A peptide pair coordinates regular ovule initiation patterns with seed number and fruit size Nozomi Kawamoto^{1,2}, Dunia Pino Del Carpio^{1,3}, Alexander Hofmann⁴, Yoko Mizuta^{5,6}, Daisuke Kurihara^{6,7}, Tetsuya Higashiyama⁶, Naoyuki Uchida⁶, Keiko U. Torii^{6,8,9}, Lucia Colombo¹⁰, Georg Groth^{2,3}, and Rüdiger Simon^{1,2*}

 $\overline{7}$

⁸ ¹Institute for Developmental Genetics, Heinrich-Heine University Düsseldorf, University

9 Street 1, D-40225 Düsseldorf, Germany

10 ²Cluster of Excellence on Plant Sciences (CEPLAS)

- ³Agriculture Research division, Agriculture Victoria, Australia
- 12 ⁴Institute of Biochemical Plant Physiology, Heinrich-Heine University Düsseldorf,
- 13 University Street 1, D-40225 Düsseldorf, Germany
- 14 ⁵Institute for Advanced Research (IAR), Nagoya University, Furo-cho,
- 15 Chikusa-ku, Nagoya, Aichi 464-8601, Japan
- 16 ⁶Institute of Transformative Bio-Molecules (ITbM), Nagoya University, Furo-cho,

- 17 Chikusa-ku, Nagoya, Aichi 464-8601, Japan
- ⁷JST, PRESTO, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan
- ⁸Department of Biology, University of Washington, Seattle, WA, 98195 USA
- 20 9Howard Hughes Medical Institute and Department of Molecular Biosciences,
- 21 University of Texas at Austin, Austin, TX, 78712 USA
- 22 ¹⁰Universita degli studi di Milano, Italy
- 23 *Corresponding author: Rüdiger Simon, ruediger.simon@hhu.de
- 24

25 Abstract

Ovule development in *Arabidopsis thaliana* involves pattern formation which ensures that ovules are regularly arranged in the pistils to reduce competition for nutrients and space. Mechanisms underlying pattern formation in plants, such as phyllotaxis, flower morphogenesis or lateral root initiation, have been extensively studied, and genes controlling the initiation of ovules have been identified. However, how a regular spacing of ovules is achieved is not known. Using natural variation analysis combined with quantitative trait locus analysis, we found that the spacing of ovules in the developing

33	fruits is controlled by two secreted peptides, EPFL2 and EPFL9 (also known as
34	Stomagen), and their receptors from the ERECTA (ER) family that act from the carpel
35	wall and the placental tissue. We found that a signalling pathway controlled by EPFL9
36	acting from the carpel wall through the LRR-receptor kinases ER, ERL1 and ERL2
37	promotes fruit growth. Regular spacing of ovules depends on EPFL2 expression in the
38	carpel wall and in the inter-ovule spaces, where it acts through ERL1 and ERL2. Loss of
39	EPFL2 signalling results in shorter fruits and irregular spacing of ovules or even ovule
40	twinning. The EPFL2 expression pattern between ovules is under negative-feedback
41	regulation by auxin, which accumulates in the arising ovule primordia. We propose that
42	the auxin-EPFL2 signalling module evolved to control the initiation and regular,
43	equidistant spacing of ovule primordia, which serves to minimise competition between
44	developing seeds. Together, EPFL2 and EPFL9 coordinate ovule patterning and thereby
45	seed number with fruit growth through a set of shared receptors.

46

47 Introduction

48 Plants have evolved diverse strategies to maximise their reproductive success, which

49	enables them to transfer genetic resources to subsequent generations. To produce floral
50	organs at an appropriate time, plants integrate various environmental cues to induce
51	flowering ^{1,2} . When this process is triggered in Arabidopsis thaliana, each flower
52	produces four sepals, four petals, six stamens and one pistil which originates from the
53	fusion of two carpels. The ovules, which contain the egg cells, reside in the pistil and are
54	derived from another meristematic tissue within the pistil termed placenta ^{2,3} , where they
55	are almost simultaneously initiated in two parallel rows within each carpel. The number
56	of ovules per flower determines the maximum number of seeds that a single flower can
57	generate. At the transition from flower developmental stage 8 to 9 as defined by Smyth et
58	al. ⁴ , ovules are initiated from the placenta with regular 2 to 4 cell intervals. This regularity
59	enables plants to reduce competition between adjacent ovules or the developing seeds
60	after fertilization; disruption of this regular pattern could result in the formation of small
61	or large, or closely juxtaposed ovules, which would bias reproductive success depending
62	on random positional effects. During further growth, the pistil forms a silique that
63	encloses the developing seeds until they reach maturity and are shed. Thus, the overall
64	size of the silique places a natural constraint on the number of seeds that can be formed,

65	their final size, or both, and silique growth needs to be tightly coordinated with the ovule
66	initiation process. Indeed, final fruit length is normally well correlated with the number of
67	seeds grown within it ⁵ . However, how this coordination is achieved, and how ovules are
68	initiated strictly at very regular intervals remains to be investigated.
69	Successful ovule formation is by itself a prerequisite for seed production and has
70	therefore attracted widespread research interest, so that mechanistically, the process of
71	ovule primordia formation is at least partially understood and the functions of key
72	regulatory genes have been identified ² . Ovule primordia originate from periclinal
73	divisions in subepidermal cell layers of the placenta, and their formation requires the
74	coordinated activity of auxin and cytokinin signalling pathways. Here, PIN1 acts as the
75	main auxin transporter, and $pin1-5$ mutants develop pistils with a reduced ovule number ⁶ .
76	The expression of <i>PIN1</i> is further modulated by cytokinin. An increase in cytokinin levels
77	due to loss of cytokinin degrading enzymes causes an increase in ovule number per
78	flower, possibly by upregulation of PIN1 levels ⁷ . Other phytohormones involved are
79	Gibberellins (GAs) and Brassinolide (BR), which act antagonistically to restrict (GA) or
80	promote (BR) ovule formation via regulation of cytokinin signalling ^{8,9} . In response to

81	auxin, the transcription factor MONOPTEROS/AUXIN RESPONSE FACTOR5
82	(MP/ARF5) is activated and regulates the expression of the transcription factors
83	AINTEGUMENTA (ANT), CUP SHAPED COTYLEDON1 (CUC1) and CUC2 in ovule
84	primordia and the boundary domains between ovules, respectively ¹⁰ . A knockdown of
85	CUC1 expression in cuc2 or cuc2;ant mutant backgrounds reduces ovule numbers,
86	whereas cuc2;cuc3 double mutants give rise to fused ovules, indicating that the
87	generation of interorgan boundaries depends on partially overlapping CUC functions.
88	CUC1 and CUC2 affect <i>PIN1</i> expression via control of cytokinin inactivating enzymes ⁷ .
89	Overall, the process of ovule formation strongly resembles that of other lateral organs,
90	where initials are first defined by local auxin accumulation ¹⁰ . The distance between ovule
91	primordia determines ultimately the total number of seeds that can be generated on a
92	single flower, if silique length is constant. A recent genome wide association study
93	identified NEW ENHANCER OF ROOT DWARFISM1 (NERD1) as a positive regulator of
94	ovule number, however, the nerdl mutants generated drastically shortened siliques,
95	suggesting that NERD1 does not play a specific role in controlling the distance between
96	arising ovules ¹¹ . Alonso-Blanco and colleagues previously proposed the ERECTA (ER)

97	locus of Arabidopsis to be a major determinant of several life history traits, among them
98	fruit size and ovule number per flower ⁵ . The er mutants are characterised by a
99	short-fruit phenotype and a compact shoot architecture in the Landsberg background ¹² .
100	The ER gene encodes a leucine rich repeat (LRR) receptor kinase which regulates pattern
101	formation in multiple developmental pathways, including stomata development, vascular
102	architecture and leaf margin serration ¹³ ; the related ER-family genes <i>ERECTA-LIKE1</i>
103	(<i>ERL1</i>) and <i>ERL2</i> contribute partially overlapping functions with ER^{14-17} . Ligands for
104	ER-family receptors belong to the evolutionary conserved EPIDERMAL PATTERNING
105	FACTOR (EPF)/EPF-LIKE (EPFL)-family of cysteine-rich secreted peptides, with 11
106	members in Arabidopsis ¹⁸ . Some EPF/EPFL peptides act antagonistically in stomata
107	development by competing for interaction with the receptor complex, and consequently
108	trigger different signalling readouts in the stomata lineage ^{18–26} . For example, while EPF2
109	activates the MAPK cascade upon binding to the ER/ERL1/TMM receptor complex to
110	restrict entry of epidermal cells into the stomatal lineage, EPFL9/STOMAGEN competes
111	for binding and interacts preferentially with ER/ERL1 ²⁵ . Because EPFL9 binding does
112	not induce MAPK activation, SPCH is not degraded, resulting in the production of

113	supernumerous stomata ^{27,28} . Beyond epidermal cell specification, EPFL2 was found to
114	interact with ER, ERL1 and ERL2 to promote leaf margin tooth growth via regulation of
115	auxin responses ¹⁷ .
116	We started to investigate the underlying mechanisms of regular ovule initiation by asking
117	whether the spacing of ovules is largely genetically or environmentally controlled. A
118	natural variation analysis combined with QTL analysis of candidate lines first identified
119	ER and EPFL2 as key loci that control the spacing of ovules in the developing fruit.
120	Detailed genetic and gene function analyses further revealed that at least two separate
121	pathways involving members of the ER and EPF families control regular spacing of
122	ovules, together with fruit size. We propose that the tight coupling of fruit growth with
123	ovule initiation at regularly spaced intervals depends on the negative feedback regulation
124	between EPFL2 and auxin. The output of this patterning module would safeguard a low
125	variance between ovules as a conservative bet hedging approach.

126

127 **Results**

128 ER regulates the density of ovules

129	Because key genes controlling ovule formation such as PIN1, MP or CUC1 act in
130	multiple processes of organogenesis in plants, their interactions might be hardwired, and
131	classical mutant screens might not deliver insights into the regulation of ovule density
132	patterning itself. We therefore first resorted to study the range of variation in ovule
133	density that can be observed between natural accessions of Arabidopsis. We grew the
134	accessions at two different temperatures as a proxy to further access environmental
135	control of this patterning process. For 96 accessions, we measured fruit length and the
136	number of seeds including unfertilized ovules (= total number of ovules) per fruit in stage
137	17 flowers (all stages according to Smyth et al., ⁴), and calculated total ovule density as a
138	derived trait (total number of ovules per mm fruit length). The total ovule density strongly
139	varied between accessions and temperatures, ranging from 2.37 to 6.36 (N/mm) (Figure
140	S1). Our natural variation analysis revealed several accessions with a characteristic
141	ovule-density phenotype (Figure 1A, B), which was only mildly affected by temperature.
142	Hence, we sought regulators by applying QTL analysis to L. er x Cvi-0 recombinant
143	inbred lines (RILs), since Cvi-0 has long fruits and a low ovule density, whereas L. er
144	carries shorter fruits with a high ovule density (Figure 1A, B). QTL analysis allowed us to

145	find a significant peak on chromosome 2 (Figure 1C). Among many loci in this
146	chromosomal region, the ER locus seemed to be the most influential candidate. The
147	accessions Landsberg erecta (L. er) and Vancouver-0 (Van-0) were characterized by
148	shorter fruit and a higher ovule density compared to other accessions (Figure 1B, Figure
149	S1). The L. er and Van-0 accessions both carry mutations in the ER locus and are known
150	er loss-of-function mutants ^{29,30} . In addition to these two accessions, Hiroshima-1 (Hir-1)
151	is also known as an er loss-of-function mutant ^{29,30} . To test the functional importance of
152	ER gene in the control of ovule density, we assessed fruit phenotypes in the er mutant
153	lines complemented with a wildtype copy of the ER locus ^{29–31} . The short fruit and high
154	ovule density phenotypes in all three accessions were complemented by functional ER
155	genomic DNA from Columbia (Col) (Figure S2). Furthermore, the <i>er-105</i> mutant in a Col
156	background showed a similar phenotype to the L.er, Van-0 and Hir-1 accessions (Figure
157	2A, Figure S2, S3). These results clearly indicate that <i>ER</i> is necessary for the control of
158	ovule density, and that ER acts similarly in different genetic backgrounds.
159	

160 ERL1 and ERL2 antagonistically function to ER in the regulation of ovule density

161	Two ER paralogous genes, ERL1 and ERL2 have overlapping, yet distinct functions with
162	ER in the regulation of plant architecture ¹¹ . To investigate the potential role of $ERL1$ and
163	<i>ERL2</i> , we analyzed <i>ER</i> -family receptor mutants in a Col background ¹⁵ . Although <i>erl1-2</i>
164	and erl2-1 single mutants did not display an obvious phenotype, the erl1-2; erl2-1 double
165	mutant developed shorter fruits and lower ovule density than the wild-type (Figure 2A,
166	Figure S3). This is in contrast to <i>er</i> -mutants, which carried also shorter fruits, but with a
167	higher ovule density than wild type. When combined with <i>er-105</i> , either <i>erl1-2</i> or <i>erl2-1</i>
168	further enhanced the fruit length phenotype and displayed reduced total ovule number,
169	but surprisingly an even higher ovule density (Figure 2A, Figure S3). Since er-105;
170	erl1-2; erl2-1 triple mutants are very dwarfed and do not produce proper flower organs ³²
171	(Figure 2B, C), it was impossible to analyze their fruit or ovule density phenotype.
172	However, our results indicate that ERL1 and ERL2 function jointly with ER to promote
173	fruit growth, whereas two separable $ERL1/2$ and ER dependent pathways antagonistically
174	regulate ovule density.

175

176 EPFL9 is a ligand for ER family receptors that controls fruit elongation

177	Our genetic analysis suggested that two independent pathways antagonistically control
178	ovule density- ER functions to decrease ovule density whereas ERL1 with ERL2 increase
179	ovule density. This suggests that unknown ligands, binding to ER-family receptors, may
180	be involved in ovule density control. Previous work identified EPF/EPFL family peptides
181	as ligands of ER-family receptors that control a variety of biological
182	processes ^{19,20,35,21–26,33,34} . We found that within the <i>EPF/EPFL</i> family, <i>EPFL9</i> is
183	expressed in developing fruits by searching a public expression database. EPFL9 has a
184	unique function in stomatal patterning ²¹⁻²³ , since all other EPF/EPFL peptides except
185	EPFL9 reduce the number of stomata by activating a downstream MAPK cascade via ER
186	family receptors ^{17,18,34,35,19–26} . EPFL9 also interacts with ER-family receptors, but its
187	binding does not activate a MAPK cascade ²⁵ , thus acting in an antagonistic manner to the
188	other EPF/EPFL peptides. We then hypothesized that EPFL9 might function as a ligand
189	for the control of ovule density. Since an EPFL9 mutant was not available, we analyzed
190	STOMAGEN RNAi plants ²¹ and found a clear reduction of fruit length and a higher
191	ovule density than in wild-type plants (Figure 3A, Figure S4). Together, the phenotype
192	was weaker than that of <i>er-105</i> mutants (Figure 2A, Figure S3). Our result suggests that

193 EPFL9 functions through ER family receptors to promote fruit growth, possibly in

- 194 conjunction with other related ligands.
- 195

196 EPFL2 as a ligand for ER-family receptors in ovule spacing

197 As we described above, EPFL9 functions as a ligand of ER in the stomata pathway. We 198 sought further regulators of ovule density by re-analyzing our QTL data set using the ER 199 marker on chromosome 2 as a cofactor. Cofactor analysis allowed us to improve the detection power and decrease a type II error (false negative)³⁶. QTL analysis revealed 200 201 additional contributing regions on chromosome 4 and 5 for the control of seed density 202 (Figure 1D). Among the candidate loci, we focused on EPFL2 (At4G37810) on chromosome 4, which acts with ER-family receptors to control leaf serration¹⁷. The 203 204epfl2-1 mutation in the Ler background caused, compared to Ler, a minor fruit 205shortening but a major reduction in ovule number, so that the resulting ovule density was 206 lowered (Figure S5). When ER genomic DNA was introduced into the epfl2 L.er 207 accession (L.er ER+), the phenotype was still characterized by short fruit length, a low 208ovule number and a low ovule density (Figure 4A, Figure S5), indicating that EPFL2 acts

209	independently of ER. Overall, the epfl2-1 phenotype closely resembled that of erl1-2;
210	erl2-1 double mutants (Figure 2A, Figure 4A, Figure S3, Figure S5), suggesting that
211	ERL1 and ERL2, and not ER, are the key receptors for perception of EPFL2. Since <i>erl1</i>
212	and <i>erl2</i> mutants are in the Col accession, we generated the novel <i>epfl2-2</i> mutant allele in
213	the same genetic background using CRISPR/Cas9 for further genetic analysis. We then
214	crossed <i>epfl2-2</i> with <i>erl1-2; erl2-1</i> to generate <i>epfl2-2; erl1-2; erl2-1</i> , and with <i>er-105</i> to
215	generate epfl2-2; er-105. The epfl2-2; erl1-2; erl2-1 triple mutant showed a similar
216	phenotype to the parental lines <i>epfl2-2</i> and <i>erl1-2; erl2-1</i> (Figure 4B, Figure S8).
217	Furthermore, epfl2-2; er-105 displayed an additive phenotype, as observed in L. er;
218	epfl2-1 (Figure 4B, Figure S5, Figure S8). We conclude that EPFL2 mainly functions
219	with ERL1 and ERL2, and not with ER.
220	

221 Loss of *EPFL2* causes irregular patterning and twinning of ovules

We observed abnormal ovules and seeds in both *epfl2* mutants. In some cases (0.27%),
two ovules were initiated and developed from a single funiculus (Figure 5A, B).

Although EPFL2 functions in the ERL1 and ERL2 pathway, this twin-ovule phenotype

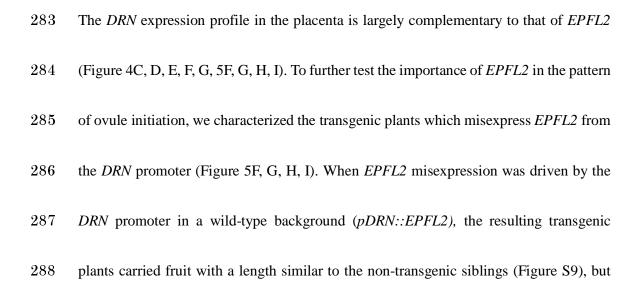
225	was not observed in erl1-2; erl2-1 plants, but in the epfl2-2; erl1-2; erl2-1 and epfl2-2;
226	er-105, indicating that EPFL2 can act also independently of ER-family receptors. In epfl2
227	mutant plants, neighboring cells on the placenta appear to acquire ovule identity and
228	differentiate into ovules, resulting in twins. In order to visualize early ovule initiation
229	patterns, we introduced pDORNRÖSCHEN(DRN)::erGFP as a marker for the earliest
230	stages of ovule initiation. During embryogenesis, MP activates expression of the
231	auxin-responsive transcription factor DRN in the tip of cotyledons ^{37,38} . The
232	semi-quantitative auxin reporter R2D2 ³⁹ revealed that auxin maxima are established at
233	the tip of ovule primordia coinciding with DRN expression (Figure 5C-E), indicating that
234	DRN expression also reflects auxin distribution ^{37,38} , and thus can serve as marker to
235	visualize ovule initiation patterns. Before ovule initiation, DRN was ubiquitously
236	expressed in the placenta (Figure 5F, G), but when placental cells acquire ovule identity,
237	DRN expression becomes confined to the ovule initial cells (Figure 5H, I). In wild-type
238	plants, the ovules initiated with 2 to 4 cells intervals (Figure 5J, L). In epfl2-2 mutants,
239	DRN was expressed in a much broader pattern (Figure 5K) and DRN expression domains
240	appeared less regularly spaced (Figure 5K, L). We quantified the spacing by counting the

241	number of cells between adjacent ovule primordia. In the wildtype, we found on average
242	2.97 cells between two ovule initial cells, and these average values were slightly
243	increased for the <i>epfl2</i> mutant lines (3.10 cells). Importantly, cell numbers in <i>epfl2</i> varied
244	from 1 to 6 cells, whereas the wild-type displayed a very regular ovule spacing with cell
245	numbers ranging between 2 to 4 (Figure 5L). We conclude that EPFL2 serves the
246	initiation of ovules at regularly spaced intervals.
247	

248 ER-family receptors are coexpressed with EPFL2 and EPFL9 in pistils

249	From our genetic analysis, we concluded that two major pathways control ovule
250	patterning. One is the EPFL9/ER pathway that mainly controls fruit growth, the other is
251	the EPFL2/ERL1/ERL2 pathway which has a major impact on ovule density via
252	regulating ovule initiation patterns, and also weakly contributes to fruit growth. We next
253	analyzed the expression profiles of ER, ERL1, ERL2, EPFL9 and EPFL2. ER-family
254	receptors were previously shown to be expressed in different parts of the pistil ^{15,40} . For
255	the analysis of ER, ERL1 and ERL2, we used translational fusion lines with YFP as a
256	reporter ^{24,41} and for EPFL9 and EPFL2 we generated transcriptional reporter lines using

257	EGFP and TdTomato as fluorescent tags with Histone H2B ^{17,21} . To visualize the
258	expression patterns, we combined tissue clearing ⁴² and confocal microscopy. In stage 8
259	flowers, ER was broadly expressed in various organs including carpels (Figure 2D),
260	consistent with previous observations ⁴³ . In the pistils, ER was mainly expressed in the
261	valve (Figure 2E) ⁴³ , but signal was also weakly detected in ovule primordia and
262	inter-ovule spaces (Figure 2E). ERL1 expression was not detected in the carpels at early
263	stages of development (Figure 2F). ERL2 was expressed in the carpels including the
264	placenta before ovule primordia became apparent (Figure 2H). When ovule primordia
265	were initiated, the expression of ERL1 and ERL2 was detected in inter-ovule spaces and
266	the ovule primordia (Figure 2G, I). The signal of ERL2 was strongly visible at the
267	boundary and the tip of ovule primordia which will develop into the nucellus, the outer
268	and the inner integuments, but signal was weaker in the basal domian of ovule primordia
269	(Figure 2I). Compared to ERL2, ERL1 signals were weaker and somehow patchy (Figure
270	2G). ERL1 and ERL2 were only weakly expressed in valves (Figure 2G, I). As expected
271	from the STOMAGEN RNAi phenotype, EPFL9 was exclusively expressed in the inner
272	cell layers of the valves (Figure 3D, E) from stage 8 onwards (Figure 3B, C) but lacking at


.__.

273	the valve margin and the replum (Figure 3E). The expession patterns are consistent with
274	EPFL9 acting as a short range signal that controls fruit growth via ER. In contrast to
275	EPFL9, EPFL2 expression was detected in the placenta (Figure 4E, F), and importantly,
276	once the ovule primordia were initiated, confined to the inter-ovule spaces (Figure 4E, F,
277	G). In transverse sections, EPFL2 expression was also visible in the valve, around the
278	valve margin and the replum (Figure 4F). However, expression was not noted in carpels
279	of stage 8 flowers (Figure 4C, D). As previously reported ⁴⁴ , EPFL2 seems to be
280	preferentially expressed at the boundary between ovules.
281	

282 Altered expression of EPFL2 affects the ovule initiation pattern

. .

~ **-** ~

This indicated that EPFL2 cannot promote fruit growth from the placenta domain, and
that a regular and interspersed expression of EPFL2 is required for proper spacing of
ovule initiation.
Quantitative analysis reveals interactions between peptides and receptors
Our genetic analysis indicates that EPFL2 acts preferentially via ERL1 and ERL2;
however, earlier co-immunoprecipitation experiments in Nicotiana benthamiana have
shown that EPFL2 can physically associate with all ER-family receptors in vivo ¹⁷ .
Because EPF/EPFL peptides may bind to ER-family receptors with different affinities ⁴⁵ ,
we investigated interaction properties between ER-family receptors and their ligands
EPFL9 and EPFL2 in vitro. Recombinant peptides and the extracellular domains of
ER-family receptors were expressed in <i>E. coli</i> and purified. Because EPFL2 and EPFL9
are cysteine-rich and their final conformation is stabilized by the formation of specific
disulfide bonds, the peptides were first affinity purified, refolded in refolding buffer, and
separated from unfolded peptides by HPLC ²⁴ . We then evaluated peptide bioactivity by

305	measuring their impact on stomatal density. As a control, six cysteine residues of EPFL2
306	were substituted to serine residues (EPFL2 (CS)), which should render the peptide less
307	stable. As observed in transgenic EPFL2-overexpressing Arabidopsis lines ^{17,35} , EPFL2
308	treatment reduced the number of stomata (Figure S11B, I), whereas EPFL9 had the
309	opposite effect (Figure S11D, I). Furthermore, since TOO MANY MOUTH (TMM) is a
310	stomatal lineage specific co-receptor protein ⁴⁶ and not expressed at the carpel wall and
311	the placenta (Figure S10), we also used <i>tmm-KO</i> plants. <i>tmm</i> knockout mutants were
312	found to be sensitized for EPFL2 and responded more strongly (Figure S11F, I), which is
313	consistent with previous studies ^{35,45} . These assays indicated that the purified peptides
314	were functional. We then tested the direct interactions between the peptides and receptors
315	using isothermal titration calorimetry (ITC). Both EPFL2 and EPFL9 bound to the
316	extracellular domain of ER-family receptors, albeit with different affinities. EPFL2
317	showed a binding preference for ERL1 and ERL2 (Figure S12). EPFL9 bound to ER,
318	ERL1 and ERL2 with similar affinities (Figure S12).
319	From our combined data, we propose that regular spacing of ovules at defined intervals is

320 coordinated with fruit growth through the EPFL2/ERL1/ERL2 and EPFL9/ER signalling

- 321 pathways.
- 322
- 323 **Discussion**

324	In selfing species such as Arabidopsis, pollen availability is no longer a limiting factor for
325	fertilization, and the key determinant for seed production is now ovule number. The
326	total number of seeds that can be generated by an individual plant depends on the
327	available resources which can be invested into the formation of branches carrying
328	flowers.
329	Overall reproductive success then depends on the total number of flowers, and the
330	number of ovules that are being initiated in each individual flower. In the developing
331	Arabidopsis ovary, ovules are initiated from the placenta, and the total length of the pistil
332	at the time of ovule initiation restricts the maximum number of ovules that can be formed.
333	Not suprisingly, there is a general correlation between fruit length and overall seed
334	number, so that ecotypes that generate longer siliques also bear more seeds. The genetic
335	basis of ovule initiation and fruit growth has been studied in much detail, and a number of
336	key transcription factors and phytohormones have been investigated which control the

337	formation of ovules and fruit development. However, the fundamental patterning
338	mechanism that determines the spacing of ovule anlagen within the placenta remained
339	unexplored.
340	Organ initiation in plants generally requires auxin accummulation at discrete sites. Using
341	the auxin-regulated transcription factor DRN as a sensor for auxin signalling, we found
342	that an evenly distributed auxin signal in the developing placenta is resolved into a
343	regularly spaced pattern of founder cells of the young ovules. Importantly, this patterning
344	process is not a repetitive process and takes place in a structure with a finite size, which
345	clearly distinguishes it from other well studied patterning processes in plants, such as
346	phyllotaxis or stomatal patterning. We therefore carried out a natural variation analysis
347	and QTL analysis to identify genes responsible for ovule density, leading to the
348	identification of ER and EPFL2. Additionally, we found that the ER paralogs ERL1 and
349	ERL2, as well as the EPF/EPFL-family peptide EPFL9, also regulate ovule density. Our
350	genetic interaction studies and expression analysis showed that these two pathways
351	control ovule density in distinct ways. The EPFL9 pathway, acting from the carpel wall,
352	exclusively controls fruit elongation without affecting the ovule initiation pattern.

353	Reduction of ovule number observed in <i>er-105</i> seems to be an indirect consequence of the
354	smaller fruit size and the limited availability of space. The EPFL2 pathway also affects
355	fruit growth, but has a more pronounced impact on the patterning of ovule initial cells and
356	thus increases ovule density (Figure 6A, B).
357	We observed ovule twinning in <i>epfl2</i> mutant plants, which is caused by mis-patterning
358	during ovule initiation. Furthermore, ectopic expression of EPFL2 also caused ovule
359	patterning defects, which we interpret that EPFL2 is a dosage-sensitive regulator of ovule
360	initiation. Our genetic, biochemical and expression data further suggest that ERL1 and
361	ERL2 are the main receptors for EPFL2. Among these two, ERL2 has a major role as a
362	receptor for EPFL2 for two reasons: First, the erl2-1 mutant enhanced the er-105
363	phenotype more severely than <i>erl1-2</i> , and second, ERL1 is expressed at lower levels than
364	ERL2 in the placenta. Ovule twinning was observed in <i>epfl2-2; erl1-2; erl2-1</i> as well as
365	epfl2-2 mutants, but not in erl1-2; erl2-1 mutants, suggesting that in the absence of ERL1
366	and ERL2, other receptors contribute to EPFL2-mediated ovule initiation. TMM is a
367	well-characterized co-receptor for ER-family receptors in stomata development, but
368	since TMM is not expressed in the pistil (Figure S10) 46 , it is not likely to act here.

369	The transcriptional regulation of EPFL2 is so far unknown, but it is tempting to speculate
370	that the transcription factors, CUC1, CUC2, and CUC3 are potential upstream regulators
371	of <i>EPFL2</i> expression, because their expression profiles are similar to that of EPFL2 10,47 ,
372	and CUC1 RNAi; cuc2 plants produce fewer ovules than wild-type plants ¹⁰ .
373	Transcriptomic analysis revealed that some of EPFL family genes were downregulated in
374	<i>CUC1 RNAi; cuc2</i> plants ⁷ . <i>cuc2-3; cuc3-105</i> mutants can carry twinned ovules ⁴⁷ , as seen
375	in <i>epfl2</i> , and <i>EPFL2</i> expression under the control of the CUC2 promoter was sufficient to
376	restore the leaf margin serration phenotype of <i>epfl2</i> mutants ¹⁷ .
377	Prior to ovule primordia initiation, DRN expression was uniformly observed at the
378	placenta (Figure 5C). Since DRN is a direct target of MP ³⁸ , auxin seems to be signalling
379	uniformly during early stages of placenta growth. However, once placenta cells adopt
380	ovule identity, auxin maxima are established at the tip of ovule initials 2 (Figure 5C-E)
381	and DRN expression is confined to these positions (Figure 5H). We propose that similar
382	to the feedback mechanism that operates in leaf margin development ¹⁷ , <i>EPFL2</i> restricts
383	auxin accumulation to the developing ovule primordia, while auxin at the same time
384	provides a feedback signal that supresses EPFL2 expression (Figure 6C). This

385	auxin-EPFL2 negative feedback loop provides an important new element to control
386	precise and highly regular ovule spacing patterns, which safeguards equal nutrient access
387	as a bet hedging strategy. With its additional function in promoting fruit growth due to
388	expression in the carpel wall, EPFL2 thus serves to integrate these two processes. Life
389	history variations that necessitate trade-offs between seed number, seed size and fruit size
390	could then act through differential expression of EPFL2.
391	Cultivated asian rice was selected for awnlessness to facilitate harvesting. One of the
392	underlying causal mutation inactivates an EPFL2-orthologue, OsEPFL1, which also
393	affects grain length and grain number, giving rise to more compact panicles with more
394	seeds ^{48–50} . Although the underlying mechanism in rice is not yet understood, it highlights
395	a role of <i>EPFL2</i> -genes as evolutionary conserved integrators of ovule initiation patterns,
396	seed number, seed size and floral organ development ⁵¹ .
397	
398	Materials and Methods

399 Plant materials and growth conditions

400 For natural variation analysis, 96 A. thaliana ecotypes ⁵² were planted and grown in

401	continuous light at either 16°C or 21°C. After germination, the plants were vernalized for
402	6 weeks at 4°C. For QTL analysis, 165 RILs ⁵ were planted and grown in continuous light
403	at 16°C. For phenotypic and expression analysis, plants were grown under long-day
404	conditions (16-h photoperiod). The Van-0, Van-0 ER+, Hir-1, and Hir-1 ER+ accessions
405	were previously described ³⁰ . The L. er; epfl2-1 (CSHL_ET5721), L. er; epfl2-1; ER+,
406	and L. er; ER+ lines were previously described 17 . An epfl2 mutant in the Columbia
407	accession was generated by CRISPR/Cas9. For this, we designed two single guide RNAs
408	targeting <i>epfl2</i> (Figure S6A) in one vector. We obtained five different <i>epfl2</i> mutant alleles
409	in the T2 generation (Figure S6B), all of which caused a smoother leaf margin phenotype
410	indicative of <i>epfl2</i> -mutants (Figure S6C) as previously reported ¹⁷ . For further analysis,
411	#36-45 which has a genomic deletion between the sgRNA1 and 2 target sites was selected.
412	Hereafter we refer to the original <i>epfl2</i> mutant in L. <i>er</i> (CSHL_ET5721) as <i>epfl2-1</i> and
413	our new allele #36-45 as <i>epfl2-2</i> . Consistent with our previous analysis using <i>epfl2-1</i> , we
414	found that <i>epfl2-2</i> phenocopies <i>epfl2-1</i> (Figure 4A, Figure S7), and that <i>epfl2-2</i> mutants
415	also resemble the erl1-2; erl2-1 phenotype (Figure 2A and 4A). The gER:YFP; er-105,
416	gERL1:YFP; erl1-2 and gERL2:YFP lines were previously described ^{24,41} . The er-105,

417erl1-2, erl2-1, er-105; erl1-2, er-105; erl2-1, erl1-2; erl2-1 lines were previously described ¹⁵. The STOMAGEN RNAi line was generated ²¹. The *pDRN::GFP; Col* was 418 described ³⁸. The auxin semi-quantitative marker line R2D2 was developed in ³⁹. The 419 420 epfl2-2 and epfl2-3 lines were generated by CRISPR/Cas9 genome editing in this study, 421and the epfl2-2; er-105, epfl2-2; erl1-2; erl2-1 were generated by genetic crossing. We 422 also generated the following transgenic plant lines: pEPFL2::H2B:TdTomato; Col, pEPFL9::H2B:EGFP:3HA:His; Col, pDRN::EPFL2; Col, and pDRN::GFP; epfl2-2. 423424Plants were transformed using Agrobacterium tumefaciens strain GV3101 or C58 pSOUP 425via the floral dip method. 426

427 QTL analysis

For the RIL population, the final phenotype value for each line was calculated as the average of all the replicates. The Genotype information from 243 markers in the Ler/Cvi RIL map was collected from available published data ⁵. QTL analysis was performed within the R statistical software with the qtl package ⁵³ using a Multiple QTL Mapping (MQM) approach. In the MQM mapping approach, we used a forward stepwise approach

433 preselecting the ERECTA marker as a cofactor.

434

435 Plasmid constructs

436	The plasmids and primers used in this study are listed in Table S1. Vectors pFH1 and
437	pFH6 ⁵⁴ along with the in-house vector pUB-Cas9-@EPFL2 were used for the knockout
438	of EPFL2 with the CRISPR/Cas9 system. To generate the construct
439	pEPFL2::H2B:TdTomato, EPFL2 promoter DNA was amplified by PCR from Col
440	genomic DNA and inserted at the HindIII and SmaI sites of pPZP211/35S using the
441	InFusion kit (Clontech) yielding the intermediate vector pPZP211/pEPFL2. The H2B
442	(At5g22880) gene was amplified from Col cDNA and was inserted into the SmaI and
443	SacI sites of pPZP211/pEPFL2 using the same method, yielding vectors
444	pPZP211/pEPFL2::H2B. Finally the TdTomato gene was amplified and inserted into the
445	SacI and SacII sites of pPZP211/pEPFL2::H2B to generate
446	pPZP211/pEPFL2::H2B:TdTomato. To generate the construct pEPFL2::EPFL2, the
447	EPFL2 coding sequence was inserted into pPZP211/pEPFL2 at the BamHI and SacII
448	sites. To construct the pDRN::EPFL2 vector, the DRN promoter and terminator

 $\mathbf{28}$

449	equences and the <i>EPFL2</i> coding sequence were amplified by PCR from Col genomic					
450	DNA or cDNA and inserted into vectors pGGA000, pGGE000, and pGGC000					
451	respectively. The pGGZ001, pGGA000-pDRN, pGGB002, pGGC000-EPFL2,					
452	pGGD002, pGGE000-tDRN and pGGF007 DNA fragments were then assembled by					
453	GreenGate cloning ⁵⁵ . For pEPFL9:H2B-EGFP(or TdTomato):3HA:His, the H2B gene					
454	was amplified as above and inserted into the SmaI and SacI sites of					
455	pPZP211/35S:EGFP(or TdTomato)-3HA-His ⁵⁶ . The plasmids were digested with XbaI					
456	and EcoRI, and the H2B-EGFP (or TdTomato) 3HA-His:NosT fragments were					
457	transferred to vector pPZP211. The EPFL9 promoter was amplified from Col genomic					
458	DNA and inserted into the vectors at the SalI and SmaI sites using the InFusion kit as					
459	above. Codon optimized mature EPFL2 and mutated mature EPFL2 sequences were					
460	synthesized (Thermo Fisher Scientific) and cloned into the SacII and XhoI sites of					
461	pET41a. Mature EPFL9 was amplified from Arabidopsis thaliana Col cDNA and cloned					
462	into pGEX4T1 by Gibson assembly (NEB). Ectodomains of ER (E25-R580), ERL1					
463	(M26-R582), ERL2 (M28-R585) were amplified from Arabidopsis thaliana Col cDNA					
464	and cloned into pETEV16 by Gibson assembly (NEB).					

465

466 **Photography of leaves**

- 467 To characterize the leaf margin, the seventh leaf of each plant was photographed under a
- 468 Nikon SMZ25 stereomicroscope.
- 469

470 Data visualization and statistical analysis

- 471 R (version 3.5.1) was used for data visualization and statistical analysis. The following
- 472 statistical tests were used to calculate the corresponding p-values. A two-tailed Student's
- 473 t-test was used for pairwise comparisons, whereas Dunnett's test and Tukey-Kramer's test
- 474 were used to compare multiple sets of data to a control or all possible pairs, respectively.
- 475 F-test was used to compare two variations. In each case, a value of p < 0.005 was
- 476 considered significant.
- 477

478 Tissue clearing and expression analysis

- 479 Flowers and pistils were dissected under a standard dissection microscope. The samples
- 480 were fixed in freshly prepared 4% paraformaldehyde in PBS (pH 7.4) supplemented with

481	0.05% Silwet L-77 for 3-5 h under vacuum, followed by incubation in ClearSee as
482	previously described [41]. The tissues were then stained with Calcofluor White to
483	visualize the cell walls. The processed tissues were observed under a confocal
484	microscope (Carl Zeiss LSM780, Carl Zeiss LSM880 or Leica TCS SP8). For GFP, the
485	excitation wavelength was 488 nm and the signal was detected at 500–550 nm. For YFP,
486	the excitation wavelength was 514 nm and the signal was detected at 520-575 nm. For
487	TdTomato, the excitation wavelength was 561 nm and the signal was detected at 565–600
488	nm. For Calcofluor White, the excitation wavelength was 405 nm and the signal was
489	detected at 415-475 nm. These ranges were selected to avoid overlaps between the
490	signals.
491	
492	Peptide expression, purification and refolding and protein expression
493	Mature EPFL2 (MEPFL2) and mutant mature EPFL2 (mMEPFL2; C60S, C65S, C68S,
494	C71S, C119S, C121S) were heterologously expressed in E. coli BL21 (DE3) as
495	GST-His-tagged fusion proteins. EPFL9 was expressed only as GST-fusion protein in E.
496	coli BL21. Peptides were purified via GST affinity chromatography by FPLC (Äkta

497	Prime Plus, GE Healthcare). The GST tag was proteolytically cleaved by TEV-protease
498	digestion. Peptides were separated from free GST and residual protease via reverse
499	phase-HPLC (Supelcosil, LC-18 HPLC column, 15x4.6 cm, 3µm particle size) under an
500	acetonitrile gradient (0-100% v/v) with 0.1%TFA (v/v). After vacuum assisted solvent
501	evaporation, peptide pellets were resolved in refolding buffer as previously described to
502	introduce proper disulfide bridges, which were indirectly verified by the stomata density
503	based bioactivity assay. Peptide identities and purities were confirmed by mass
504	spectrometry which revealed two additional amino acids (Gly-His) were attached at
505	N-terminus of each peptide, as results of the TEV-protease cleavage.
505 506	N-terminus of each peptide, as results of the TEV-protease cleavage. Receptor domains of ER (E25-R580), ERL1 (M26-R582), ERL2 (M28-R585) and TMM
506	Receptor domains of ER (E25-R580), ERL1 (M26-R582), ERL2 (M28-R585) and TMM
506 507	Receptor domains of ER (E25-R580), ERL1 (M26-R582), ERL2 (M28-R585) and TMM (F24-G475) were heterologously expressed in <i>E. coli</i> BL21 (DE3) with an N-terminal
506 507 508	Receptor domains of ER (E25-R580), ERL1 (M26-R582), ERL2 (M28-R585) and TMM (F24-G475) were heterologously expressed in <i>E. coli</i> BL21 (DE3) with an N-terminal His-tag and TEV-protease target sequence. The expressed protein domains were purified
506 507 508 509	Receptor domains of ER (E25-R580), ERL1 (M26-R582), ERL2 (M28-R585) and TMM (F24-G475) were heterologously expressed in <i>E. coli</i> BL21 (DE3) with an N-terminal His-tag and TEV-protease target sequence. The expressed protein domains were purified via Ni ²⁺ affinity chromatography by FPLC (Äkta Prime Plus, GE Healthcare). The eluted

513 **Peptide bioassay**

514	Col and <i>tmm</i> knockout (<i>tmm-KO</i> , Salk_011958) seeds were sterilized and sown on
515	half-strength MS medium. Prior to germination, seeds were kept in the dark at 4°C for 3
516	days, then transferred to continuous light at 22°C for germination. One day after
517	germination, the seedlings were transferred to 1 ml half-strength MS liquid medium
518	supplemented with 5 μM of the appropriate peptide in 0.5 g/L MES-KOH (pH 5.7) and
519	were incubated as above for 5 days. At the end of the treatment period, the cotyledons
520	were stained with 1 $\mu\text{g/ml}$ propidium iodide and observed under a Confocal microscope
521	(Carl Zeiss LSM710, Carl Zeiss LSM880 or Leica TCS SP8). For excitation, 561 nm
522	laser line was used and signal was collected between 565–650 nm. The MES-KOH buffer
523	(pH 5.7) without peptides was used for the mock treatment.
524	
525	ITC
526	ITC-experiments were carried out in a MicroCal iTC200 (Malvern Instruments) at 25°C

- 527 with a sample cell of 280 μ L and an injection syringe of 40 μ L. Peptide pellets were
- 528 dissolved in ITC-buffer and peptide concentrations were assessed by FTIR with a

529	DirectDetect system (Merck). Protein concentrations of the receptor domains were
530	measured by absorption at 280 nm and calculated by their molar absorption coefficient at
531	280 nm. The molar coefficients for ER, ERL1 and ERL2 (42400, 41410, and 42400 M^{-1}
532	cm ⁻¹ , respectively) were calculated based on ExPASy ProtParam. Final protein and
533	peptide concentrations are as indicated. For each experiment 19 injections of 2 μ L with a
534	spacing of 150s were performed.
535	
536	Acknowledgement
537	We thank the Center for Advanced imaging (CAi) at the Heinrich-Heine University
538	Düsseldorf for support with microscopy. We are grateful for receiving Arabidopsis seeds
539	from the following colleagues: Martijn van Zanten (Van-0, Van-0 ER+, Hir-1, Hir-1
540	ER+), Wolfgang Werr (pDRN::GFP), Dolf Weijers (R2D2) , Dominique Bergmann
541	(gERL2:YFP), Ikuko Hara-Nishimura and Tomoo Shimada (STOMAGEN RNAi). This
542	work was supported by the DFG through the Cluster of Excellence on Plant Sciences
543	(CEPLAS, EXC1028).

References $\mathbf{545}$

546	1.	Srikanth, A. & Schmid, M. Regulation of flowering time: All roads lead to Rome.
547		Cell. Mol. Life Sci. 68, 2013–2037 (2011).
548	2.	Cucinotta, M., Colombo, L. & Roig-Villanova, I. Ovule development, a new
549		model for lateral organ formation. Front. Plant Sci. 5, 117 (2014).
550	3.	Skinner, D. J., Hill, T. A. & Gasser, C. S. Regulation of Ovule Development.
551		PLANT CELL ONLINE 16, S32–S45 (2004).
552	4.	Smyth, D. R., Bowman, J. L. & Meyerowitz, E. M. Early Flower Development in
553		Arabidopsis. Plant Cell 2, 755–767 (1990).
554	5.	Alonso-Blanco, C., Blankestijn-de Vries, H., Hanhart, C. J. & Koornneef, M.
555		Natural allelic variation at seed size loci in relation to other life history traits of
556		Arabidopsis thaliana. Proc. Natl. Acad. Sci. U. S. A. 96, 4710-7 (1999).
557	6.	Cucinotta, M. et al. Cytokinin response factors integrate auxin and cytokinin
558		pathways for female reproductive organ development. Development 143,
559		4419–4424 (2016).
560	7.	Cucinotta, M. et al. CUP-SHAPED COTYLEDON1 (CUC1) and CUC2 regulate

561 cytokinin homeostasis to determine ovule number in Arabidopsis.	l. Exp. Bot. 69	9,
---	-----------------	----

- 562 5169–5176 (2018).
- 563 8. Bencivenga, S., Simonini, S., Benkova, E. & Colombo, L. The Transcription
- 564 Factors BEL1 and SPL Are Required for Cytokinin and Auxin Signaling During
- 565 Ovule Development in Arabidopsis. *Plant Cell* **24**, 2886–2897 (2012).
- 566 9. Gomez, M. D. *et al.* Gibberellins negatively modulate ovule number in plants.
- 567 *Development* **145**, dev163865 (2018).
- 568 10. Galbiati, F. *et al.* An integrative model of the control of ovule primordia formation.
- 569 Plant J. 76, 446–455 (2013).
- 570 11. Yuan, J. & Kessler, S. A. A genome-wide association study reveals a novel
- 571 regulator of ovule number and fertility in Arabidopsis thaliana. *PLOS Genet.* **15**,
- 572 e1007934 (2019).
- 573 12. Rédei, G. P. Single locus heterosis. Z. Vererbungsl. 93, 164–170 (1962).
- 13. Torii, K. U. *et al.* The Arabidopsis ERECTA gene encodes a putative receptor
- 575 protein kinase with extracellular leucine-rich repeats. *Plant Cell* **8**, 735–746
- 576 (1996).

577	14.	Shpak, E. D., McAbee, J. M., Pillitteri, L. J. & Torii, K. U. Stomatal Patterning and
578		Differentiation by Synergistic Interactions of Receptor Kinases. Science (80).
579		309 , 290–293 (2005).
580	15.	Shpak, E. D., Berthiaume, C. T., Hill, E. & Torii, K. U. Synergistic interaction of
581		three ERECTA-family receptor-like kinases controls Arabidopsis organ growth
582		and flower development by promoting cell proliferation. Development 131,
583		1491–1501 (2004).
584	16.	Uchida, N. & Tasaka, M. Regulation of plant vascular stem cells by
585		endodermis-derived EPFL-family peptide hormones and phloem-expressed
586		ERECTA-family receptor kinases. J. Exp. Bot. 64, 5335–5343 (2013).
587	17.	Tameshige, T. et al. A Secreted Peptide and Its Receptors Shape the Auxin
588		Response Pattern and Leaf Margin Morphogenesis. Curr. Biol. 26, 2478–2485
589		(2016).
590	18.	Hara, K. et al. Epidermal Cell Density is Autoregulated via a Secretory Peptide,
591		EPIDERMAL PATTERNING FACTOR 2 in Arabidopsis Leaves. Plant Cell
592		Physiol. 50, 1019–1031 (2009).

37

	593	19.	Hara, K	., Kajita,	R., Torii	. K. U.	, Bergmann.	D. C	. & Kakimoto	, T. The secreto
--	-----	-----	---------	------------	-----------	---------	-------------	------	--------------	------------------

- 594 peptide gene EPF1 enforces the stomatal one-cell-spacing rule. *Genes* &
- *jinDevelopment* **21**, 1720–1725 (2007).
- 596 20. Hunt, L. & Gray, J. E. The Signaling Peptide EPF2 Controls Asymmetric Cell
- 597 Divisions during Stomatal Development. *Curr. Biol.* **19**, 864–869 (2009).
- 598 21. Sugano, S. S. *et al.* Stomagen positively regulates stomatal density in Arabidopsis.
- *Solution Nature* **463**, 241–244 (2010).
- 600 22. Kondo, T. et al. Stomatal density is controlled by a mesophyll-derived signaling
- 601 molecule. *Plant Cell Physiol.* **51**, 1–8 (2010).
- 602 23. Hunt, L., Bailey, K. J. & Gray, J. E. The signalling peptide EPFL9 is a positive
- regulator of stomatal development. *New Phytol.* **186**, 609–614 (2010).
- 604 24. Lee, J. S. et al. Direct interaction of ligand-receptor pairs specifying stomatal
- 605 patterning. Genes Dev. 26, 126–136 (2012).
- 606 25. Lee, J. S. et al. Competitive binding of antagonistic peptides fine-tunes stomatal
- 607 patterning. *Nature* **522**, 439–443 (2015).
- 608 26. Qi, X. et al. Autocrine regulation of stomatal differentiation potential by EPF1 and

609		ERECTA-LIKE1 ligand-receptor signaling. <i>Elife</i> 6, 1–21 (2017).
610	27.	Davies, K. A. & Bergmann, D. C. Functional specialization of stomatal bHLHs
611		through modification of DNA-binding and phosphoregulation potential. Proc.
612		Natl. Acad. Sci. 111, 15585–15590 (2014).
613	28.	Lampard, G. R., MacAlister, C. A. & Bergmann, D. C. Arabidopsis Stomatal
614		Initiation Is Controlled by MAPK-Mediated Regulation of the bHLH
615		SPEECHLESS. Science (80). 322, 1113–1116 (2008).
616	29.	Koornneef, M., Alonso-Blanco, C. & Vreugdenhil, D. Naturally occurring genetic
617		variation in Arabidopsis thaliana. Annu. Rev. Plant Biol. 55, 141-172 (2004).
618	30.	van Zanten, M. et al. Ethylene-induced hyponastic growth in Arabidopsis thaliana
619		is controlled by ERECTA. Plant J. 61, 83–95 (2010).
620	31.	Godiard, L. et al. ERECTA, an LRR receptor-like kinase protein controlling
621		development pleiotropically affects resistance to bacterial wilt. Plant J. 36,
622		353–365 (2003).
623	32.	Bemis, S. M., Lee, J. S., Shpak, E. D. & Torii, K. U. Regulation of floral patterning
624		and organ identity by arabidopsis erecta-family receptor kinase genes. J. Exp. Bot.

625 (2013). doi:10.1093/jxb/ert270

- 626 33. Uchida, N. et al. Regulation of inflorescence architecture by intertissue layer
- 627 ligand-receptor communication between endodermis and phloem. *Proc. Natl.*
- 628 Acad. Sci. 109, 6337–6342 (2012).
- 629 34. Abrash, E. B. & Bergmann, D. C. Regional specification of stomatal production by
- 630 the putative ligand CHALLAH. *Development* **137**, 447–455 (2010).
- 631 35. Abrash, E. B., Davies, K. A. & Bergmann, D. C. Generation of Signaling
- 632 Specificity in Arabidopsis by Spatially Restricted Buffering of Ligand–Receptor
- 633 Interactions. *Plant Cell* **23**, 2864–2879 (2011).
- 634 36. Sahana, G., de Koning, D. J., Guldbrandtsen, B., Sørensen, P. & Lund, M. S. The
- 635 efficiency of mapping of quantitative trait loci using cofactor analysis in half-sib
- 636 design. Genet. Sel. Evol. 38, 167–182 (2006).
- 637 37. Kirch, T., Simon, R., Grünewald, M. & Werr, W. The
- 638 DORNRÖSCHEN/ENHANCER OF SHOOT REGENERATION1 Gene of
- 639 Arabidopsis Acts in the Control of Meristem Cell Fate and Lateral Organ
- 640 Development. *Plant Cell* **15**, 694–705 (2003).

641	38.	Cole, M. et al. DORNRÖSCHEN is a direct target of the auxin response factor
642		MONOPTEROS in the Arabidopsis embryo. Development 136, 1643–1651
643		(2009).
644	39.	Liao, C. et al. Reporters for sensitive and quantitative measurement of auxin
645		response. Nat. Methods 12, 207–210 (2015).
646	40.	Pillitteri, L. J., Bemis, S. M., Shpak, E. D. & Torii, K. U. Haploinsufficiency after
647		successive loss of signaling reveals a role for ERECTA -family genes in
648		Arabidopsis ovule development. 3109, 3099–3109 (2007).
649	41.	Ho, CM. K., Paciorek, T., Abrash, E. & Bergmann, D. C. Modulators of Stomatal
650		Lineage Signal Transduction Alter Membrane Contact Sites and Reveal
651		Specialization among ERECTA Kinases. Dev. Cell 38, 345–357 (2016).
652	42.	Kurihara, D., Mizuta, Y., Sato, Y. & Higashiyama, T. ClearSee: a rapid optical
653		clearing reagent for whole-plant fluorescence imaging. Development 4168-4179
654		(2015). doi:10.1242/dev.127613
655	43.	Yokoyama, R., Takahashi, T., Kato, A., Torii, K. U. & Komeda, Y. The
656		Arabidopsis ERECTA gene is expressed in the shoot apical meristem and organ

657		primordia. Plant J. 15, 301–310 (1998).
658	44.	Kosentka, P. Z., Overholt, A., Maradiaga, R., Mitoubsi, O. & Shpak, E. D. EPFL
659		Signals in the Boundary Region of the SAM Restrict Its Size and Promote Leaf
660		Initiation. Plant Physiol. 179, 265–279 (2019).
661	45.	Lin, G. et al. A receptor-like protein acts as a specificity switch for the regulation
662		of stomatal development. Genes Dev. 31, 927–938 (2017).
663	46.	Nadeau, J. A. & Sack, F. D. Control of Stomatal Distribution on the Arabidopsis
664		Leaf Surface. Science (80). 296, 1697–1700 (2002).
665	47.	Gonçalves, B. et al. A conserved role for CUP-SHAPED COTYLEDON genes
666		during ovule development. Plant J. 83, 732-742 (2015).
667	48.	Yano, K. et al. Genome-wide association study using whole-genome sequencing
668		rapidly identifies new genes influencing agronomic traits in rice. Nat. Genet.
669		(2016). doi:10.1038/ng.3596
670	49.	Bessho-Uehara, K. et al. Loss of function at RAE2, a previously unidentified
671		EPFL, is required for awnlessness in cultivated Asian rice . Proc. Natl. Acad. Sci.
672		(2016). doi:10.1073/pnas.1604849113

42

673	50.	Jin, J. et al.	GAD1 Encodes a S	Secreted Peptide	That Regulates	Grain Number,

- 674 Grain Length, and Awn Development in Rice Domestication . *Plant Cell* 28,
- 675 2453–2463 (2016).
- 676 51. Zhang, Y. et al. Natural alleles of GLA for grain length and awn development
- 677 were differently domesticated in rice subspecies japonica and indica . *Plant*
- 678 Biotechnol. J. 1–13 (2019). doi:10.1111/pbi.13080
- 679 52. Nordborg, M. et al. The Pattern of Polymorphism in Arabidopsis thaliana. PLoS
- 680 Biol. 3, e196 (2005).
- 681 53. Broman, K. W., Wu, H., Sen, S. & Churchill, G. A. R/qtl: QTL mapping in
- 682 experimental crosses. *Bioinformatics* **19**, 889–890 (2003).
- 683 54. Hahn, F. et al. An Efficient Visual Screen for CRISPR/Cas9 Activity in
- 684 Arabidopsis thaliana. *Front. Plant Sci.* **08**, (2017).
- 685 55. Lampropoulos, A. et al. GreenGate A Novel, Versatile, and Efficient Cloning
- 686 System for Plant Transgenesis. 8, (2013).
- 687 56. Kawamoto, N., Sasabe, M., Endo, M., Machida, Y. & Araki, T.
- 688 Calcium-dependent protein kinases responsible for the phosphorylation of a bZIP

689 transcription factor FD crucial for the florigen complex formation. *Sci. Rep.* **5**,

690 8341 (2015).

691

692 Figure legends

693	Figure 1. Identification of responsible loci for the reproductive traits. (A) Image of
694	seed density in L. <i>er</i> (left) and Cvi-0 (right). Bar = 1 mm. (B) Natural variation analysis
695	on seed density (seed number/fruit length (mm)) phenotype at $16^{\circ}C$ (cyan) and $21^{\circ}C$ (red).
696	Fourteen selected representative accessions are presented. See the supplementary figure 1
697	for the phenotype of all accessions. (C) QTL analysis using L. er x Cvi-0 recombinant
698	inbred lines [45]. (D) QTL re-analysis with ER as a cofactor. X and Y axes indicate
699	chromosome position and LOD values, respectively.
700	
701	Figure 2. Genetic and expression analysis of ER family receptors
702	(A) Seed density (seed number/fruit length (mm)). 40 fruits were measured from 3 plants
703	in each genotype. (B) Two weeks old er-105; erl1-2; erl2-1 plant. (C) Six weeks old

r-105; erl1-2; erl2-1 plant. Expression patterns of ER, ERL1 and ERL2 in stage 8 flower

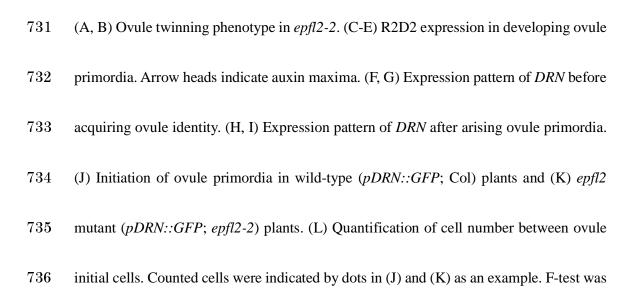
	705	(D, F, H) (or later stage ((E, G, I) of	developing j	pistils. se, st, ca	i, v and r indicate s	epals,
--	-----	-------------	------------------	--------------	--------------	---------------------	-----------------------	--------

stamens, carpels, valve, replum, respectively. (D, F, H) and	E, G	Е, (G, I) share	same scales,
--	------	------	------	---------	--------------

- 707 respectively. Scale bar = 1 mm (B), 5 mm (C) and 50 μ m (D, E, F, G, H, I).
- 708 Tukey-Kramer's test was used for the statistical analysis. Different letters indicate
- 709 significant difference (p < 0.005).
- 710

711 Figure 3. Identification of EPFL9 as a potential ligand for ER

(A) Seed density (seed number/fruit length (mm)). 40 fruits were measured from 3 plants


- in each genotype. (B-E) Expression pattern of EPFL9 at stage 8 flower (B, C) and stage 9
- 714 flower (D, E). Transverse cross section (C, E) were obtained along the lines in (B) and
- 715 (D). st, ca, v and r indicate sepals, stamens, carpels, valve, replum, respectively. Histone
- The H2B fused EGFP was used as a reporter. Bar = $50 \mu m$. Student's t-test was used for the
- statistical analysis. Different letters indicate significant difference (p< 0.005).
- 718

719 Figure 4. Identification of EPFL2 as a patterning regulator of ovule initiation

(A) Seed density (seed number/fruit length(mm)). 40 fruits were measured from 3 plants

721	in each genotype. (B) Genetic interaction analysis either with <i>er-105</i> or <i>erl1-2; erl2-1</i> .
722	(C-G) Expression patterns of EPFL2. Histone H2B fused TdTomato was used as a
723	reporter. Developing pistil in stage 8 flower (C, D), and stage 9 flower (E, F). (G) A
724	magnified view of a white box in (E). Transverse cross section (D, F) were obtained along
725	the lines. v and r indicate valve and replum, respectively. Bar = 100 μ m. Student's t-test
726	was used for the statistical analyses (A) and Tukey-Kramer's test was used for the
727	statistical analyses (C, D). Different letters indicate significant difference (p< 0.005).
728	
729	Figure 5. Disrupted regular patterning in ovule spacing in <i>epfl2</i> and ectopic

730 expression of EPFL2

- 737 used for the statistical analysis. (M) Seed density (seed number/fruit length (mm))
- 738 phenotype in *pDRN::EPFL2*; Col transgenic plants. Student's t-test was used for the
- r statistical analysis. Different letters indicate significant difference (p< 0.005). Scale bar =
- 740 500 μm (A, B), 50 μm (C, D, E, F, H), 20 μm (J, K).
- 741
- 742 Figure 6. Coordination of fruit growth and ovule patterning by two
- 743 peptide-receptor pairs
- (A) Graphical summary of expression patterns of EPFL2 (magenta) and EPFL9 (yellow).
- (B) Two pathways control ovule initiation pattern and fruit growth to archive coordinated
- fruit growth. (C) The interaction between EPFL2 (magenta) and auxin (green) establishes
- regular ovule pattern in placenta.
- 748 Supplementary Figures
- 749 Figure S1. Natural variation analysis on fruit length and seed number
- 750 96 Arabidopsis thaliana natural accessions were analyzed on fruit length and seed number
- 751 per fruit at 16°C and 21°C. Each point indicates average values of fruit length and seed
- number. Accessions in red points are presented in Figure 1B.

754	Figure S2. Complementation of L. er, Van-0 and Hir-1 by functional ER genomic
755	sequence
756	(A) Fruit length phenotype. (B) Seed number per fruit. (C) Seed density. Student's t-test
757	was used for the statistical analyses. Different letters indicate significant difference (p<
758	0.005).
759	
760	Figure S3. Fruit length and seed number in ER family receptor mutants
761	(A) Fruit length (mm) and (B) seed number per fruit were analyzed in Columbia
762	background mutants. Tukey-Kramer's test was used for the statistical analyses. Different
763	letters indicate significant difference (p< 0.005).
764	
765	Figure S4. Fruit phenotype of STOMAGEN RNAi plants
766	(A) Fruit length (mm) and (B) seed number per fruit were analyzed. STOMAGEN RNAi
767	plants were generated [17]. Student's t-test was used for the statistical analyses. Different
768	letters indicate significant difference (p< 0.005).

769

770	Figure S5. Genetic interaction analysis between <i>er</i> and <i>epfl2</i> in Landsberg
771	(A) Fruit length (mm) and (B) seed number per fruit were analyzed in Landsberg
772	background mutants. L. er ER+ was used as for wild-type plants. Tukey-Kramer's test
773	was used for the statistical analyses. Different letters indicate significant difference (p<
774	0.005).
775	
776	Figure S6. Generation of <i>epfl2</i> knockout mutant in Col background by
777	CRISPR/Cas9
778	(A) Design of sgRNA. Boxes and lines indicate exons and introns, respectively. Green
779	and white boxes indicate coding regions corresponding to mature peptide and 3'
780	untranslated region (UTR), respectively. Arrowheads indicate the position of sgRNA1
781	and sgRNA2. (B) Sequences of newly isolated epfl2 mutant alleles. Black bars indicate
782	the positions of sgRNA and red bars indicate the positions of protospacer adjacent motif
783	(PAM), respectively. (C) Leaf margin phenotype of <i>epfl2</i> mutant alleles. Seventh true
784	leaves were photographed according to $[13]$. Scale bars = 1 cm.

785

786	Figure S7. Fruit phenotype of <i>epfl2</i> mutants
787	(A) Fruit length (mm) and (B) seed number per fruit were analyzed. Student's t-test was
788	used for the statistical analyses. Different letters indicate significant difference (p<
789	0.005).
790	
791	Figure S8. Genetic analysis of <i>epfl2</i> and ER family receptors: Fruit length and seed
792	number phenotypes
793	Double mutant analysis of <i>epfl2-2; er-105</i> in fruit length (A) and seed number per fruit
794	(B). Triple mutant analysis of <i>epfl2-2; erl1-2; erl2-1</i> in fruit length (C) and seed number
795	per fruit (D). Tukey-Kramer's test was used for the statistical analyses. Different letters
796	indicate significant difference (p< 0.005).

797

798 Figure S9. Fruit phenotype of *pDRN::EPFL2* plants

(A) Fruit length (mm) and (B) seed number per fruit were analysed. Student's t-test was

800 used for the statistical analyses. Different letters indicate significant difference (p<

801 0.005).

802

803 Figure S10. Expression pattern of TMM

pTMM::GUS expression in stage 5-10 flower buds (A), stage 11 flower (B) and stage 12

805 flower (C). Scale bar = 2 mm.

806

807 Figure S11. Evaluation of recombinant peptide bioactivity based on stomatal

808 density

809 Representative images of epidermis after peptides and mock treatments in wild-type

810 (A-D) and *tmm-KO* mutant (E-H). Scale bar = $100 \mu m$. (I) Quantification of stomatal

811 number per 0.2 mm². Each treatment were compared to mock treatment. Dunnett's test

812 was used for the statistical analyses. A value of p < 0.005 was considered as significant.

813

814 Figure S12. Quantitative interaction analyses between EPFLs and ER-family

- 815 receptors by using ITC
- 816 Isothermal titration calorimetry of the ERECTA family receptor domains with EPFL2

817	(A-C) and EPFL9 (D-F). 18 injections of 2μ L of peptide (50 μ M) were titrated into 280
818	μL of the receptor domain (5 $\mu M)$ at a stirring rate of 750 rpm. The experiment was
819	performed at 25°C. The thermograms show the detected peaks of the heat change after
820	each injection (upper panel), the integrated values were subjected to either the "one
821	binding site" (A-E) fitting algorithm of the Microcal ITC-ORIGIN software, or the "two
822	binding sites" algorithm (F). Each square represents the integrated value of the
823	corresponding peak and the line resembles the yielded fitting curve after chi ²
824	minimization (lower panel). The table lists the calculated Kd values for each interaction
825	with the theoretical stoichiometry (G).
826	

827 Supplemental Movie 1. Expression pattern of EPFL2 using two photon microscopy.

828 A z series of stage 9-10 pistil expressing H2B:TdTomato under the control of EPFL2

- 829 promoter. Images were acquired with 1 µm intervals by using two photon microscopy
- 830 (Nikon A1R) with 1000 nm excitation.
- 831

832 Supplemental Movie 2. Expression pattern of EPFL2 using ClearSee and confocal

833 microscopy.

- A z series of ClearSee treated stage 9-10 pistil expressing H2B:TdTomato under the
- 835 control of EPFL2 promoter. Images were acquired with 1 µm intervals by LSM880 with
- 836 561 nm excitation.

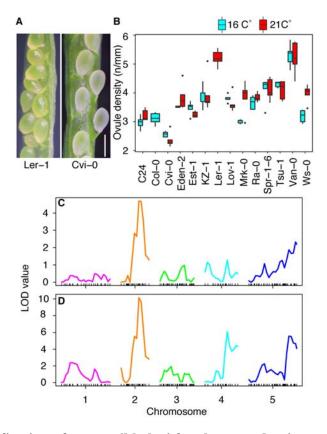


Figure 1. Identification of responsible loci for the reproductive traits. (A) Image of seed density in L. *er* (left) and Cvi-0 (right). Bar = 1 mm. (B) Natural variation analysis on seed density (seed number/fruit length (mm)) phenotype at 16° C (cyan) and 21° C (red). Fourteen selected representative accessions are presented. See the supplementary figure 1 for the phenotype of all accessions. (C) QTL analysis using L. *er* x Cvi-0 recombinant inbred lines [45]. (D) QTL re-analysis with ER as a cofactor. X and Y axes indicate chromosome position and LOD values, respectively.

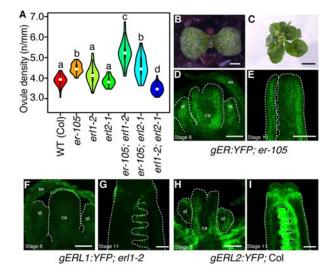


Figure 2. Genetic and expression analysis of ER family receptors

(A) Seed density (seed number/fruit length (mm)). 40 fruits were measured from 3 plants in each genotype. (B) Two weeks old *er-105; erl1-2; erl2-1* plant. (C) Six weeks old *er-105; erl1-2; erl2-1* plant. Expression patterns of ER, ERL1 and ERL2 in stage 8 flower (D, F, H) or later stage (E, G, I) of developing pistils. se, st, ca, v and r indicate sepals, stamens, carpels, valve, replum, respectively. (D, F, H) and (E, G, I) share same scales, respectively. Scale bar = 1 mm (B), 5 mm (C) and 50 μ m (D, E, F, G, H, I). Tukey-Kramer's test was used for the statistical analysis. Different letters indicate significant difference (p< 0.005).

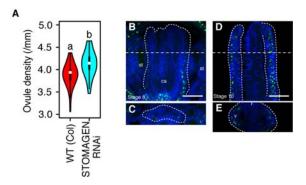


Figure 3. Identification of EPFL9 as a potential ligand for ER

(A) Seed density (seed number/fruit length (mm)). 40 fruits were measured from 3 plants in each genotype. (B-E) Expression pattern of EPFL9 at stage 8 flower (B, C) and stage 9 flower (D, E). Transverse cross section (C, E) were obtained along the lines in (B) and (D). st, ca, v and r indicate sepals, stamens, carpels, valve, replum, respectively. Histone H2B fused EGFP was used as a reporter. Bar = 50 μ m. Student's t-test was used for the statistical analysis. Different letters indicate significant difference (p< 0.005).

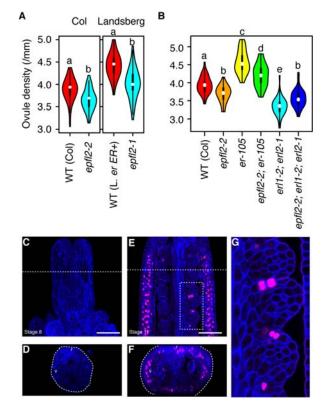


Figure 4. Identification of EPFL2 as a patterning regulator of ovule initiation

(A) Seed density (seed number/fruit length(mm)). 40 fruits were measured from 3 plants in each genotype. (B) Genetic interaction analysis either with *er-105* or *erl1-2; erl2-1*. (C-G) Expression patterns of EPFL2. Histone H2B fused TdTomato was used as a reporter. Developing pistil in stage 8 flower (C, D), and stage 9 flower (E, F). (G) A magnified view of a white box in (E). Transverse cross section (D, F) were obtained along the lines. v and r indicate valve and replum, respectively. Bar = 100 μ m. Student's t-test was used for the statistical analyses (A) and Tukey-Kramer's test was used for the statistical analyses (C, D). Different letters indicate significant difference (p< 0.005).

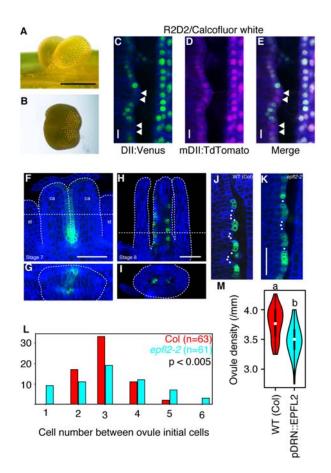


Figure 5. Disrupted regular patterning in ovule spacing in *epfl2* and ectopic expression of EPFL2

(A, B) Ovule twinning phenotype in *epfl2-2*. (C-E) R2D2 expression in developing ovule primordia. Arrow heads indicate auxin maxima. (F, G) Expression pattern of *DRN* before acquiring ovule identity. (H, I) Expression pattern of *DRN* after arising ovule primordia. (J) Initiation of ovule primordia in wild-type (*pDRN::GFP*; Col) plants and (K) *epfl2* mutant (*pDRN::GFP*; *epfl2-2*) plants. (L) Quantification of cell number between ovule initial cells. Counted cells were indicated by dots in (J) and (K) as an example. F-test was used for the statistical analysis. (M) Seed density (seed number/fruit length (mm)) phenotype in *pDRN::EPFL2*; Col transgenic plants. Student's t-test was used for the

statistical analysis. Different letters indicate significant difference (p< 0.005). Scale bar =

500 µm (A, B), 50 µm (C, D, E, F, H), 20 µm (J, K).

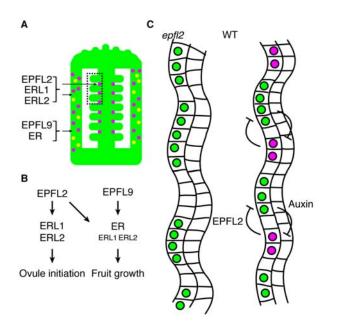


Figure 6. Coordination of fruit growth and ovule patterning by two peptide-receptor pairs

(A) Graphical summary of expression patterns of EPFL2 (magenta) and EPFL9 (yellow).(B) Two pathways control ovule initiation pattern and fruit growth to archive coordinated fruit growth. (C) The interaction between EPFL2 (magenta) and auxin (green) establishes regular ovule pattern in placenta.