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ABSTRACT9

Chromosomal inversions are associated with reproductive isolation and adaptation in insects such as
Drosophila melanogaster and the malaria vectors Anopheles gambiae and Anopheles coluzzii. While
methods based on read alignment have been useful in humans for detecting inversions, these methods
are less successful in insects due to long repeated sequences at the breakpoints. Alternatively, inversions
can be detected using principal component analysis (PCA) of single nucleotide polymorphisms (SNPs).
We apply PCA-based inversion detection to a simulated data set and real data from multiple insect
species, which vary in complexity from a single inversion in samples drawn from a single population to
analyzing multiple overlapping inversions occurring in closely-related species, samples of which that
were generated from multiple geographic locations. We show empirically that proper analysis of these
data can be challenging when multiple inversions or populations are present, and that our alternative
framework is more robust in these more difficult scenarios.
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INTRODUCTION21

Chromosomal inversions play an important role in ecological adaptation by enabling the accumulation22

of beneficial alleles (Love et al. (2016); Fuller et al. (2018); Prevosti et al. (1988)) and reproductive23

isolation (Noor et al. (2001)). For example, the 2La inversion in the Anopheles gambiae complex has24

been associated with thermal tolerance of larvae (Rocca et al. (2009)), enhanced desiccation resistance in25

adult mosquitoes (Gray et al. (2009)), and susceptibility to at least one species (Plasmodium falciparum)26

of malaria (Riehle et al. (2017)).27

Inversion analysis contains three sub-problems: detection (is an inversion present?), localization of an28

inversion along a chromosome arm, and determining the orientations of inversions present in each sample29

(karyotyping). Most techniques can perform a subset of these tasks, but not all of them. For example,30

some insects such as Drosophila melanogaster and the mosquito Anopheles gambiae have large polytene31

chromosomes, which can be seen directly under a microscope. This enables detection and karyotyping of32

previously characterized inversions (Lobo et al. (2010); Sharakhov et al. (2006); George et al. (2010)).33

Computational approaches developed for model organisms such as human – or species without visible34

chromosomes including many other insects – are generally based on sequencing large DNA fragments35

from alternative karyotypes. Specifically, inversion breakpoints relative to a known reference genome can36

discovered by checking for cases where either mate-pair or long-read sequence data align unexpectedly37

(e.g., Zhu et al. (2017); Corbett-Detig et al. (2012); Hormozdiari et al. (2009); Chen et al. (2009); Suzuki38

et al. (2014); Zhu et al. (2018)). Breakpoints in Anopheles mosquitoes are characterized by long, repeated39

sequences (Sharakhov et al. (2006); Lobo et al. (2010)), however, which has prohibited break point40

detection using these existing sequence alignment-based methods (Zhu et al. (2017, 2018)).41

An alternative approach that can use single-nucleotide polymorphism (SNP) data would be even42

more attractive because it would not require specialized sequencing (e.g., long reads generated from43

high molecular weight DNA). SNP data are used for a wide range of analyses and are inexpensive to44

generate using commonly-available next-generation sequencing (NGS) techniques. Prior work has used45

Principal Component Analysis (PCA). For example, PCA of SNP data is widely used in population46
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genetics to visualize the relationships between samples (Neafsey et al. (2010)), correcting for stratification47

in genome-wide association studies (Price et al. (2006)), and with clustering to determine population48

structure (Lee et al. (2009); Patterson et al. (2006)).49

Inversion differences within a population can also appear as clusters in PCA projections (Ma and50

Amos (2012); Ma et al. (2014)), which has motivated computational detection based on characterizing51

this observed cluster structure (Cáceres and González (2015)). Because not all data induce a clear pattern52

in PCA projection plots, we were motivated to develop an alternative method based on single-SNP53

association tests (see Nowling and Emrich (2018c)). PCA is first performed on the entire set of SNPs54

from a single chromosome. For each PC, single-SNP association tests are performed against the samples’55

projected PC coordinates. The spatial relationships of the associations are then visualized with Manhattan56

plots to reveal inversions. We applied this method to 34 An. gambiae and An. coluzzii samples (from57

Fontaine et al. (2015)) from four geographic locations. No clear cluster structure was distinguishable58

due to small sample sizes and confounding factors, but our method still was able to successfully detect59

and localize a major inversion (2La, confirmed against experimental karyotyping labels) and multiple60

inversions on 2R.61

Here, we focus on factors that we found confound PCA-based cluster analysis. We note that prior62

work (see Ma and Amos (2012); Cáceres and González (2015)) focus on human genomes, which tend63

to be easier for making inferences. In support of this, we use invertFREGENE to simulate and evaluate64

an ideal situation with a single population and a single inversion. Using Drosophila and Anopheles data,65

however, provides test cases for evaluating large inversion detection when the biology is not as clear. For66

example, the 198 Drosophila melanogaster fly samples from the Drosophila Genetics Reference Panel67

2 (DGRP2) (Mackay et al. (2012); Huang et al. (2014)) include multiple, overlapping inversions on the68

3R chromosome arm. Anopheles data have been previously analyzed with PCA and found to cluster69

based on combinations of inversion karyotype, species, and geography (Fontaine et al. (2015); Neafsey70

et al. (2010); Miles et al. (2016); Nowling and Emrich (2018c)). This allows using 150 Burkina Faso An.71

gambiae and An. coluzzii mosquito samples to look at the effect of species–inversion interactions (Miles72

et al. (2016)), and the re-analysis of the 34 An. gambiae and An. coluzzii samples (from Fontaine et al.73

(2015)) to look more deeply at species–population–inversion interactions.74

We confirm that identification and localization of inversions using PCA can be an easier task because75

the clustering required for karyotyping is not always clear. For example, Cáceres and González used76

Gaussian mixture models to cluster samples from PCA projections and then performed a likelihood-ratio77

test based on the presence of three clusters corresponding to the three expected inversion orientations78

(Cáceres and González (2015)). The clusters obtained from these well-characterized insect data with79

experimentally determined karyotypes, however, are not always the three expected inversion orientations.80

Using our framework, we then tried performing single-SNP association tests against the cluster labels81

(instead of against the projected PC coordinates) to determine if they are more robust. Although we could82

accurately infer karyotypes, we also remain susceptible to data with either multiple inversions or from83

closely related species. This is in some sense expected given the role of PCA in population inference84

and other more traditional population genetics analysis (Lee et al. (2009); Patterson et al. (2006); Price85

et al. (2006); Neafsey et al. (2010)). For these more complex cases, we show that populations need to be86

analyzed individually and care must be taken when choosing which PCs and cluster number to use. We87

show that our PC-SNP association tests are easier to use and more robust in large part since they do not88

depend on accurately clustering samples to detect inversions like other PCA-based approaches.89

METHODS90

Data Sets91

We use invertFREGENE for the simulated data set (O’Reilly et al. (2010)). We use default parameters for92

the mutation rate (2.3×10−7), recombination rate (1.25×10−7), proportion of crossovers in recombina-93

tion hot spots (0.88), length of crossover hot spots (2000), per-base gene-conversation rate (4.5×10−8),94

and gene-conversation length (500). We simulate 1000 2Mb haploid chromosomes (created from a single95

founder) in one population and no inversions for 10,000 generations to equilibrate. We introduce an96

inversion from 0.75 Mb to 1.25 Mb and continued the simulation for another 10,000 generations (or until97

the inversion frequency reached 50%). We set the MaxFreqOfLostInv parameter to 10% and set the output98

mode to “sequence” mode. We modify invertFREGENE to output inversion orientations of the haploids.99

We wrote a custom script in Python to randomly sample haploids without replacement to produce diploid100
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individuals and write a VCF.101

We also use three real and publicly-available data sets. For the samples from Fontaine et al. (2015),102

we retrieve the VCF files from the Dryad Digital Repository (Fontaine et al. (2014)), sample IDs from the103

supplemental materials of the paper, and use VCFtools (Danecek et al. (2011)) to remove all but the 34104

Anopheles gambiae and Anopheles coluzzii samples. Similarly, we retrieve VCF files and sample IDs for105

the phase 1 AR3 data release from the 1000 Anopheles genome project web site and use VCFtools to106

remove all but the 150 Burkina Faso samples.107

The Drosophila samples required more processsing. We retrieve the VCF file for the Drosophila108

Genetics Reference Panel v2 (Huang et al. (2014); Mackay et al. (2012)) from the project web site. We109

use VCFtools to create a separate VCF file for each chromosome arm (2L, 2R, 3L, 3R, and X). We remove110

seven samples (lines 348, 350, 358, 385, 392, 395, and 399) that appear to be outliers and then filter each111

VCF file to only keep biallelic SNPs.112

Feature Matrix Encoding113

Assume that we have N samples with V positions with biallelic variants. Each position has a reference114

allele and an alternative allele, and at each position, each sample has one of three genotypes (homozygous115

reference, homozygous alternate, or heterozygous).116

We encode the variants as a feature matrix X with dimensions N×3V . If sample i has the homozygous117

reference genotype at position k, then we set Xi,3k+1 = 1. If sample i has the homozygous alternate118

genotype at position k, then we set Xi,3k+2 = 1. If sample i has the heterozygous genotype at position k,119

then we set Xi,3k+3 = 1. If the genotype of sample i is unknown at position k, then we do nothing.120

Principal Component Analysis (PCA)121

Principal component analysis (PCA) of the feature matrix X produces a 3V ×P matrix W of principal
components and a N ×P matrix T of projected coordinates for the samples such that:

T = XW

As directly computing PCA would involve computing a 3V × 3V co-variance matrix, we use a122

randomized PCA method as implemented in Scikit Learn (Pedregosa et al. (2011)). Whitening is applied123

to the resulting PCs. We use plots of the explained variance ratios to select relevant PCs.124

Inferring Karyotypes with K-Means Clustering125

Sample karyotypes are inferred by clustering samples using their their projected coordinates (T) from126

PCA. Clustering is performed with the k-means clustering algorithm as implemented in Scikit Learn127

(Pedregosa et al. (2011)). We choose the number of clusters K by clustering the samples with 1-6 clusters,128

plotting the inertia (or sum-of-squared errors), and visually identifying the “elbow” in the plot. We use129

the default Scikit Learn settings of 10 runs.130

The cluster labels can be represented by a N×K matrix C. Each sample i belongs to one of K clusters,131

indicated by a value of 1 at position Ci, j where 1 ≤ j ≤ K.132

In cases where we know the karyotypes, we can evaluate the accuracy of the inferred karyotypes from133

clustering. We generate a confusion matrix for the cluster assignments versus the known karyotypes.134

From the matrix, we calculate the balanced accuracy of predicting the clusters from the known karyotypes.135

This set up penalizes situations where the number of clusters is larger than the number of real karyotypes.136

Balanced accuracy re-weights the accuracy for each class so that each class has equal weight to avoid137

over-estimating accuracy if poor predictions happen in minority classes.138

Review of Association Testing139

We review associating testing with Logistic Regression models. Likelihood-ratio tests can be used to140

test for association between variables. The null hypothesis is that knowing the independent variable141

does not improve the accuracy of predicting the dependent variable, while the alternative hypothesis is142

that knowing the value of the independent variable does improve accuracy of predictions because the143

independent variable is associated with the dependent variable.144

In our case, we use a Logistic Regression model, which is appropriate when the independent variable145

is categorical. The equation for a Logistic Regression model is given by:146

P(yi) =
1

1+ exp(−βXi +β0)
(1)
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where yi is value of the dependent variable for sample i, Xi is a vector of values for the independent147

variables for sample i, and β0 is the intercept.148

To evaluate the hypothesis, we compare predictions from a pair of models. The alternative model149

contains the same dependent variables variables as the null model plus the additional independent150

variable(s) being tested against the dependent variable for association. In our case, the null model151

only contains an intercept (no independent variables) and the alternative model will contain a single152

independent variable. In cases where the output variable is categorical rather than binary, a one-versus-all153

scheme is used. One pair of models is trained for each category and predicts the probability that the value154

of the independent variable is equal to that category.155

After fitting the models, we use the models to predict the independent variable for the samples. From
the predictions, we calculate the likelihood for each model. The likelihood for the multinomial Logistic
Regression model is given by (Hosmer Jr. et al. (2013)):

L =
N

∏
i=1

∏
g

P(yi,g)
yi,g (2)

where g is the number of categories the dependent variable can take on.156

To perform the likelihood-ratio test, the difference G between the log likelihoods of the two sets of
models is calculated by:

G =−2(logL0 − logLΛ) (3)

where L0 and LΛ are the likelihoods of the null and alternative models, respectively.157

The p-value for the difference in log likelihoods is calculated using the χ2 distribution:

p = P[χ2(d f )> G] (4)

where d f is the difference in the number of degrees of freedom (weights) between the two models.158

Scikit Learn is used; we train the models using Stochastic Gradient Descent (SGD) for 10,000 epochs,159

the log likelihood, L2 regularization using the SGDClassifier class. All other parameters are left at160

their defaults. The log likelihoods are calculated with the log loss function (normalize set to False).161

We implement functionality for calculating G and estimating the p-value using Scipy.162

Localizing Inversions with Cluster-SNP Association Tests163

After karyotypes are inferred with clustering, we perform association tests between each SNP and the164

samples’ cluster labels. The cluster labels are used as the independent variables (y), while the genotypes165

of the SNPs are used as the independent variables (X).166

It is common for genotypes in insect SNP data to be unknown (uncalled). We use our approach from167

Nowling and Emrich (2018a,b) to adjust the association tests to avoid bias. For fitting the models, we168

deterministically up-sample the samples (one copy for each possible genotype). In particular, if we have169

M genotypes, we create M copies of each sample. (In our case, M = 3 since we are working with biallelic170

SNPs with three genotypes.) If the genotype is known, the copies have the same genotype as the original.171

Otherwise, we make the conservative assumption that there is an uninformative (uniform) prior over the172

genotypes and impute the copies so that there is a one-to-one relationship between the copies and possible173

genotypes. Additionally, we fix the intercept to the class probabilities and did not allow it to be changed174

during fitting. For prediction and evaluation of the likelihood, we use original input data.175

Localizing Inversions with PC-SNP Association Tests176

In Nowling and Emrich (2018c), we described a second approach for localizing inversions in which177

association tests are performed between each SNP and the samples’ PC projected coordinates (T ) from178

PCA. A single association test is performed for each combination of principal component (PC) j and SNP179

position k, using the coordinate Ti, j for sample i along PC j as the independent variable. As the SNPs are180

encoded as categorical variables, three dependent variables (one for each genotype) are used for each SNP.181

We employ three Logistic Regression models, one for each genotype, in a one-versus-all scheme.182

As the SNPs are the dependent variables, we need a different strategy for handling missing genotypes.183

We review the method we proposed in Nowling and Emrich (2018c). We deterministically up-sample184

the samples (one copy for each genotype). In particular, if we have M genotypes, we create M copies185
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of each sample. (In our case, M = 3 since we are working with biallelic SNPs with three genotypes.)186

If the genotype is known, the copies have the same genotype as the original. Otherwise, we make the187

conservative assumption that there is an uninformative (uniform) prior over the genotypes and impute the188

copies so that there is a one-to-one relationship between the copies and possible genotypes. We also fix189

the intercept to the class probabilities and did not allow it to change during fitting. Note that unlike the190

approach for the cluster-SNP association tests, the up-sampled data are used for both fitting the models191

and in predictions for the calculations of the likelihoods.192

Since we increased the number of samples, we need to weight the samples so that the calculated
p-values are consistent with the original number of samples. The modified likelihood function is then:

L =
N

∏
i=1

∏
g

P(yi,g)
yi,g/M (5)

Software Implementation193

We implement our method in Asaph, our open-source toolkit for variant analysis. Asaph is implemented in194

Python using Numpy / Scipy (Walt et al. (2011)), Matlotlib (Hunter (2007)), and Scikit-Learn (Pedregosa195

et al. (2011)) and is available at https://github.com/rnowling/asaph under the Apache196

Public License v2.197

RESULTS198

Analysis of Simulated Inversions199

We first simulate 500 diploid individuals with a single 2 Mb chromosome containing a single inversion200

spanning 0.75Mb to 1.25Mb using invertFREGENE (O’Reilly et al. (2010)). The inverted and standard201

homozygotes each corresponded to 25% of the samples, while 50% of the samples are heterozygous.202

Explained variance ratios for the PCA of the invertFREGENE data indicates that three PCs are needed203

to explain most of the variation, but cluster structure was only present in the projection plot for PCs 1204

and 2 (see Figure 1a-c). K-means identifies three clusters (see Figure 1d). The balanced accuracy for205

predicting clusters assignments from karyotype labels was 100.0%, which indicates a perfect one-to-one206

relationship between the three clusters and three inversion karyotypes. Significantly, a Manhattan plot207

of the SNPs’ associations with the cluster labels indicate the presence of the inversion in the expected208

location (see Figure 1e).209

These simulations confirmed that PCA and k-means clustering of SNPs can be used to infer inversion210

karyotypes by validating the assigned clusters against the known karyotype labels. Further, association211

tests between the clusters and SNPs can localize the inversion along the chromosome.212

Analysis of Drosophila Inversions213

Samples in the Drosophila Genetics Reference Panel 2 (DGRP2) data contain multiple inversion kary-214

otypes and are drawn from a single population. Only five inversions are present in five or more samples215

(Huang et al. (2014)). The 2L and 2R chromosome arms each contain a single inversion (ln(2L)t,216

ln(2R)NS) and all three orientations are present for each inversion. Three inversions (ln(3R)P, ln(3R)K,217

and ln(3R)Mo) are present on the 3R chromosome arm. The three inversions overlap and the inverted218

orientations are nearly mutually exclusive in the DGRP2 samples (see Tables 1–3).219

The explained variance ratios from PCAs of the Drosophila 2L and 2R SNPs indicates that two PCs220

per arm are needed to explain most of the variation. In each case, k-means identifies three clusters. The221

Manhattan plots of the SNPs’ associations with the cluster labels indicates that the clusters are capturing222

the inversions (see Figures 2d and 3d). The clusters are strongly associated with the karyotypes labels;223

balanced accuracies for predicting the cluster assignments from the karyotype labels are 93.3% (In(2L)t)224

and 94.4% (In(2R)NS), respectively.225

The inversion story for the 3R chromosome arm is more complicated. Three inversions (In(3R)P,226

In(3R)K, and In(3R)Mo) on 3R are present in more than five of the DGRP2 samples (Huang et al. (2014)),227

and although these three inversions overlap the inverted orientations are nearly mutually exclusive in the228

DGRP2 samples (see Tables 1–3). For these data PCA and clustering are not able to accurately karyotype;229

two PCs explained most of the variation (see Figure 4a) and k-means clustering using PCs 1 and 2 finds230

three clusters (see Figure 4c), but the clusters do not correlate with the orientations of any single inversion.231
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Balanced accuracies for predicting clusters assignments from karyotype labels are 55.0% (In(3R)K),232

60.7% (In(3R)mo), and 43.3% (In(3R)p).233

SNP-cluster association tests, however, are able to localize the region on 3R containing the In(3R)K234

and In(3R)Mo inversions but are unable to disambiguate the overlapping inversions. In the Manhattan235

plots, SNPs associated with the clusters are localized to a large region starting at 15 Mbp and span the rest236

of the arm, and as such the region appears as to contain one large inversion (see Figure 4d).237

Association tests between the PCs and karyotype labels offer an explanation. The first PC divides the238

two highest-frequency orientations, while the second PC divides the third highest-frequency orientation239

from the the rest. With multiple mutually-exclusive inversions, however, the two highest-frequency,240

mutually-exclusive orientations (homozygous inverted In(3R)Mo and heterozygous In(3R)K) do not241

belong to the same inversion. Hence, 3R-PC 1 divides the samples with the homozygous inverted242

orientation of In(3R)Mo and heterozygous inversion of In(3R)K from the rest. As a result, PCA methods243

are not successful on 3R because the results could be interpreted computationally as a single inversion244

when given these three mutually-exclusive but overlapping inversions.245

Analysis of inversions found in less closely related samples246

We also analyze Burkina Faso Anopheles gambiae and Anopheles coluzzii samples from the 1000247

Anopheles genomes project. The samples samples were karyotyped for the 2La and 2Rb inversions. Not248

all karyotypes are present for the 2La inversion, however, which complicates detection and karyotyping249

because none of the samples are homozygous for the standard 2La karyotype and only a single An. coluzzii250

sample is heterozygous (see Table 5).251

We repeat the approach of inferring karyotypes to the 2L and 2R chromosome arms of a total of 150252

Burkina Faso Anopheles gambiae and Anopheles coluzzii samples. PCA of the samples detects differences253

between species and inversion karyotypes as previously reported (see Figures 6a and 5a). Because the254

resulting clusters combine species and karyotype, isolation of the inversion effects and localization of the255

inversions is difficult using this method.256

We therefore divide the samples by species and perform PCA on each species separately. Since only a257

single An. coluzzii sample is inverted for 2La, none of the PCs had large explained variance ratios and258

we are unable to use PCA to karyotype these An. coluzzii samples or localize the 2La inversion. For An.259

gambiae, k-means identifies two clusters, corresponding to the homozygous inverted and heterozygous260

orientations (balanced accuracy of 100.0%). The location of the 2La inversion is clearly indicated based261

on a Manhattan plot generated from the association test results (see Figure 5f).262

For 2R, two PCs explains most of the variance for the An. coluzzii samples, while one PC explains263

most of the variance for the An. gambiae samples; in both cases, we find that using only the first PC264

produces the best clustering results. K-means identifies two clusters of An. gambiae samples, which265

correlate perfectly with the homozygous inverted and heterozygous orientations, and the balanced accuracy266

for predicting clusters assignments from karyotype labels is also 100.0% for An. gambiae and An. coluzzii267

even though the two homozygous standard samples are not detected as a separate cluster. Manhattan268

plots generated from the SNP-cluster association results successfully localizes the 2Rb inversion in both269

species (see Figures 6f and 6j).270

Notably, the Manhattan plots suggest that the 2Rc inversion (Main et al. (2015)) may also be present271

in some of the An. coluzzii samples even though they were not karyotyped for 2R inversions other than272

2Rb. When the 2Rb and 2Rc inversions appear together, they are designated as the 2Rbc system (Caputo273

et al. (2014)). The presence of 2Rc (2Rbc) in some of the An. coluzzii samples may explain why the274

karyotypes from the two species did not cluster together along PC 2 when the 150 samples are analyzed275

together.276

Multiple Inversions, Multiple Species, Multiple Populations277

We apply our approach to the analysis of 34 Anopheles gambiae and Anopheles coluzzii samples from278

four geographic locations (Burkina Faso, Cameroon, Mali, and Tanzania) (Fontaine et al. (2015)). These279

samples were karyotyped for the 2La inversion, but not inversions on the 2R chromosome arm.280

The 2La karyotype labels between the 34 Anopheles and 150 Burkina Faso Anopheles samples may281

not be consistent: 2La homozygous inverted orientation is not observed among the 7 Burkina Faso samples282

from the 34 total Anopheles samples, while the 2La homozygous standard orientation is not observed283

among the 150 Burkina Faso Anopheles samples (see Tables 5 and 8).284
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The 2La inversion forms are associated with both species and locations. Samples from Cameroon285

are primarily homozygous for the inverted orientation, while samples from Burkina Faso and Mali are286

primarily homozygous for the standard orientation (see Table 7). Five samples from across locations287

are heterozygous. All three orientations were observed in An. gambiae samples, while An. coluzzii288

samples are homozygous for either the standard or inverted orientations (see Table 8). Due in part to the289

small sample size, we conclude that the inversion karyotypes are not easily separated from the species or290

geographic location in this initial analysis.291

Two PCs explain most of the variance for the 2L SNPs. Using PC 1, k-means is able to identify three292

clusters. The balanced accuracy for predicting clusters assignments from karyotype labels is 100.0%.293

Manhattan plots from the SNP-cluster association tests successfully localizes the 2La inversion (see294

Figure 7).295

We also identify inversions on 2R (see Figure 8). Four PCs explain most of the variance. K-mean296

identifies three clusters using PCs 1 and 2. Association tests with the clusters labels from PCs 1 and 2297

identify potential inversions. There are multiple inversions (e.g., 2Rj, 2Rb, 2Rc, and 2Rj) on 2R, including298

several (e.g., 2Rbk, 2Rcu, 2Rbu, and 2Rd) that overlap (Main et al. (2015); Caputo et al. (2014)). The299

Manhattan plot shows associated SNPs in the 2Rj inversion region near the front of the chromosome arm.300

The second set of associated SNPs do not overlap entirely with the 2Rb inversion and could potentially301

belong to the 2Rbk or 2Rcu inversion systems (Caputo et al. (2014)). The eight An. gambiae samples302

from Mali formed one of the three clusters, suggesting that the potential inversions captured are present303

(or absent) predominantly in Mali.304

Three clusters are identified using PCs 3 and 4. The 2Rb inversion is present in the corresponding305

Manhattan plot, although not clearly. We re-clustered the samples separately for each PC. Two to three306

clusters are identified for each PC. The Manhattan plot for the PC 4 clusters reveals the 2Rb inversion307

clearly, while the Manhattan plot for the PC 3 clusters does not indicate an inversion. PC 4 captures the308

2Rb inversion, while PC 3 likely captures something other than an inversion. Although these samples are309

not karyotyped for 2R inversions, the presence of the 2Rb inversion is expected based on its presence in310

the larger 150 Burkina Faso set of samples.311

Comparison to PC-SNP Association Tests312

In previous sections, we evaluate PCA and clustering for inferring inversion karyotypes and association313

tests with the cluster labels for localizing inversions. We previously described an alternative approach314

in which association tests are performed directly against the projected PC coordinates (no intermediate315

clustering step) (Nowling and Emrich (2018c)). PC-SNP association tests are able to detect and localize316

inversions but unable to infer karyotypes. For completeness we re-analyze the above data using our317

alternative PC-SNP association test approach.318

For the cases with a single inversion and no population structure, the two methods are equal in their319

ability to localize inversions. The inversion in the invertFREGENE simulation is localized by PCs 1320

and 2 (see Figures 9a and 9b); PC 3 captures an unrelated effect. The Drosophila In(2L)t and In(2R)NS321

inversions are localized by the first PC for each chromosome arm (see Figures 10a and 9c); the second322

PCs capture differences between homozygous and heterozygous karyotypes (see Table 4), but do not323

localize the inversion.324

PC-SNP association tests are more robust to population structure and confounding factors. For the325

150 Burkina Faso samples, we observed that the PC 1 captures differences between species, while PC326

2 captures the inversions. Accordingly, association tests against the second PCs localize the 2La and327

2Rb inversions (see Figures 11b and 11d). For the 34 Anopheles samples, the 2La inversion is localized328

by association tests against 2L-PC 1 (see Figure 11a), the 2Rb inversion is localized by 2R-PC 4 (see329

Figure 11h), and as hypothesized earlier, 2R-PC 2 is capturing inversions what might be the 2Ru and330

2Rcu or 2Rbk inversion systems (see Figure 11d).331

Finally, we observe that the association tests against the projected coordinates do not resolve the332

ambiguity from the multiple overlapping inversions on the 3R chromosome arm of the 198 Drosophila333

samples. Only 3R-PC 1 appears to localize an inversion (see Figure 10e), and the enriched region appears334

as a single inversion.335
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DISCUSSION336

We evaluate PCA-based frameworks for detecting, localizing, and karyotyping inversions from SNPs.337

Although both approaches (cluster-SNP associations and PC-SNP associations) are practical and useful338

for identifying large inversions, there are trade offs. While the cluster-based approach is able to infer339

karyotypes, it requires choosing an appropriate combination of PCs and the right number of clusters. The340

second approach has fewer requirements but cannot infer karyotypes.341

When applied to simulated and real data (Drosophila 2L and 2R chromosome arms) with a single342

inversion and a single population, both methods readily detect and localize the inversions while the343

cluster-based approaches are able to correctly infer karyotypes.344

Sample data with more complicated inversions and population structure proved more challenging.345

While the Drosophila 3R chromosome arm has three overlapping and mutually-exclusive inversions,346

PCA only indicates one inversion with three karyotypes. Without prior knowledge of the karyotypes,347

the results from PCA could be misinterpreted. Using data with multiple, closely-related species, PCA348

analysis detects the differences in species as well as the inversions. We found it necessary to analyze349

the 150 Burkina Faso Anopheles samples separately by species to accurately resolve the karyotypes and350

inversions. We observe the expected 2Rb inversion, but we also observe the presence of the 2Rc inversion351

within some An. coluzzii samples. We note that not knowing a priori that the 2Rc inversion was present352

could explain why the karyotypes from the two species did not initially cluster as expected. For 2La, we353

are able to accurately resolve karyotypes for the An. gambiae samples, but we are not able to analyze the354

An. coluzzii samples as only one sample had a different karyotype.355

Our framework described here enables karotyping of inversions that had not been experimentally356

assessed. For example, by analyzing the 150 Burkina Faso Anopheles samples separately by species, we357

found potential 2Rc inverted regions in An. coluzzii (but not An. gambiae). Although the 34 Anopheles358

samples were not karyotyped for inversions on the 2R chromosome arm, we identify the potential presence359

of the 2Rj, and 2Rcu or 2Rbk inversions systems and their association with samples from Mali. Likewise,360

we confirm the presence of the 2Rb inversion in the 34 original Anopheles samples, which is expected361

given its presence in the Burkina Faso Anopheles samples.362

In summary, not all PCs identify inversions when confounding factors are present. This will affect363

methods based purely on cluster structure in PCA projection (e.g., Ma et al. (2014); Cáceres and González364

(2015))); by using association tests and Manhattan plots, our proposed framework is able to distinguish365

between PCs capturing inversions versus others. This is expected given the role of PCA in population366

inference and other tasks (Lee et al. (2009); Patterson et al. (2006); Price et al. (2006); Neafsey et al.367

(2010)). It also is somewhat expected given prior modifications to augment PCA-based inversion detection.368

For example, Cáceres, et al. also analyzed linkage disequilibrium (Cáceres and González (2015); Sindi and369

Raphael (2010); Cáceres et al. (2012)) to better localize the inversions predicted by their likelihood-ratio370

framework, which assumes there will be three PCA clusters. Real-world data, however, violate typical371

assumptions due to confounding factors (species differences, more than three or muddled clusters) or372

unobserved karyotypes (two clusters instead of three), and we provide concrete examples for future373

evaluation of SNP-based inversion detection. In cases where the choice of PCs and number of clusters is374

ambiguous, the visualization of the associations provided by our cluster-SNP association approach can375

guide the required choices, which we show using inversions on the 2R arm in the Anopheles samples.376

Further, if karyotyping is not needed, our approach based on PC-SNP association tests eliminates the377

requirement of clustering completely.378

CONCLUSIONS379

PCA-based frameworks can be used to detect, localize and karyotype inversions using only SNPs. We380

assess these approaches using data that varied in complexity from a single inversion in simulated samples381

to real sequencing data with multiple overlapping inversions, generated from multiple species and multiple382

geographic locations. Although we detect inversions on 2R in Anopheles data that had not been previously383

annotated, our analysis also confirms that PCA-based clustering can be affected by confounding factors,384

of which we present two actual manifestations for future SNP-based inversion detection assessment.385
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FIGURES390

Table 1. Co-occurrences of In(3R)Mo and In(3R)K Inversion Karyotypes in 198 Drosophila Samples

In(3R)Mo
Homo. Std. Hetero. Homo. Inv

In(3R)K
Homo. Std. 167 8 17

Hetero. 9 1 0
Homo. Inv 3 0 0

Table 2. Co-occurrences of In(3R)Mo and In(3R)P Inversion Karyotypes in 198 Drosophila Samples

In(3R)Mo
Homo. Std. Hetero. Homo. Inv

In(3R)P
Homo. Std. 169 9 17

Hetero. 6 0 0
Homo. Inv 4 0 0

Table 3. Co-occurrences of In(3R)K and In(3R)P Inversion Karyotypes in 198 Drosophila Samples

In(3R)K
Homo. Std. Hetero. Homo. Inv

In(3R)P
Homo. Std. 182 10 3

Hetero. 6 0 0
Homo. Inv 4 0 0

Table 4. Association Tests Between Principal Components and Inversion Karyotypes of Drosophila
Samples. PCA was performed separately for each chromosome, so the PC columns refer to the PCs for
the chromosome of the given inversion.

Comparison PC1 PC2
In(2L)t Inverted vs Not x
In(2L)t Homo. Inverted vs Rest
In(2L)t Hetero. vs Rest x

In(2R)ns Inverted vs Not x
In(2R)ns Homo. Inverted vs Rest
In(2R)ns Hetero. vs Rest x
In(3R)P Inverted vs Not
In(3R)P Homo. Inverted vs Rest
In(3R)P Hetero. vs Rest
In(3R)K Inverted vs Not
In(3R)K Homo. Inverted vs Rest
In(3R)K Hetero. vs Rest x x

In(3R)Mo Inverted vs Not
In(3R)Mo Homo. Inverted vs Rest x
In(3R)Mo Hetero. vs Rest
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Table 5. Occurrences of 2La Inversion Karyotypes By Species for 150 Burkina Faso Anopheles Samples

2La
Homo. Std. Hetero. Homo. Inv

An. coluzzii 0 1 68
An. gambiae 0 15 66

Table 6. Occurrences of 2Rb Inversion Karyotypes By Species for 150 Burkina Faso Anopheles Samples

2Rb
Homo. Std. Hetero. Homo. Inv

An. coluzzii 33 29 7
An. gambiae 2 24 55

Table 7. Occurrences of 2La Inversion Karyotypes By Location for 34 Anopheles Samples

2La
Homo. Std. Hetero. Homo. Inv

Burkina Faso 5 2 0
Cameroon 0 1 15

Mali 8 0 0
Tanzania 0 2 1

Table 8. Occurrences of 2La Inversion Karyotypes By Species for 34 Anopheles Samples

2La
Homo. Std. Hetero. Homo. Inv

An. coluzzii 3 0 8
An. gambiae 10 5 8

(a) Explained Variance
Ratios

(b) PCs 1 and 2 (c) PCs 3 and 4

(e) Cluster Associations(e) K-Means (PCs 1-2)

Figure 1. Analysis of SNPs from 500 Individuals Simulated with invertFREGENE with PCA,
Clustering, and Cluster-SNP Association Tests. (a) Explained variance ratios, (b–c) PCA projection
plots, and (d–f) Manhattan plots from Cluster-SNP association tests.
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(b) 2L, PCs 1 and 2

(d) Cluster Associations(c) K-Means (PCs 1-2)

(a) Explained Variance
Ratios

Figure 2. Analysis of 2L Chromosome Arm SNPs of 198 Drosophila Samples with PCA,
Clustering, and Cluster-SNP Association Tests (a) Explained variance ratios, (b) PCA projection plot,
(c) Inertia plot for K-Means clustering, and (d) Manhattan plots from Cluster-SNP association tests.
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(d) Cluster Associations

(b) 2R, PCs 1 and 2

(c) K-Means (PCs 1-2)

(a) Explained Variance
Ratios

Figure 3. Analysis of 2R Chromosome Arm SNPs of 198 Drosophila Samples with PCA,
Clustering, and Cluster-SNP Association Tests (a) Explained variance ratios, (b) PCA projection plot,
(c) Inertia plot for K-Means clustering, and (d) Manhattan plots from Cluster-SNP association tests.
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(b) 3R, PCs 1 and 2

(d) Cluster Associations(c) K-Means (PCs 1-2)

(a) Explained Variance
Ratios

Figure 4. Analysis of 3R Chromosome Arm SNPs of 198 Drosophila Samples with PCA,
Clustering, and Cluster-SNP Association Tests (a) Explained variance ratios, (b) PCA projection plot,
(c) Inertia plot for K-Means clustering, and (d) Manhattan plots from Cluster-SNP association tests.
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(b) 2L, PCs 1 and 2(a) Explained Variance
Ratios

(d) 2L, PCs 1 and 2
(An. gambiae)

(e) K-Means (PC 1)
(An. gambiae)

(c) Explained Variance
Ratios (An. gambiae)

(g) Explained Variance
Ratios (An. coluzzii)

(h) 2L, PCs 1 and 2
(An. coluzzii)

(f) Cluster Associations
(An. gambiae)

Figure 5. Analysis of 2L Chromosome Arm of 150 Burkina Faso Anopheles Samples with PCA,
Clustering, and Cluster-SNP Association Tests The samples clustered by species and karyotype, so
samples were divided and re-analyzed by species. (a) Explained variance ratios for all samples, (b) PCA
projection plot for all samples, (c) explained variance ratios for An. gambiae samples, (d) PCA projection
plot for An. gambiae samples, (e) Inertia plot for K-Means clustering of An. gambiae samples, (f)
Manhattan plots from Cluster-SNP association tests for An. gambiae samples, (g) explained variance
ratios for An. coluzzii samples, and (h) PCA projection plot for An. coluzzii samples. 15/21

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 15, 2019. ; https://doi.org/10.1101/736900doi: bioRxiv preprint 

https://doi.org/10.1101/736900
http://creativecommons.org/licenses/by-nd/4.0/


(b) 2R, PCs 1 and 2

(j) Cluster Associations
(An. coluzzii)

(f) Cluster Associations
(An. gambiae)

(a) Explained Variance
Ratios

(d) 2R, PCs 1 and 2
(An. gambiae)

(e) K-Means (PC 1)
(An. gambiae)

(c) Explained Variance
Ratios (An. gambiae)

(h) 2R, PCs 1 and 2
(An. coluzzii)

(i) K-Means (PC 1)
(An. coluzzii)

(g) Explained Variance
Ratios (An. gambiae)

Figure 6. Analysis of 2R Chromosome Arm of 150 Burkina Faso Anopheles Samples with PCA,
Clustering, and Cluster-SNP Association Tests The samples clustered by species and karyotype, so
samples were divided and re-analyzed by species. (a) Explained variance ratios for all samples, (b) PCA
projection plot for all samples, (c) explained variance ratios for An. gambiae samples, (d) PCA projection
plot for An. gambiae samples, (e) Inertia plot for K-Means clustering of An. gambiae samples, (f)
Manhattan plots from Cluster-SNP association tests for An. gambiae samples, (g) explained variance
ratios for An. coluzzii samples, (h) PCA projection plot for An. coluzzii samples, (i) Inertia plot for
K-Means clustering of An. coluzzii samples, and (j) Manhattan plots from Cluster-SNP association tests
for An. coluzzii samples.
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(d) Cluster Associations

(b) 2L, PCs 1 and 2

(c) K-Means (PC 1)

(a) Explained Variance
Ratios

Figure 7. Analysis of 2L Chromosome Arm of 34 Anopheles Samples with PCA, Clustering, and
Cluster-SNP Association Tests (a) Explained variance ratios, (b) PCA projection plot, (c) Inertia plot
for K-Means clustering, and (d) Manhattan plots from Cluster-SNP association tests.
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(e) PCs 3 and 4

(b) PCs 1 and 2

(a) Explained Variance
Ratios

(c) K-Means (PCs 1-2)

(h) K-Means (PC 3) (i) Cluster Associations
(PC 3)

(d) Cluster Associations
(PCs 1 and 2)

(j) K-Means (PC 4) (k) Cluster Associations
(PC 4)

(f) K-Means (PCs 3-4) (g) Cluster Associations
(PCs 3 and 4)

Figure 8. Analysis of 2R Chromosome Arm of 34 Anopheles Samples with PCA, Clustering, and
Cluster-SNP Association Tests The explained variance analysis indicates that first 3-4 PCs were
significant, so PCs 1 and 2 were analyzed followed by PCs 3 and 4. (a) Explained variance ratios, (b)
PCA projection plot for PCs 1-2, (c) Inertia plot for K-Means clustering (PCs 1-2), (d) Manhattan plots
from Cluster-SNP association tests for PCs 1-2, (e) PCA projection plot for PC 3 and 4, (f) Inertia plot for
K-Means clustering (PCs 3-4), (g) Manhattan plots from Cluster-SNP association tests for PCs 3-4, (h)
Inertia plot for K-Means clustering (PC 3), (i) Manhattan plots from Cluster-SNP association tests for PC
3, (j) Inertia plot for K-Means clustering (PC 4), and (k) Manhattan plots from Cluster-SNP association
tests for PC 4.
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(a) PC 1 (b) PC 2 (c) PC 3

Figure 9. Manhattan Plots from PC-SNP Associations for invertFREGENE Samples

(b) 2L, PC 2(a) 2L, PC 1

(d) 2R, PC 2(c) 2R, PC 1

(f) 3R, PC 2(e) 3R, PC 1

Figure 10. Manhattan Plots from PC-SNP Associations for 198 Drosophila Samples
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(b) 2L, PC 2(a) 2L, PC 1

(d) 2R, PC 2(c) 2R, PC 1

Figure 11. Manhattan Plots from PC-SNP Associations for 150 Burkina Faso Anopheles Samples
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(b) 2R, PC 1(a) 2L, PC 1

(d) 2R, PC 2(c) 2L, PC 2

(f) 2R, PC 3(e) 2L, PC 3

(h) 2R, PC 4(g) 2L, PC 4

Figure 12. Manhattan Plots from PC-SNP Associations for 34 Anopheles Samples
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