different residues, for instance,2

can be highly predictive of physical contacts within three-dimensional structures. Detecting such3

co-evolutionary signals via direct coupling analysis is particularly challenging given the shared4

phylogenetic history and uneven sampling of different lineages from which protein sequences are5

derived. Current best practices for mitigating such effects include sequence-identity-based weighting6

of input sequences and post-hoc re-scaling of evolutionary coupling scores. However, numerous7

weighting schemes have been previously developed for other applications, and it is unknown8

whether any of these schemes may better account for phylogenetic artifacts in evolutionary coupling9

analyses. Here, we show across a dataset of 150 diverse protein families that the current best practices10

out-perform several alternative sequence- and tree-based weighting methods. Nevertheless, we find11

that sequence weighting in general provides only a minor benefit relative to post-hoc transformations12

that re-scale the derived evolutionary couplings. While our findings do not rule out the possibility that13

an as-yet-untested weighting method may show improved results, the similar predictive accuracies14

that we observe across distinct weighting methods suggests that there may be little room for further15

improvement on top of existing strategies.16

Keywords: direct coupling analysis; evolutionary coupling analysis; contact prediction; phylogenetic17

bias18

1. Introduction19

Correlated evolution of amino acid positions within a sequence alignment can be leveraged20

to inform structural models of proteins, predict mutational effects, and identify protein binding21

partners [1–5]. The ability to detect correlated evolution has been revolutionized by direct coupling22

analyses and other related methods that seek to re-construct one- and two-site marginal amino acid23

probabilities based on the observed distribution of sequence data [6–11]. Inference of two-site coupling24

parameters from a multiple sequence alignment is technically challenging, however, and numerous25

related approaches have been developed in recent years [9,10,12–17]. This intense focus on related26

methodologies stems from the fact that the highest scoring evolutionary coupling values are highly27

enriched in residue-residue pairs whose side-chains physically interact within three dimensional28

structures [18]. Evolutionary couplings can thus provide valuable information about structural29

constraints within and between protein families, while only requiring sequence information as inputs30

[15,19–22].31

All methods to detect correlated evolution between different positions in a protein family32

require large numbers of representative sequences and therefore start by finding—and subsequently33

aligning—homologous sequences from large sequence databases [5]. An oft-remarked upon fact is34

that sequence databases are composed of a highly biased sample of life on earth; some species are35
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much more densely sampled than others (as are some genera, families, orders, etc.) [23–27]. Even if all36

extant life were equally well sampled and represented in sequence databases, species are related by37

complicated historical patterns and cannot be considered as independent observations [28].38

Statistical issues arising from this shared phylogenetic history and biased sampling have long been39

noted by biologists [28]. The problem can be most clearly summarized by a toy example. In Figure 1A,40

we show a hypothetical sequence alignment and ask the question: What amino acid is preferred at the41

indicated site? At first glance, a phylogenetically agnostic method would simply count the frequency of42

different amino acids and conclude that valine (V, four occurrences) is preferred. However, accounting43

for phylogenetic relationships, a different perspective could reasonably conclude that threonine (T,44

three occurrences) is more highly preferred given that it occupies a substantially larger fraction of45

the phylogenetic tree and therefore dominates the evolutionary history of the protein family; the46

abundance of valines in the alignment is an apparent result of over-sampling one closely related47

lineage (which may represent numerous representatives of the same species, for example). Naively, the48

problem can be solved by simply selecting a single member from each species to prevent over-sampling.49

However, the issue remains equally problematic at other taxonomic levels (i.e. sampling numerous50

species from the same genus, numerous genera from the same family, etc.) and it is clear that a more51

general solution is required.52

Prior research has shown that the best way to account for phylogenetic effects is to explicitly53

incorporate an evolutionary model into the statistical methods whenever possible [29–36]. However,54

this strategy can be challenging for certain problems [37] and simpler methods that differentially weight55

taxa according to their overall similarity to other taxa in a given dataset have been developed and56

applied for decades [38–46]. In the context of the toy example from Figure 1A, the choice of valine as the57

preferred amino acid comes from a model that weights each sequence uniformly. By down-weighting58

highly similar sequences, however, weighted frequencies could be used to come to the conclusion that59

threonine is instead the preferred amino acid. Instead of looking at preferred amino acid residues60

(one-site probabilities), evolutionary coupling analyses use sequence alignments to infer co-evolving61

positions via their two-site marginal probabilities. The current best practice for evolutionary coupling62

analyses is to down-weight sequences that are highly similar to one-another when inferring parameters63

from the multiple sequence alignment data. While this strategy appears in numerous methods, a64

systematic analysis of the benefit that sequence weighting provides in comparison to uniform weights,65

and an evaluation of different conceptually distinct strategies for assigning weights to sequences has66

not been performed to our knowledge.67

Here, we evaluate existing weighting strategies alongside alternative tree- and sequence-based68

methods that have been proposed and used in various biological applications. We define the69

accuracy of a given method according to how well the resulting evolutionary couplings are able70

to predict residue–residue contacts within known representative structures of protein families [18].71

Despite potential theoretical disadvantages, we find that the current best practice method of 80%72

sequence-identity-based weighting outperforms alternative methods that explicitly incorporate73

knowledge of phylogenetic relatedness. We show that a modification of this method provides a74

slight but insignificant improvement, and more broadly show that several methodologically distinct75

methods produce accuracies that are nearly indistinguishable both from one-another and from uniform76

weights.77

2. Results78

2.1. An explanation of weighting methods79

There are many variants of evolutionary coupling analysis methods that have been developed, and
most methods implement a sequence-identity-based correction to mitigate the effect of phylogenetic
relatedness [10,11,13]. Specifically, given n sequences in an alignment, the pairwise similarity of
all sequences is calculated and the weight W(i) of a given sequence i within an alignment equals
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the inverse of the total number of sequences j whose distance d(i, j) to sequence i is less than some
parameter λ:

W(i) = 1/
n

∑
j=1

I(i, j), (1)

where n is the number of sequences in the alignment and I(i, j) is an indicator variable defined as

I(i, j) =

{
0 if di,j < λ,

1 if di,j >= λ.
(2)

The distance d(i, j) and the cutoff λ are usually measured as percent sequence identity: the number of80

identical residues between two aligned sequences divided by their total length.81

Under this weighting scheme, highly unique sequences are given a weight value of 1, whereas82

sequences that are similar to others are assigned weights between 0 and 1 according to how many83

such similar sequences are in the alignment. Given this strategy, the effective number of sequences is84

simply the sum the weights assigned to all sequences, which takes a value between 0 and n.85

Several possible issues arise from this weighting scheme. First, it is not immediately apparent86

what value of λ is most appropriate to use as a sequence identity threshold. While this parameter87

can be optimized for practical utility (the field has coalesced largely around a value of 80%), it is88

unclear what this value tells us about the co-evolutionary process or why it works so well. Second,89

this weighting scheme can produce some counter-intuitive results. Given an 80% sequence identity90

threshold, two otherwise independent sequences in an alignment sharing 99% sequence identity91

will each be assigned a weight of 0.5 reflecting their relative similarity to one another. In the same92

alignment, two sequences sharing 81% sequence identity will similarly each be assigned a weight of93

0.5 despite being much more distinct from one another compared to the former pair. Yet two sequences94

sharing 79% sequence identity will be assigned a weight of 1.0. Finally, the underlying phylogenetic95

history of the sequence evolution is ignored by this sequence-based comparison method which may96

inhibit its overall effectiveness.97

Our goal here is not to exhaustively evaluate all possible strategies for assigning weights to98

sequences or tips on a phylogeny but rather to test several popular methods that represent logical99

starting points for possible improvements for use in evolutionary coupling analyses. Specifically, we100

decided to implement and test three algorithms: one sequence-based method and two conceptually101

distinct tree-based methods. The sequence-based method was proposed in Henikoff and Henikoff102

[44] and proceeds across each position by first awarding each observed residue at given position in103

an alignment an equal share of the weight for that position (where each position in the alignment104

has a starting weight of 1). The weights at that position for each sequence in the alignment are then105

assigned by dividing the weight assigned to each residue equally among all sequences sharing the106

same residue. Finally, the weight of a given sequence is simply the sum of the weights assigned to107

each position/residue. The method gives intuitively correct results for toy examples and has been108

used in numerous popular applications including HMMER and PSI-BLAST, with several different109

modifications for dealing with gap sequences [47,48].110

We additionally implemented two tree-based methods that were initially proposed in Altschul111

et al. [38] (hereafter referred to as “ACL” weights) and Gerstein et al. [43] (hereafter referred to as112

“GSC” weights). The ACL method is equivalent to a model of electricity where a power source is113

plugged into the root of the tree, each branch provides resistance proportional to its length, and the114

current flowing out of each tip is used to determine the weights [38]. By contrast, the GSC method115

is a way of partitioning the branch lengths of a tree where the final weight of each tip is a weighted116

sum of all the branch lengths leading up to it [38,43]. Conceptually, ACL and GSC weights are quite117

distinct with GSC weights assigning a higher weight to tips that have particularly long branch lengths118

(and thus occupy a larger proportion of the tree) and ACL weights assigning the highest weights to119

sequences with particularly short branch lengths that reside closest to the root. We note that both120

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted August 15, 2019. ; https://doi.org/10.1101/736173doi: bioRxiv preprint 

https://doi.org/10.1101/736173
http://creativecommons.org/licenses/by/4.0/


Version August 14, 2019 submitted to Journal Not Specified 4 of 16

metrics explicitly account for the underlying tree topology and thus require a previously constructed121

rooted evolutionary tree.122

A notable caveat to the HH, ACL, and GSC weighting methods is that they do not provide123

intuitive absolute scales. The sum of all HH weights in their original formulation is equivalent to the124

length of the alignment, ACL weights are relative and sum to 1, and GSC weights are in units of branch125

length (substitutions per unit time) [38,43,44]. Thus, for each of these three methods we employ two126

re-scaling strategies: First, we divide each weight value by the mean for that alignment, such that the127

weights for a given alignment will sum to n, where n is the number of sequences. Second, we divide128

each weight by the maximum observed weight in an alignment, such that the largest relative weight129

will be assigned a value of 1 and all other weights are some fraction of this.130

For an example protein (PDB:1AOE), assigning weights to a sequence alignment / tree131

demonstrates that the methods vary substantially in how uniformly they distribute weights (Figure 1B).132

The GINI coefficient is a measurement of uniformity where values of zero correspond to uniform133

weights and values approaching 1 illustrate the case where a small number of sequences have very134

large weights while the remainder have very small weights. This relationship can be visualized by a135

Lorenz curve, which in this case plots the cumulative fraction of weights (y-axis) against the cumulative136

fraction of sequences (x-axis, sorted from lowest to highest weights). The Lorenz curves in Figure 1B137

show that ACL weights in particular result in a highly uneven distribution of weights. This finding138

holds more broadly across a dataset of 150 diverse protein families; the tree-based methods produce a139

more un-even distribution of weights, with ACL weights being particularly highly skewed (Figure 1C).140

In general, the different weighting schemes (when applied to the same multiple sequence141

alignment) are only modestly correlated with one-another. Figure 1D shows the median correlation142

(across the 150 protein families) observed between HH, GSC, and ACL as well as the commonly used143

80% sequence-identity-based re-weighting method. In general, the weights produced by different144

methods on the same protein family are significantly positively correlated with one-another, but the145

correlations are fairly low, demonstrating that the weighting methods themselves are distinct.146
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Figure 1. Weighting methods and their relationships in empirical datasets. (a) A toy example illustrating
the problem of biased sampling and phylogenetic relatedness. Judging by their frequency (i.e. uniform
weighting), valine (V) is the preferred amino acid at the indicated position. However, threonine (T)
occupies a substantially larger proportion of the inferred evolutionary history. (b) For an example
protein sequence alignment (PDB:1AOE), different weighting strategies produce a more- and less-
uniform distribution of weights as visualized by the Lorenz curve. (c) The distribution of GINI
coefficients for 150 protein families (higher coefficients correspond to a less uniform distribution of
weights) using different weighting strategies (boxes span the 25th through 75th percentiles, red line
indicates the median). (d) The median correlation coefficient (Spearman’s ρ) of different weighting
methods observed across the same 150 protein families.

2.2. Sequence weighting does little to improve contact predictions147

To test the effectiveness of different weighting methods, we calculated evolutionary couplings148

using the program CCMPredPy—a Python-based implementation of one of the most popular149

pseudo-likelihood based methods (CCMPred), which we modified to accept weights from externally150

supplied files—for 150 unique protein families with known structural representatives [13,16]. We next151

tested what fraction of the top L couplings for a given protein family (where L is the length of the152

reference sequence with a known three-dimensional structure) are true intramolecular residue–residue153

contacts—a metric known as the Positive Predictive Value (PPV) (see Materials and Methods for details)154

[18]. We separately quantified accuracies from the raw evolutionary couplings, entropy-corrected155

couplings, and Average Product Corrected (APC) couplings. The latter two post-hoc corrections have156

been shown to improve the accuracy of evolutionary couplings by accounting for uneven sequence157

entropies across positions in the alignment and perhaps the underlying phylogenetic structure [16,49].158

As expected, we found that across all weighting schemes, the APC (and to a slightly lesser extent,159

the entropy-corrected) evolutionary couplings produce substantially more accurate results compared160

to raw coupling scores (Figure 2). In nearly all cases, sequence-identity-based weighting resulted161
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in the highest accuracy. For the best performing APC coupling scores (Figure 2A), the commonly162

used λ parameter representing an 80% sequence identity threshold resulted in significantly higher163

accuracies compared to the uniform weight controls (Wilcoxon signed-rank test, p < 0.001). One164

phylogeny-based weighting method (GSC) and the HH sequence-based method were slightly more165

accurate than uniform weights provided that they were mean-scaled but the improvement was not166

significant in either case (p = 0.09 and p = 0.1, respectively); both methods were significantly less167

accurate than the 80% sequence-identity-based method (p < 0.001 for both cases). ACL weights by168

contrast generally performed poorly in all cases.169

We note that even in the best case scenario the increase in PPV due to sequence weighting is170

comparatively small when compared to the large improvements in accuracy that result from the171

post-hoc APC and entropy corrections: median PPV for uniform weights are more than twice as high172

for APC couplings relative to raw couplings. Interestingly, the best performing weighting schemes173

substantially improve the accuracy of raw evolutionary couplings relative to the uniform weight174

control (Figure 2C, 44% median increase in PPV for max-scaled GSC weights, p < 0.001), but do175

comparatively little in the case of the more accurate APC couplings (Figure 2A, 2% median increase in176

PPV for 80% sequence-identity-based weights, p < 0.001).177
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Figure 2. Testing the ability of evolutionary couplings to predict residue–residue contacts in
representative structures. “Uniform” refers to the use of uniform weights for all sequences when
fitting evolutionary coupling parameters (red dashed line indicates the mean of this distribution and
represents a baseline performance that methods should improve upon). “Threshold (λ)” refers to
sequence-identity based weighting with different parameters, and “Mean scale”, “Max scale” refer
to two different scalings of the indicated weighting methods (HH, GSC, and ACL). (a) Using APC
couplings, the mean positive predictive values (PPVs) of the top L couplings vary across different
weighting schemes used to infer evolutionary couplings. However, the only methods that significantly
improve performance is sequence-identity-based re-weighting with λ=0.8 or 0.9 (Wilcoxon signed-rank
test, p < 0.001), but the magnitude of the improvement is modest (1.9% and 1.1% median improvement
over uniform). (b) Using entropy-corrected evolutionary coupling values leads to similar conclusions
that no weighting scheme substantially outperforms uniform weights. (c) Using raw evolutionary
coupling values results in substantially higher accuracies for certain weighting methods relative to
uniform, but the overall accuracies remain low compared to (a) and (b).

2.3. Weighting on time-scaled trees178

In Figure 1, we noted that tree-based weighting methods produced a more un-even distribution179

of weights compared to the sequence-based weighting methods that we tested. A potential issue with180

both of the tree-based weighting methods that we consider here is that the rates of evolution vary181

across phylogenetic trees and thus species are not equidistant from the root sequence. Phylogenetic182
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trees reflect both the relationship between species and the rate of evolution along each branch. For183

trees consisting solely of extant species, numerous methods can re-scale trees to produce tips that184

are contemporaneous and equidistant from the root (Figure 3A) [50]. Since GSC and ACL weighting185

methods are significantly influenced by the overall distance from the root for individual tips, we186

reasoned that computing these weights on scaled-trees may produce less variable weights and perhaps187

more accurate results. We thus used the RelTime algorithm to transform each raw tree into a time-scaled188

tree and re-computed the weights for the two tree-based weighting methods on these RelTime trees189

[50].190

For a given protein alignment, weights constructed in this manner display significantly less191

heterogeneity than weights calculated from the raw trees (Wilcoxon signed-rank test, p < 0.001). The192

PPVs of mean- and max-scaled weighting methods were significantly improved in all cases relative to193

weights computed on the raw trees (Figure 3B, results shown for APC couplings). The improvements194

were again comparatively small and no method out-performed 80% sequence-identity-based weights.195

However, PPVs with mean-scaled GSC weights calculated from RelTime trees were significantly196

higher than PPvs from uniform weighting (Wilcoxon signed-rank test, p = 0.003) and the difference in197

PPV between these weights and the best performing 80% sequence-identity-based weights was not198

significant (p = 0.14).199

A

Uniform GSC ACL GSC ACL
Mean scale Max scale

0.0

0.2

0.4

PP
V

Raw tree RelTime tree

Raw tree RelTime tree

B

Figure 3. Tree re-scaling prior to calculation of weights slightly improves accuracies. (a) Raw, rooted
phylogenetic trees can be converted to time-scaled trees with contemporaneous tips using the RelTime
algorithm. (b) Sequence weights calculated from RelTime trees result in slightly better residue–residue
contact prediction for the two tree-based weighting methods that we consider (and the two separate
scalings of those weights). Shown is the mean PPV for 150 protein families using APC couplings, with
error bars showing the standard deviation.

2.4. An altered sequence-identity-based method that accounts for sequence similarity.200

Thus far we have shown that the current best practice of using sequence-identity-based weighting
within a 80% sequence similarity neighborhood results in evolutionary couplings that have the
highest power to predict intra-molecular residue–residue contacts. However, we also discussed some
potentially counter-intuitive properties of this sequence-identity-based method. We thus developed
and tested a variant of the sequence-identity-based method that down-weights sequences according
to pairwise similarity and an identity threshold, but does so by accounting for the actual similarity
between the sequences. Whereas the original method assigns each sequence a value of 1 and divides
by the raw number of similar sequences (defined according to the λ parameter), our modification
instead divides by the sum of a similarity-adjusted value for each sequence. Specifically,

W(i) = 1/
n

∑
j=1

Iadj(i, j). (3)
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In contrast to Equation (2), Iadj(i, j) produces a continuous range of values between 0 and 1:

Iadj(i, j) =

{
0 if di,j < λ,

(di,j − λ)/(1 − λ) if di,j >= λ.
(4)

As in Equations (1,2), the distance di,j and the cutoff λ are measured as percent sequence identity.201

Using this method with a λ value of 0.8, two otherwise independent sequences in an alignment202

with 99% sequence identity will each be assigned a weight of 0.513 [or 1/(1 + 0.95), where 0.95 =203

(0.99 − 0.8)/(1 − 0.8)], reflecting their high similarity to one another. In the same alignment, two204

sequences sharing only 81% sequence identity will by contrast each be assigned only a slightly205

decreased weight of 0.95 [or 1/(1 + 0.05), where 0.05 = (0.81 − 0.8)/(1 − 0.8)]. All else being equal,206

the more similar sequences are, the more they will be down-weighted up to the given sequence identity207

threshold, at which point no further down-weighting occurs.208

Comparing this similarity-adjusted sequence-identity-based method to the original method209

shows that the similarity-based adjustment produces more robust results across the range of possible210

values for λ (Figure 4). Across all of the different variants that we tested, similarity-adjusted211

sequence-identity-based weights with an identity parameter of 0.8 (and the APC, Figure 4A) produced212

evolutionary couplings with the highest median and mean PPV for the 150 protein families. PPVs213

resulting from this method were significantly higher than results from uniform weights (1.9% median214

and 3.7% mean increase in PPV, Wilcoxon signed-rank test p < 0.001) but the increase compared to215

80% sequence-identity weights calculated in the original manner was slight and not significant (0%216

median and 0.3% mean increase in PPV, p = 0.11).217
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Figure 4. An altered sequence-identity-based method is more robust to parameter choice. (a) Using
APC couplings, mean PPVs for similarity-adjusted sequence-identity-based weights are equal-to or
higher-than PPVs calculated with the commonly used sequence-identity-based weights. (b) Same as
in (a), using entropy-corrected evolutionary coupling values. (c) Same as in (a) and (b), using raw
evolutionary coupling values.

3. Discussion218

Natural sequence alignments are not composed of independently evolved lineages and instead219

have an unknown pattern of relationships that can be inferred and visualized as a phylogenetic tree.220

Statistical methods that fail to account for these relationships are expected to be biased, but in the case221

of direct coupling analyses a phylogenetically agnostic model has nevertheless proven valuable at222

predicting residue–residue contacts within protein structures [5,10,11]. Differential sequence weighting223

is commonly employed in such analyses as a way to partially mitigate phylogenetic effects, but the224

overall benefit that such weights provide has yet to be systematically interrogated. We have shown here225

that numerous (and conceptually distinct) weighting methods produce evolutionary couplings with226

a roughly equivalent ability to predict residue–residue contacts—given that the coupling values are227

transformed post-hoc via the average product correction (APC). We found that uniform, HH, GSC, and228

two variants of 80% sequence-identity-based weights all produce nearly indistinguishable accuracies229

from one another. While we have only evaluated a few different weighting methods and variants, the230

similar predictive power of top-performing weighting strategies (despite being substantially different231

from one-another, Figure 1D) suggests that there may be little room for improvement on top of current232

best practices.233
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Intuitively, uneven sampling and phylogenetic biases are expected to introduce spurious effects into234

statistical models. Indeed, this is known to be the case in numerous contexts, such as when assessing235

the strength of correlations between discrete and continuous traits [28,34,36]. Nevertheless, we have236

shown here that using variable sequence weights to correct for these problems provides little (if any)237

practical benefit when attempting to predict residue–residue contacts. Why might this be the case?238

We caution that weights alone are an imperfect method of accounting for shared phylogenetic history,239

and in other contexts achieving accurate true and false positive rates from statistical tests requires240

more than simple re-weighting of data points [29,31,36,51,52]. In the context of evolutionary couplings,241

it is unclear whether uneven sampling and phylogenetic biases do not affect the fitting of coupling242

parameters as much as one might initially think, whether the APC (a post-hoc re-scaling procedure)243

largely corrects for any such factors, or whether weighting in general is simply an inadequate solution244

to the problem of phylogeny.245

While we found that numerous weighting methods produce roughly equivalent end results,246

our findings raise several potential issues that may be worthy of further study moving forward. We247

noted that many weighting methods do not clearly provide an intuitive absolute scale and instead248

assign weights to sequences (or tips in a phylogenetic tree) that are either relative or in irrelevant units.249

This can be problematic from a practical standpoint because most methods for inferring evolutionary250

coupling parameters between residue–residue pairs rely on some form of prior and the weight given to251

observed data relative to this prior may affect results. For the HH, GSC, and ACL methods we found252

that two different scaling procedures (which maintain relative weights within a dataset but change253

their absolute values) produced varying accuracies (Figure 2). With the exception of star phylogenies,254

the effective sample size from phylogenetically structured data is strictly less than the number of255

sequences/data points analyzed. More accurately estimating the effective sample size and scaling256

weights accordingly may improve the performance of different weighting schemes beyond what we257

observed here.258

Additionally, the HH, GSC, and ACL methods do not include a free parameter that can be tuned259

to improve results. We validated that an 80% sequence identity neighborhood is optimal using the260

currently accepted method and a similarity-adjusted variant, but this 80% value is a free parameter261

that has been optimized to produce the highest accuracy for sequence-identity-based weighting.262

What we believe the optimality of this parameter represents in practice is that once two sequences263

diverge past approximately 80% similarity, their evolution is effectively independent. If this is the264

case, down-weighting sequences that for instance share 50% sequence identity would make little sense265

(and indeed, doing so produces less accurate results). By contrast, the HH, GSC, and ACL methods266

all inherently compare each sequence to every other sequence in a global manner. It seems possible267

that some phylogenetic tree transformation may be able to introduce the same intuition of ignoring268

evolutionary relatedness past some threshold level into tree-based weighting methods [30,32]. The best269

way to perform such re-scaling, or how to perform something conceptually similar for HH weights, is270

a promising area for future research.271

Despite being weakly correlated with one another, uniform, 80% sequence identity, HH, and GSC272

weights perform roughly equivalently at predicting residue–residue contacts. We recommend that any273

method with improved performance should become the standard (provided it does not substantially274

increase computational run-time), and found that a slightly modified sequence-identity-based275

re-weighting method that accounts for sequence similarity actually performs the best of any method276

that we tested. However, using either the original or similarity-adjusted sequence-identity-based277

weighting can be expected to offer less than a few percent improvement in accuracy compared278

to uniform weights which completely ignore phylogeny. We therefore speculate that substantial279

improvements to evolutionary coupling analyses will require the explicit incorporation of phylogenies280

and time-dependent sequence evolution, but how to do so remains elusive.281
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4. Materials and Methods282

4.1. Description of the dataset.283

For all of our analyses, we used the so-called “psicov” dataset—an existing set of 150 distinct284

protein structures with corresponding multiple sequence alignments that have been used in numerous285

benchmark studies for predicting residue–residue contacts from evolutionary couplings [14,53,54].286

All sequence and structure data were taken directly from Jones and Kandathil [54], but given the287

large number of different analyses that we ran, we first randomly down-sampled each alignment to a288

maximum of 1001 sequences (1000 sequences plus the mandated inclusion of the reference protein289

sequence).290

4.2. Phylogenetic tree construction.291

For each sequence alignment in our dataset, we constructed a rough phylogenetic tree using the292

double precision version of FastTree2 (v.2.1.10; LG model, gamma distributed rate variation, pseudo293

flag) [55]. We next adjusted the branch lengths on each guide tree by running the alignment and the294

template tree through the more accurate IQtree software (v1.6.9; LG model, Gamma-distributed rate295

variation with 20 categories) [56]. Finally, we rooted the resulting trees using the mid-point method296

[57].297

For RelTime trees, we implemented our own version of the RelTime algorithm as described in the298

original manuscript while ensuring that our method produced similar results [50]. We note here only299

that our implementation does not perform a statistical test (and subsequent alteration of rates) at the300

end of the algorithm to ensure that rate changes are significant.301

4.3. Weighting methods.302

We developed all of our weighting methods from scratch using custom python programs that303

heavily leveraged tools from the Biopython package [57]. For sequence identity weighting and the304

novel similarity-adjusted version we propose here, details are presented in the main text, Equations305

(1–4). We ensured that our own version of sequence-identity-based weighting was equivalent to the306

method implemented within CCMpredPy by comparing the resulting effective number of sequences307

metrics and accuracies and finding them to be identical.308

For HH based weights, we followed the procedure outlined in the initial paper and ensured that309

our implementation gave the desired results on the toy examples presented therein [44]. Researchers310

have pointed out subsequent modifications to this method [47,48] concerning how to effectively311

treat gap sequences. Rather than treating these as a 21st character as some implementations have312

done, our implementation assigns gap sequences a weight value of zero. Further, each column in313

the alignment is weighted from 0 to 1 according to the fraction of non-gapped positions. In this314

manner, alignment positions with more gaps are assigned lower weights and the positions with315

gaps themselves contribute a weight of zero. Summation and calculation of final weights follows316

the published procedure [44]. However, since the units and absolute value of these weights are317

not intuitive, we finally re-scaled the weights via separate mean- and max-scaling procedures. In318

mean-scaling, we calculate the mean of all weights determined via the HH algorithm for a particular319

sequence alignment and then divide the weight of each sequence in the alignment by this value. This320

ensures that the sum of all final weights will be equal to the number of sequences in the alignment321

(n). In the separate max-scaling procedure, we find the maximum weight observed for a particular322

sequence alignment, and subsequently divide all weights in the alignment by this value. The sum323

of all weights following this procedure is guaranteed to be some value less than the total number of324

sequences (n).325

For ACL and GSC weights, we again followed the procedures outlined in the respective326

manuscripts [38,43] and ensured that our implementations produced identical results to the examples327
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presented therein. As with HH, calculation of final weights occurred by (separately) scaling the weight328

values via their mean and maximum values as noted above.329

4.4. Evolutionary coupling analysis.330

We chose to use CCMpredPy (v1.0.0, contained as part of the CCMgen package) [13,16] for331

all evolutionary coupling analyses since we were able to modify the source code for this popular332

method to accept externally supplied weights in the form of a simple text file where the weight value333

for each sequence corresponded to its line in the input sequence file. We used the default values334

with the ofn-pll flag corresponding to the pseudo-likelihood optimization of coupling parameters.335

For each different weighting method that we tested, we outputted files corresponding to the raw,336

entropy-corrected, and average product corrected coupling matrices.337

4.5. Structural analysis and accuracy determination.338

We used the .PDB files provided as part of the psicov dataset and for each structure computed a339

matrix of residue–residue distances. Each distance value is measured according to the geometric center340

for all side-chain heavy atoms for a particular residue (including the Cβ atom, excluding the Cα atom)341

[18]. In the case of glutamine, the side-chain center coordinates were assigned to the Cα atom. We342

determined residue–residue contacts according to a uniform 7.5 angstrom threshold for all proteins.343

We determined the accuracy of evolutionary couplings by determining how well they were able344

to predict residue–residue contacts within a reference structure. We first selected the top L-ranked345

couplings for each dataset, where L corresponds to the length of the reference protein sequence (i.e.346

the sequence for which we have a known structure). The PPV for a particular dataset corresponds to347

the fraction of those top L-ranked couplings that are classified as residue–residue contacts according to348

the above definition.349

Author Contributions: Conceptualization, A.J.H. and C.O.W.; methodology, A.J.H. and C.O.W.; software, A.J.H.;350

validation, A.J.H. and C.O.W.; formal analysis, A.J.H.; investigation, A.J.H.; resources, A.J.H. and C.O.W.; data351

curation, A.J.H.; writing–original draft preparation, A.J.H.; writing–review and editing, A.J.H. and C.O.W.;352

visualization, A.J.H. and C.O.W.; supervision, C.O.W.; project administration, C.O.W.; funding acquisition, A.J.H.353

and C.O.W.354

Funding: This work was funded by National Institutes of Health grant R01 GM088344 and by F32 GM130113.355

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design of the356

study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to357

publish the results.358

Abbreviations359

The following abbreviations are used in this manuscript:360

361

HH weights derived via the method of Henikoff and Henikoff [44]
GSC weights derived via the method of Gerstein et al. [43]
ACL weights derived via the method of Altschul et al. [38]
APC Average Product Correction/ed
PPV Positive Predictive Value
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