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Abstract

The Drosophila mushroom body exhibits dopamine dependent synaptic plasticity that underlies

the acquisition of associative memories. Recordings of dopamine neurons in this system have

identified signals related to external reinforcement such as reward and punishment. However,

other factors including locomotion, novelty, reward expectation, and internal state have also recently

been shown to modulate dopamine neurons. This heterogeneity is at odds with typical modeling

approaches in which these neurons are assumed to encode a global, scalar error signal. How is

dopamine dependent plasticity coordinated in the presence of such heterogeneity? We develop a

modeling approach that infers a pattern of dopamine activity sufficient to solve defined behavioral

tasks, given architectural constraints informed by knowledge of mushroom body circuitry. Model

dopamine neurons exhibit diverse tuning to task parameters while nonetheless producing coherent

learned behaviors. Our results provide a mechanistic framework that accounts for the heterogeneity

of dopamine activity during learning and behavior.

Introduction

Dopamine release modulates synaptic plasticity and learning across vertebrate and invertebrate

species1,2. A standard view of dopamine activity, proposed on the basis of recordings in the mam-

malian midbrain dopaminergic system, holds that dopamine neuron firing represents a “reward

prediction error,” the difference between received and predicted reward3. This view is consistent
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with models of classical conditioning experiments and with reinforcement learning algorithms that

learn to choose the most rewarding sequence of actions4. A frequent assumption in these models

is that the scalar reward prediction signal is globally broadcast to and gates the modification of

synaptic connections involved in learning. However, studies in both vertebrates and invertebrates

suggest that dopamine neuron activity is modulated by other variables in addition to reward predic-

tion error, and that this modulation is heterogeneous across populations of dopamine neurons5.

Early studies in arthropods identified roles for dopamine in a variety of functions6–11. In Drosophila,

both memory12 and other functions including locomotion, arousal, sleep, and mating have been as-

sociated with dopamine signaling11. Associative olfactory learning in Drosophila requires a central

brain area known as the mushroom body13–15, and many studies of dopamine neurons innervating

this area have focused on activity related to reward and punishment and its roles in the formation

of appetitive and aversive memories16–22. In the mushroom body, Kenyon cells (KCs; green neu-

rons in Fig. 1A) conveying sensory information, predominantly odor-related signals, send parallel

fibers that contact the dendrites of mushroom body output neurons (MBONs; black neurons in Fig.

1A). The activation of specific output neurons biases the organism toward particular actions23,24.

Output neuron dendrites define discrete anatomical regions, known as “compartments,” each of

which is innervated by distinct classes of dopaminergic neurons (DANs; magenta neurons in Fig.

1A). If the Kenyon cells and dopamine neurons that project to a given output neuron are both active

within a particular time window, KC-to-MBON synapses are strengthened or weakened depending

on the relative timing of Kenyon cell and dopamine neuron activation25–28. The resulting synaptic

modifications permit flies to learn and update associations between stimuli and reinforcement.

In addition to classical reward and punishment signals, recent studies have shown that variables in-

cluding novelty29, reward prediction30–32, and locomotion-related signals33 are encoded by mush-

room body dopamine neurons. In mammals, dopamine signals related to movement, novelty and

salience, and separate pathways for rewards and punishment have also been identified in midbrain

regions5,34–42. These observations call for extensions of classic models that assume dopamine

neurons in associative learning centers are globally tuned to reward prediction error43. How can

dopamine signals gate appropriate synaptic plasticity and learning if their responses are modulated

by mixed sources of information?

To address this question, we develop a modeling approach in which networks that produce dopamine
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signals suited to learning a particular set of behavioral tasks are constructed. Our key methodolog-

ical advance is to augment standard recurrent neural network models, which employ fixed synaptic

weights to solve tasks after optimization44, with synapses that exhibit fast dopamine-gated plasticity

via an experimentally determined plasticity rule28. We employ a “meta-learning” approach involv-

ing two phases45 (Supplemental Fig. 1). First, we optimize the network connections responsible

for producing suitable learning signals in dopamine neurons. Next, after these connections are

fixed, we examine the network’s behavior on novel tasks in which learning occurs only via biologi-

cally plausible dopamine-gated plasticity. Due to the well-characterized anatomy of the mushroom

body and knowledge of this plasticity rule, our approach allows us to generate predictions about

the activity of multiple neuron types28,46. Comprehensive synapse-level wiring diagrams for the

output circuitry of the mushroom body will soon be available, which will allow the connectivity of

models constructed with our approach to be further constrained by data47–50. As the dynamics

of our models, including the dopamine-gated plasticity, are optimized end-to-end only for overall

task performance, our model predictions do not require a priori assumptions on what signals the

dopamine neurons encode. In particular, our methods do not assume that each dopamine neuron

carries a reward prediction error and instead allow for heterogeneous activity across the dopamine

neuron population.

The meta-learned networks we construct are capable of solving complex behavioral tasks and

generalizing to novel stimuli using only experimentally constrained plasticity rules, as opposed to

networks that require gradient descent updates to network parameters to generalize to new tasks.

They can form associations based on limited numbers of stimulus/reinforcement pairings and are

capable of continual learning, which are often challenging for artificial neural networks45,51. In the

models, different dopamine neurons exhibit diverse tuning to task-related variables, while reward

prediction error emerges as a mode of activity across the population of dopamine neurons. Our

approach uncovers the mechanisms behind the observed heterogeneity of dopamine signals in

the mushroom body and suggests that the “error” signals that support associative learning may be

more distributed than is often assumed.
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Figure 1: Diagram of the mushroom body model. (A) Kenyon cells (KCs) respond to stimuli and project to mushroom
body output neurons (MBONs) via weights WKC→MBON. These connections are dynamic variables that are modified
according to a synaptic plasticity rule gated by dopamine neurons (DANs). Output neurons and dopamine neurons are
organized into compartments (dotted rectangles). External signals convey, e.g., reward, punishment, or context to the
mushroom body output circuitry according to weights Wext. A linear readout with weights Wreadout is used to determine the
behavioral output of the system. Connections among output neurons, dopamine neurons, and feedback neurons (gray)
are determined by weights Wrecur. Inset: expanded diagram of connections in a single compartment. (B) The form of the
dopamine neuron-gated synaptic plasticity rule operative at KC-to-MBON synapses. ΔT is the time difference between
Kenyon cell activation and dopamine neuron activation. (C) Illustration of the change in KC-to-MBON synaptic weight
ΔW following forward and backward pairings of Kenyon cell and dopamine neuron activity.

Results

Modeling recurrent mushroom body output circuitry

The diversity of dopamine neuron activity challenges models of mushroom body learning that as-

sume dopamine neurons convey global reward or punishment signals. Part of this discrepancy is

likely due to the intricate connectivity among output neurons, dopamine neurons, and other neurons

that form synapses with them46,50. We therefore modeled these neurons and their connections,

which we refer to collectively as the mushroom body “output circuitry,” as a recurrent neural net-

work (Fig. 1A). This model network consists of 20 output neurons, 20 dopamine neurons, and 60

additional recurrent feedback neurons. Recurrent connections within the network are defined by

a matrix of synaptic weights Wrecur. Connections between all of these 100 neurons are permitted,

except that we assume connections from dopamine neurons to output neurons are modulatory and

follow a compartmentalized organization (see below; Fig. 1A, inset). Synapses from 200 Kenyon

cells onto output neurons provide the network with sensory information and are represented by

WKC→MBON. Kenyon cells do not target neuron types other than output neurons in our model. Sep-
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arate pathways convey signals such as reward or punishment from other brain regions, via weights

Wext. The dynamics of the ith neuron in our model of the output circuitry are given by:

τdri
dt = −ri(t) +

∑
j

Wrecur
ij rj(t) + bi + Ii(t)


+

, (1)

where [·]+ represents (elementwise) positive rectification. The bias bi determines the excitability

of neuron i, while Ii(t) represents its input from non-recurrent connections (Kenyon cell input via

WKC→MBON in the case of output neurons, and external input via Wext in the case of feedback neu-

rons; see Methods). We do not constrain Wrecur
ij , except that entries corresponding to connections

from dopamine neurons to output neurons are set to zero, based on the assumption that these

connections modulate plasticity of KC-to-MBON synapses rather than output neuron firing directly

(see Discussion).

The objective of the network is to generate a desired pattern of activity in a readout that represents

the behavioral bias produced by the mushroom body. The readout decodes this desired output

through a matrix of weights Wreadout. In our first set of experiments, this readout will represent the

one-dimensional valence (appetitive vs. aversive) of a stimulus decoded from the output neurons

(meaning that Wreadout is a 1 × NMBON matrix; later, we will consider more sophisticated readouts):

v(t) = WreadoutrMBON(t). (2)

To achieve the task goal, trials are randomly generated and the following objective function, which

depends on the parameters of the network θ and represents the loss corresponding to an individual

trial consisting of T timesteps, is minimized through stochastic gradient descent:

Lθ =
1
T

T∑
t=1

(v(t)− v∗(t))2 +
λ
T

T∑
t=1

NDAN∑
i=1

[rDAN
i (t)− 0.1]2+. (3)

The first term represents the difference between the decoded valence and a target valence v∗ that

is determined by the task being learned. The second term is a regularization term that penalizes

dopamine neuron activity that exceeds a baseline level of 0.1 (in normalized units of firing rate and

with λ = 0.1). We verified with simulations that the regularization term does not significantly affect

overall network performance.
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Implementation of dopamine-gated plasticity

Recurrent network modeling approaches typically optimize all parameters θ of the network (in this

case, θ = {Wrecur,WKC→MBON,Wreadout,Wext,b}) in order to produce a desired behavior. This

approach assumes that, after optimization, connections are fixed to constant values during the

execution of the behavior. However, connections between Kenyon cells and output neurons are

known to exhibit powerful and rapid dopamine-gated synaptic plasticity. This plasticity is dependent

on the relative timing of Kenyon cell and dopamine neuron activation (notably, it does not appear

to depend on the postsynaptic output neuron firing rate26) and can drive substantial changes in

evoked output neuron activity even after brief KC-DAN pairings28. We therefore augmented our

networks with a model of this plasticity by assuming that each element of WKC→MBON is a dynamic

quantity that tracks a variable w (with a time constant corresponding to the induction of plasticity;

see Methods). These variables, which determine the strength of the connection from the jth Kenyon

cell to the ith output neuron, obey the following update rule:

dw
dt = r̄DAN(t)rKC(t)− r̄KC(t)rDAN(t), (4)

where rKC and rDAN are the firing rates of the jth Kenyon cell and the dopamine neuron that inner-

vates the ith compartment, and r̄KC and r̄DAN are synaptic eligibility traces constructed by low-pass

filtering rKC and rDAN. The time constants of the low-pass filters used to generate the eligibility

traces determine the time window within which pairings of Kenyon cell and dopamine neuron ac-

tivity elicit appreciable changes of w. Odors are encoded by sparse activation of random subsets

of Kenyon cells, which is accomplished in the model by setting 10% of the elements of rKC to 1

and the rest to 0. When Kenyon cell and dopamine neuron firing rates are modeled as pulses

separated by a time lag ΔT, the dependence of the change in w on ΔT takes the form of a biphasic

timing-dependent function (Fig. 1B,C), consistent with a recent experimental characterization28.

The seconds-long timescale of this curve is compatible with the use of continuous firing rates rather

than discrete spike timing to model KC-to-MBON plasticity, as we have done in Eq. 4.

Importantly, the weight update rule in Eq. 4 is a smooth function of network firing rates, allowing

networks with this update rule to be constructed using gradient descent. Specifically, we minimize

the loss function Eq. 3 under the assumption that the network follows the dynamics defined by Eq.

1 and Eq. 4. The parameters to be optimized are θ = {Wrecur, Wext, Wreadout,b} (the connections
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describing the mushroom body output circuitry and the biases), while WKC→MBON is treated as a

dynamic quantity. Our models are therefore distinguished from typical gradient-descent-optimized

recurrent neural network models by the addition a subset of neurons (dopamine neurons) that gate

the plasticity of a particular subset of weights (WKC→MBON) with a timing-dependent rule. This

allows us to ask how this plasticity mechanism is employed “online” by our networks to solve be-

havioral tasks.

We refer to the gradient descent modification of θ as the “optimization” phase of constructing our

networks. This optimization represents the evolutionary and developmental processes that pro-

duce a network capable of efficiently learning new associations52. As described above, after this

optimization is complete, the output circuitry is fixed but KC-to-MBON weights are subject to synap-

tic plasticity according to Eq. 4. Our approach therefore separates synaptic weight changes that are

the outcome of evolution and development from those due to experience-dependent KC-to-MBON

plasticity, which would be conflated if all parameters were optimized with gradient descent (see

Supplemental Fig. 1 for a schematic of the optimization and testing phases of our networks). We

show that, after optimization, only the latter form of weight update is sufficient to solve the tasks

we consider and generalize to related but novel tasks. To begin, we assume that KC-to-MBON

weights are set to their baseline values at the beginning of each trial in which new assocations are

formed. Later, we will consider the case of continual learning of many associations.

Models of associative conditioning

We begin by considering models of classical conditioning, which involve the formation of associ-

ations between a conditioned stimulus (CS) and unconditioned stimulus (US) such as reward or

punishment. A one-dimensional readout of the output neuron population is taken to represent the

stimulus valence (Eq. 2), which measures whether the organism prefers (valence > 0) or avoids

(valence < 0) the CS. In the model, CS are encoded by the activation of a random ensembles

of Kenyon cells. Rewards and punishments are encoded by external inputs to the network that

provide input through Wext (see Methods).

To construct the model, we optimized the mushroom body output circuitry to produce a target

valence in the readout during presentation of CS+ that have been paired with US (first-order con-

ditioning; Fig. 2A,B, top). During presentations of novel CS-US pairings after optimization, this
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Figure 2: Behavior of network during reward conditioning paradigms. (A) Behavior of output neurons (MBONs) during
first-order conditioning. During training, a CS+ (blue) is presented, followed by a US (green). Top: The network is
optimized so that a readout of the output neuron activity during the second CS+ presentation encodes the valence of
the conditioned stimulus (gray curve). Black curve represents the target valence and overlaps with the readout. Bottom:
Example responses of output neurons. (B) Same as A, but for a CS- presentation without US. (C) Same as A, but for
extinction, in which a second presentation of the CS+ without the US partially extinguishes the association. (D) Same as
A, but for second-order conditioning, in which a second stimulus (CS2) is paired with a conditioned stimulus (CS1). (E)
Error rate averaged across networks in different paradigms. An error is defined as a difference between reported and
target valence with magnitude greater than 0.2 during the test period. Networks optimized with recurrent output circuitry
(control; black) are compared to networks without recurrence (no recur.; red).

valence is reported for CS+ but not unconditioned stimulus (CS-) presentations. The activities of

subsets of model output neurons are suppressed following conditioning, indicating that the net-

work learns to modify its responses for CS+ but not CS- responses (Fig. 2A,B, bottom) This form

of classical conditioning requires an appropriate mapping from US pathways to dopamine neu-

rons, but recurrent mushroom body output circuitry is not required; networks without recurrence

also produce the target valence (Fig. 2E, top). We therefore considered a more complex set of

tasks. Networks were optimized to perform first-order conditioning, to extinguish associations upon

repeated presentation of a CS+ without US, and also to perform second-order conditioning.

During extinction, the omission of a US following a previously conditioned CS+ reduces the strength

of the learned association (Fig. 2C). In second-order conditioning, a CS (CS1) is first paired with

a reward or punishment (Fig. 2D, left), and then a second CS (CS2) is paired with CS1 (Fig.

2D, center). Because CS2 now predicts CS1 which in turn predicts reward or punishment, the

learned valence of CS1 is transferred to CS2 (Fig. 2D, right). In both extinction and second-order

conditioning, a previously learned association must be used to instruct either the modification of
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an existing association (in the case of extinction) or the formation of a new association (in the case

of second-order conditioning). We hypothesized that recurrent output circuitry would be required

in these cases. Indeed, non-recurrent mushroom body networks are unable to solve these tasks,

while recurrent networks are (Fig. 2E, center, bottom). Thus, for complex relationships between

stimuli beyond first-order conditioning, recurrent output circuitry provides a substantial benefit. We

also found that these optimized networks generalized to related tasks that they were not optimized

for, such as reversal learning (Supplemental Fig. 2), further supporting the conclusion that they

implement generalizable learning strategies.

Comparison to networks without plasticity

Standard recurrent neural networks can maintain stimulus information over time through persis-

tent neural activity, without modification of synaptic weights. This raises the question of whether

the dopamine-gated plasticity we implemented is necessary to recall CS-US associations, or if re-

current mushroom body output circuitry alone is sufficient. We therefore compared the networks

described above to networks lacking this plasticity. For non-plastic networks, connections from

Kenyon cells to output neurons are set to fixed, random values (reflecting the fact that these weights

are not specialized to specific odors53). These networks evolve similarly to plastic networks except

that the dynamics are determined only by Eq. 1 and not by the dopamine-gated plasticity of Eq.

4. Networks are optimized to associate a limited number of CS+ with either a positive or negative

valence US, while not responding to CS-. The loss function is the same as Eq. 3.

Non-plastic networks can form CS-US associations (Fig. 3A). Compared to networks with dopamine-

gated plasticity (Fig. 2A), output neurons exhibit stronger persistent activity following a CS-US

pairing. This activity retains information about the learned association as an “attractor” of neural

activity54. However, non-plastic networks exhibit a high degree of overgeneralization of learned

associations to neutral CS- stimuli (Fig. 3B). This likely reflects a difficulty in constructing a large

number of attractors, corresponding to each possible CS-US pairing, that do not overlap with pat-

terns of activity evoked by other CS- stimuli. Consistent with this, as the number of CS+ increases,

the difference between the reported valence for CS+ and CS- decreases, reflecting increasing

overgeneralization (Fig. 2C). Networks with dopamine-gated plasticity do not suffer from such

overgeneralization, as they can store and update the identities of stimuli in plastic weights.
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Figure 3: Comparison to networks without dopamine-gated plasticity. (A) Behavior during first-order conditioning,
similar to Fig. 2A, but for a non-plastic network. Because of the need for non-plastic networks to maintain information
using persistent activity, performance degrades with longer delays between training and testing phases. We therefore
chose this delay to be shorter than in Fig. 2A. (B) Same as A, but for a trial in which a CS-US pairing is followed by the
presentation of a neutral CS. (C) Difference in response (reported valence) for CS+ and CS- as a function of the number
of CS+ associations. Each CS+ is associated with either a positive or negative US. A difference of 0 corresponds
to overgeneralization of the CS+ valence to neutral CS-. For comparison, the corresponding response difference for
networks with dopamine-gated plasticity is shown in blue.

In total, the comparison between plastic and non-plastic networks demonstrates that the addition

of dopamine-gated plasticity at KC-to-MBON synapses improves capacity and reduces overgener-

alization. Furthermore, plastic networks need not rely solely on persistent activity in order to store

associations (compare Fig. 2A and Fig. 3A), likely prolonging the timescale over which information

can be stored without being disrupted by ongoing activity.

10

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 20, 2020. ; https://doi.org/10.1101/737064doi: bioRxiv preprint 

https://doi.org/10.1101/737064


0 20

0
1

Positive valence

Va
le

nc
e

DA
N

 a
ct

iv
ity

 (n
or

m
.)

CS+ US target
readout

conditioning test

Time (s)

CS+ US
conditioning test

Negative valence

0 5

0

0.5

Time (s)

Principal component 1

Principal component 2

Principal component 3

Principal component 4

Principal component 5

CS
presentation

US
presentation

CS+
presentation

CA

B

C

Figure 4: Population analysis of dopamine neuron (DAN) activity. Principal components analysis of dopamine neuron
population responses during presentation of neutral CS. (A) Responses are shown for CS+ conditioning with a US of
positive (left) or negative (valence), followed by a test presentation of the conditioned CS+ without US. (B) Responses
of model dopamine neurons from a single network. Dopamine neurons are sorted according to hierarchical clustering
(illustrated with gray dendrogram) of their responses. (C) Principal components analysis of dopamine neuron population
activity. Left: Response to a neutral CS. Middle: Response to a positive (green) or negative (red) valence US. Right:
Response to a previously conditioned US.

Distributed representations across dopamine neurons

We next examined the responses of dopamine neurons to neutral, unconditioned, and conditioned

stimuli in the networks we constructed, to examine the “error” signals responsible for learning (Fig.

4A). Dopamine neurons exhibited heterogeneity in their responses. We performed hierarchical

clustering to identify groups of dopamine neurons with similar response properties (Fig. 4B, gray;

see Methods). This procedure identified two broad groups of dopamine neurons—one that re-

sponds to positive-valence US and another that responds to negative-valence US—as well as

more subtle features in the population response.
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While some dopamine neurons increase their firing only for US, many also respond to reinforced

CS. In some cases, this response includes a decrease in firing rate in response to the omission of a

predicted US that would otherwise cause an increase in rate, consistent with a reward prediction er-

ror. In other cases, neurons respond only with increases in firing rate for US of a particular valence,

and for omitted US of the opposite valence, consistent with cross-compartmental interactions sup-

porting the prediction of valence31. The presence of both reward prediction error-like responses

and valence-specific omission responses suggests that multiple mechanisms are employed by the

network to perform tasks such as extinction and second-order conditioning.

The examination of their responses demonstrates that dopamine neurons in our models are di-

versely tuned to CS and US valence. This tuning implies that KC-to-MBON synapses change in

a heterogeneous manner in response to CS and US presentations, but that these changes are

sufficient to produce an appropriate behavioral response collectively. Consistent with this idea,

principal components analysis of dopamine neuron responses identified modes of activity with in-

terpretable, task-relevant dynamics. The first principal component (Fig. 4C) reflects US valence

and predicted CS+ valence, while rapidly changing sign upon US omission, consistent with a re-

ward prediction error. Subsequent principal components include components that respond to CS

and US of both valences (principal component 2) or are tuned primarily to a single stimulus, such

as a positive valence CS+ (principal component 4).

To further explore how dopamine neuron responses depend on the task being learned, we extended

the model to require encoding of novelty and familiarity, inspired by a recent study that showed that

the mushroom body is required for learning and expressing an alerting behavior driven by novel

CS29. We added a second readout that reports CS novelty, in addition to the readout of valence

described previously. Networks optimized to report both variables exhibit enhanced CS responses

and a large novelty-selective component in the population response identified by principal compo-

nents analysis (Supplemental Fig. 3), compared to networks that only report valence (Fig. 4B).

These results suggest that dopamine neurons collectively respond to any variables relevant to the

task for which the output circuitry is optimized, which may include variables distinct from reward pre-

diction. Furthermore, the distributed nature of this representation implies that individual variables

may be more readily decoded from populations of dopamine neurons than from single neurons.
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two odors CS+ and CS2+ and US. Neutral gray odors (CS-) are also presented randomly. (C) Histogram of synaptic
weights after a long sequence of CS and US presentations for networks with (black) and without (red) non-specific
potentiation. Weights are normalized to their maximum value. (D) Left: dopamine neuron responses for the sequence
of CS and US presentations. Right: same as left, but for a network without non-specific potentiation. Such networks are
less likely to report the correct valence for conditioned CS+ and also exhibit a higher rate of false positive responses to
CS-. (E) Error rate (defined as a difference between reported and target valence with magnitude greater than 0.5 during
a CS presentation; we used a higher threshold than Fig. 2 due to the increased difficulty of the continual learning task)
for networks with (black) and without (red) non-specific potentiation.

In the previous sections, we modeled the dynamics of networks during individual trials containing

a limited number of associations. We next ask whether these networks are capable of continual

learning, in which long sequences of associations are formed, with recent associations potentially

overwriting older ones. Such learning is often challenging, particularly when synaptic weights have

a bounded range, due to the tendency of weights to saturate at their minimum or maximum value

after many associations are formed55. To combat this, a homeostasic process that prevents such

saturation is typically required. We therefore asked if our optimized networks can implement such

homeostasis.

In certain compartments of the mushroom body, it has been shown that the activation of dopamine

neurons in the absence of Kenyon cell activity leads to potentiation of KC-to-MBON synapses27.

This provides a mechanism for the erasure of memories formed following synaptic depression.
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We hypothesized that this non-specific potentiation could implement a form of homeostasis that

prevents widespread synaptic depression after many associations are formed. We therefore aug-

mented our dopamine-gated synaptic plasticity rule (Fig. 1C) with such potentiation (Fig. 5A). The

new synaptic plasticity rule is given by:

dw
dt = r̄DAN(t)rKC(t)− r̄KC(t)rDAN(t) + βr̄DAN(t), (5)

where β represents the rate of non-specific potentiation (compare with Eq. 4). We allowed β to be

optimized by gradient descent individually for each compartment.

We modeled long sequences of associations in which CS+, CS-, and US are presented randomly

(Fig. 5B) and the network is again optimized to produce a target valence (Eq. 3). In optimized

networks, the KC-to-MBON weights are initialized at the beginning (t = 0) of trial n to be equal to

those at the end (t = T) of trial n − 1, WKC→MBON
n (0) = WKC→MBON

n−1 (T), rather than being reset to

their baseline values as done previously. We examined the distribution of KC-to-MBON synaptic

weights after such sequences of trials. Without non-specific potentiation, most synaptic weights

are clustered near 0 (Fig. 5C, red). However, the addition of this potentiation substantially changes

the synaptic weight distribution, with many weights remaining potentiated even after thousands of

CS and US presentations (Fig. 5C, black).

We also examined performance and dopamine neuron responses in the two types of networks.

Without non-specific potentiation, dopamine neuron responses are weaker and the reported va-

lence less accurately tracks the target valence, compared to networks with such potentiation (Fig.

5D,E). In total, we find that our approach can construct models that robustly implement continual

learning if provided with homeostatic mechanisms that can maintain a stable distribution of synaptic

weights.

Associating stimuli with changes in internal state

In the previous sections, we focused on networks whose dopamine neurons exhibited transient

responses to the presentation of relevant external cues. Recent studies have found that dopamine

neurons also exhibit continuous fluctuations that track the state of the fly, even in the absence of

overt external reinforcement. These fluctuations are correlated with transitions between, for exam-
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Figure 6: (A) Diagram of a network whose activity transitions between a sequence of discrete states in addition to
supporting associative conditioning. Brief pulse inputs to the network signal that a switch to a new state should occur.
(B) Top: A linear readout of dopamine neuron activity can be used to decode the network state. Bottom: dopamine
neuron (DAN) activity exhibits state-dependent fluctuations in addition to responding to CS and US. (C) Decoding of
stimuli that predict state transitions. Heatmap illustrates the correlation between output neuron population responses
to the presentation of different stimuli that had previously been presented prior to a state transition. Stimuli are ordered
based on the state transitions that follow their first presentation. Blue blocks indicate that stimuli that predict the same
state transition evoke similar output neuron activity. (D) Performance of networks on conditioning tasks.

ple, movement and quiescence33, or hunger and satiation56. Understanding the functional role of

this activity is a major challenge for models of dopamine-dependent learning. We hypothesized that

such activity could permit the association of stimuli with an arbitrary internal state of the organism.

This could allow downstream networks to read out whether a stimulus has previously been experi-

enced in conjuction with a particular change in state, which might inform an appropriate behavioral

response to that stimulus.

To test this hypothesis, we constructed networks that, in addition to supporting associative condi-

tioning (as in Fig. 2), also transitioned between a set of three discrete internal states, triggered

on input pulses that signal the identity of the next state (Fig. 6A). This input represents signals

from other brain areas that drive state transitions. We optimized the output circuitry to continuously

maintain a state representation, quantified by the ability of a linear readout of dopamine neuron
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activity to decode the current state (Fig. 6B, top). Specifically, the loss function equaled

Lθ =
1
T

T∑
t=1

||s(t)− s∗(t)||2, (6)

where s = Softmax(WreadoutrDAN) is a 3-dimensional vector that represents the decoded probabil-

ities of being in each state and s∗ is a vector with one nonzero entry corresponding to the actual

current state. In this case, Wreadout is a 3 × NDAN matrix of weights. Because we were interested

in networks that exhibited continuous fluctuations in dopamine neuron activity, we did not impose

an additional penalty on dopamine neuron firing rates as in Eq. 3. Optimizing networks with this

loss function led to widespread state-dependent activity throughout the network, including among

dopamine neurons (Fig. 6B, bottom). This activity coexists with activity evoked by CS or US pre-

sentation.

We next examined output neuron responses to the presentation of stimuli that had previously pre-

ceded a transition to some state. If a transition to a given state reliably evokes a particular pattern of

dopamine neuron activity, then KC-to-MBON synapses that are activated by any stimulus preceding

such a transition will experience a similar pattern of depression or potentiation. We assessed this

response similarity by computing the Pearson’s correlation coefficient Corr(rMBON
A , rMBON

B ), where

rMBON
A is the average output neuron activity during the presentation of stimulus A. Consistent with

this prediction, the pattern of output neuron responses evoked by a stimulus that predicts a tran-

sition to state S1 is more similar to the corresponding responses to other stimuli that predict the

same state than any other state S2 (Fig. 6C). The representations of state-transition-predictive

stimuli are thus “imprinted” with the identity of the predicted state. While these modifications could

potentially interfere with the ability of the system to support associative conditioning, we found that

these networks still exhibited high performance on the tasks we previously considered (Fig. 6D).

Thus, state-dependent activity and activity required for conditioning are multiplexed in the network.

The presence of state-dependent fluctuations could allow circuits downstream of the mushroom

body to consistently produce a desired behavior that depends on the internal state, instead of or in

addition to the external reinforcement, that is predicted by a stimulus. Our model thus provides a

hypothesis for the functional role of state-dependent dopamine neuron activity.
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Mixed encoding of reward and movement in models of navigation
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Figure 7: (A) Top: Schematic of navigation task. After conditioning, the simulated organism uses odor concentration
input (blue) and information about wind direction w relative to its heading h. Bottom: Diagram of a network that uses
these signals to compute forward and angular velocity signals for navigation. Velocity signals are read out from other
neurons in the mushroom body output circuitry (gray), rather than output neurons. (B) Position of the simulated organism
as a function of time during navigation. Black: Simulation with intact dopamine-gated plasticity during navigation; Red:
Simulation with plasticity blocked. Arrowheads indicate direction of movement. In the top left plot, the starting location
(gray circle) is indicated. (C) Position error (mean-squared distance from rewarded odor source at the end of navigation)
for control networks and networks without dopamine-gated plasticity. (D) Forward (top) and angular (bottom) velocity as
a function of time during one example navigation trial. (E) Left: Dopamine neuron activity during CS and US presentation
in the conditioning phase of a trial. Right: Dopamine neuron activity during the navigation phase of the trial (same trial
as in D).

We also examined models of dynamic, goal directed behaviors. An important function of olfac-

tory associations in Drosophila is to enable navigation to the sources of reward-predicting odor

cues, such as food odors57. We therefore optimized networks to control the forward velocity

u(t) and angular velocity ω(t) of a simulated agent in a two-dimensional environment. We as-

sumed that these movement variables are not decoded directly from output neurons but from other

feedback neurons in the mushroom body output circuitry which may represent locomotion-related
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downstream regions (see Methods). The angular velocity determines the change in the agent’s

heading dθ
dt = ω(t), which, along with the forward velocity, determines the change in its location

dx
dt = u(t) (cos θ(t)x̂1 + sin θ(t)x̂2) (Fig. 7A). The environment contains multiple odor sources that

produce odor plumes that the the agent encounters as it moves. The agent is first presented with

a CS+/reward pairing and then is placed in the two-dimensional environment and must navigate to

the rewarded odor (Fig. 7A, top). We assumed that the mushroom body output circuitry supports

this behavior by integrating odor concentration input from Kenyon cells and information from other

brain areas about wind direction relative to the agent’s orientation58 (Fig. 7A, bottom; see Methods

for a description of how wind input is encoded). Because x(t) is a differentiable function of network

parameters, we can use as a loss function the Euclidean distance between the agent’s location

and the rewarded odor source at the end of this navigation period:

Lθ = ||x(T)− x∗||2, (7)

where x∗ is the location of the rewarded odor source and T is the time at which the navigation

period ends. Successfully executing this behavior requires storing the identity of the rewarded odor,

identifying the upwind direction for that odor, moving toward the odor source using concentration

information, and ignoring neutral odors.

The agent can successfully navigate to the rewarded odor source (Fig. 7B), and successful navi-

gation requires plasticity during conditioning that encodes the CS+/US pairing (Supplemental Fig.

4). We wondered whether dopamine-gated plasticity might also be operative during navigation,

based on recent findings that recorded ongoing dopamine neuron fluctuations correlated with

movement33. We asked whether such plasticity during navigation is important for the behavior

of the model by examining the performance of networks in which this plasticity is blocked after the

networks are optimized. Blocking plasticity during navigation impairs performance, suggesting that

it contributes to the computation being performed by the mushroom body output circuitry (Fig. 7C).

In particular, networks lacking plasticity often exhibit decreased forward velocity after entering a

plume corresponding to a rewarded odor (Fig. 7B), suggesting that ongoing plasticity may rein-

force salient odors as they are encountered and promote odor-seeking, consistent with a recent

report59.

We also examined the relationship between dopamine neuron activity and movement variables
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during navigation. The agent exhibits increased forward velocity and turning upon encountering

an odor, with greater increases for rewarded than for neutral odors (Fig. 7D). Model dopamine

neurons exhibit activity during navigation that correlates with movement (Fig. 7E; Supplemental

Fig. 5). Many of the same dopamine neurons also exhibit reward-related activity, demonstrating

that they multiplex reward and movement-related signals, rather than these classes of dopamine

neurons forming disjoint subsets. Thus, our model accounts for dopamine neuron tuning to these

two types of signals, a feature present in recordings that traditional modeling approaches do not

capture33.

Discussion

We have developed models of the mushroom body that use a biologically plausible form of dopamine-

gated synaptic plasticity to solve a variety of learning tasks. By optimizing the mushroom body

output circuitry for task performance, these models generate patterns of dopamine neuron activity

sufficient to produce the desired behaviors. Model dopamine neuron responses are distributed,

tuned to multiple task-relevant variables, and exhibit rich temporal fluctuations. This diversity is

a result of optimizing our models only for task performance rather than assuming that dopamine

neurons uniformly represent a particular quantity of interest, such as a global reward prediction er-

ror signal3. Our results predict that individual dopamine neurons may exhibit diverse tuning while

producing coherent activity at the population level. They also provide the first unified modeling

framework that can account for valence and reward prediction (Fig. 4), novelty (Supplemental

Fig. 3), and movement-related (Fig. 7) dopamine neuron responses that have been recorded in

experiments.

Relationship to other modeling approaches

To construct our mushroom body models, we took advantage of recent advances in recurrent neu-

ral network optimization to augment standard network architectures with dopamine-gated plasticity.

Our approach can be viewed as a form of “meta-learning”45, or “learning to learn,” in which a net-

work learns through gradient descent to use a differentiable form of synaptic plasticity (Eq. 4) to

solve a set of tasks. As we have shown, this meta-learning approach allows us to construct net-

works that exhibit continual learning and can form associations based on single CS-US pairings
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(Fig. 5). Recent studies have modeled networks with other forms of differentiable plasticity, in-

cluding Hebbian plasticity,60–62 but have not studied gated plasticity of the form of Eq. 4. Another

recent study examined networks with a global neuromodulatory signal rather than the heteroge-

neous signals we focus on63.

Another recent study used a meta-learning approach to model dopamine activity and activity in

the prefrontal cortex of mammals64. Unlike our study, in which the “slow” optimization is taken to

represent evolutionary and developmental processes that determine the mushroom body output

circuitry, in this study the slow component of learning involved dopamine-dependent optimization

of recurrent connections in prefrontal cortex. This process relied on gradient descent in a recurrent

network of long short-term memory (LSTM) units, leaving open the biological implementation of

such a learning process. Like in actor-critic models of the basal ganglia65, dopamine was modeled

as a global reward prediction error signal.

In our case, detailed knowledge of the site and functional form of plasticity28 allowed us to build

models that solved multiple tasks simultaneously using only a biologically plausible synaptic plas-

ticity rule. This constraint allows us to predict patterns of dopamine neuron activity that are sufficient

for solving these tasks (Fig. 4). Similar approaches may be effective for modeling other brain ar-

eas in which the neurons responsible for conveying “error” signals can be identified, such as the

cerebellum or basal ganglia2,66.

Heterogeneity of dopamine signaling across species

Dopamine is responsible for a variety of functions in arthropods, including associative memory in

honeybees6, central pattern generation in the stomatogastric ganglion of lobsters7, escape behav-

iors8 and salivation9 in the cockroach, and flight production in moths10. While dopamine similarly

plays many roles in Drosophila, including the regulation of locomotion, arousal, sleep, mating11,

until recently most studies of Drosophila mushroom body dopamine neurons have focused on their

roles in appetitive and aversive memory formation12,13,16,18,20–22. In mammals, while numerous

studies have similarly focused on reward prediction error encoding in midbrain dopaminergic neu-

rons2, recent reports have also described heterogeneity in dopamine signals reminiscent of the het-

erogeneity across dopamine neurons in the mushroom body5,43. These include reports detailing

distinct subtypes of dopamine neurons that convey positive or negative valence signals or respond
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to salient signals of multiple valences39,67, novelty responses34–38,40, responses to threat68, and

modulation of dopamine neurons by movement41,42. In many cases, these subtypes are defined

by their striatal projection targets, suggesting a compartmentalization of function similar to that of

the mushroom body5. However, the logic of this compartmentalization is not yet clear.

Standard reinforcement learning models of the basal ganglia, such as actor-critic models, assume

that dopamine neurons are globally tuned to reward prediction error signals65. Proposals have

been made to account for heterogeneous dopamine responses, including that different regions

produce prediction errors based on access to distinct state information69, or that dopamine neu-

rons implement an algorithm for learning the statistics of transitions between states using sensory

prediction errors70. Our results are compatible with these theories, but different in that our model

does not assume a priori that all dopamine neurons encode prediction errors. Instead, prediction

error coding by particular modes of population activity emerges in our model as a consequence of

optimizing for task performance (Fig. 4).

Connecting mushroom body architecture and function

The identification of groups of dopamine neurons that respond to positive or negative valence

US16,24,30,71,72, output neurons whose activity promotes approach or avoidance26, and dopamine-

gated plasticity of KC-to-MBON synapses27,28,73 has led to effective models of first-order appetitive

and aversive conditioning in Drosophila. A minimal model of such learning requires only two com-

partments of opposing valence and no recurrence among output neurons or dopamine neurons.

The presence of extensive recurrence33,46,50,74 and dopamine neurons that are modulated by other

variables29,31–33 suggests that the mushroom body modulates learning and behavior along multiple

axes.

The architecture of our model reflects the connectivity between Kenyon cells and output neurons,

compartmentalization among output neurons and dopamine neurons, and recurrence of the mush-

room body output circuitry. While the identities of output neurons and dopamine neurons have been

mapped anatomically46,75, the feedback pathways have not, so the feedback neurons in our model

(gray neurons in Fig. 1A) represent any neurons that participate in recurrent loops involving the

mushroom body, which may involve paths through other brain areas. As electron-microscopy re-

constructions of these pathways become available, effective interactions among compartments in
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our model may be compared to anatomical connections, and additional constraints may be placed

on model connectivity. By modifying its architecture, our model could be used to test the role of

other types of interactions, such as recurrence among Kenyon cells, connections between Kenyon

cells and dopamine neurons47,76, or direct depolarizing or hyperpolarizing effects of dopamine on

output neurons48. There is evidence that dopamine-gated synaptic plasticity rules (Fig. 1B) are

heterogeneous across compartments, which could also be incorporated into future models26,27.

While we have primarily focused on the formation of associations over short timescales because

the detailed parameters of compartment-specific learning rules have not been described, such

heterogeneity will likely be particularly important in models of long-term memory21,77–81.

It is unlikely that purely anatomical information, even at the level of a synaptic wiring diagram, will

be sufficient to infer how the mushroom body functions82. We have used anatomical information

and parametrized synaptic plasticity rules along with hypotheses about which behaviors the mush-

room body supports to build “task-optimized” models, related to approaches that have been applied

to sensory systems83. The success of these approaches for explaining neural data relies on the

availability of complex tasks that challenge and constrain the computations performed by the mod-

els. Therefore, experiments that probe the axes of fly behavior that the mushroom body supports,

including behaviors that cannot be described within the framework of classical conditioning, will be

a crucial complement to connectivity mapping efforts as models of this system are refined.
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Supplemental Figure 1: Schematic of meta-learning procedure. (A) Two phases of meta-learning and testing. Left:
During the optimization phase, connections that form the mushroom body output circuitry are updated with gradient de-
scent (orange). Kenyon cell to output neuron weights evolve “online” (within each trial) according to dopamine-dependent
synaptic plasticity. Right: After optimization is complete, the network is tested on a new set of trials. In this phase, con-
nections that form the output circuitry are fixed. (B) Illustration of trials involving CS/US associations presented during
training (left) and testing (right). Each trial involves new CS/US identities and timing.
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Supplemental Figure 2: Behavior of networks optimized to perform classical conditioning on a reversal learning task.
(A) Top: Schematic of reversal learning task. In the first phase, CS1 but not CS2 is paired with US, while during reveral
the contingencies are reversed. Preference between CS1 and CS2 is compared in the test phase. Bottom: Example
MBON and DAN activity during reversal learning. (B) The average difference in reported valence for CS2 vs. CS1.
Positive or negative values for positive or negative-valence US, respectively, indicate successful reversal learning. Bars
indicate standard deviation across model networks.
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tend toward points located between the two odor sources.
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Methods

Network dynamics

The dynamics of the networks are determined by Eq. 1 and Eq. 4. If neuron i is an output neuron,

then its external input is given by Ii(t) =
∑

k WKC→MBON
ik rKC

k , representing input from Kenyon cells. If

neuron i is a feedback neuron (FBN), then Ii(t) =
∑

k Wext
ik rext

k , representing reinforcement, context,

or state-dependent input from other brain regions. For dopamine neurons, Ii(t) = 0, as we assume

that all input to the dopamine neurons is relayed by feedback neurons..

For KC-to-MBON synapses, each weight is initially set to its maximum value of 0.05 and subse-

quently updated, with the updates of WKC→MBON low-pass filtered with a timescale of τW = 5 s to

account for the timescale of LTD or LTP. Specifically,

τWẆKC→MBON
ij = −WKC→MBON

ij + wij, (8)

where the weight wij for a connection from the jth Kenyon cell to the output neuron in compartment

i is determined by Eq. 4.

KC-to-MBON weights are constrained to lie between 0 and 0.05. For computational efficiency and

ease of training, we assume τ in Eq. 1 is equal to 1 s and simulate the system with a timestep of

Δt = 0.5 s, but our results do not depend strongly on these parameters.

Optimization

Parameters are optimized using PyTorch with the RMSprop optimizer84 (www.pytorch.org) and a

learning rate of 0.001. The loss to be minimized is described by Eq. 3, Eq. 6, or Eq. 7 for networks

optimized for conditioning tasks, continuous state representations, or navigation respectively. Op-

timization is performed over a set number of epochs, each of which consists of a batch of B = 30

trials. The loss Ltot
θ (n) for epoch n is the average of the individual losses over each trial in the
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batch:

Ltot
θ (n) = 1

B

B∑
b=1

Lθ(b, n), (9)

where Lθ(b,n) represents the loss for bth trial drawn on epoch n.

All optimized weights are initialized as zero mean Gaussian variables. To initialize Wrecur, weights

from a neuron belonging to neuron type X (where X = MBON, DAN, or FBN) have 0 mean and

variance equal to 1√
2NX

, where NX equals the number of neurons of type X. For Wreadout, the

variance is 1/NMBON while for Wext, the variance is 1. Bias parameters are initialized at 0.1. At the

beginning of each trial, firing rates are reset to an initial state r0, with r0 = 0 for output neurons

and 0.1 for dopamine neurons or feedback neurons, to permit these neurons to exhibit low levels

of baseline activity.

Conditioning tasks

For conditioning tasks in which the predicted valence of a conditioned stimulus (CS) is reported

(such as first- and second-order conditioning and extinction), each CS is encoded by setting 10%

of the entries of rKC to 1 and the rest to 0. Unconditioned stimuli (US) are encoded by rext which

is equal to (1, 0)T when a positive-valence US is present, (0, 1)T when a negative-valence US

is present, and (0, 0)T otherwise. CS and US are presented for 2 s. Tasks are split into 30 s

intervals (for example conditioning and test intervals; see Fig. 2). Stimulus presentation occurs

randomly between 5 s and 15 s within these intervals. Firing rates are reset at the beginning of

each interval (e.g. r(t = 30 s) = r0), which prevents networks from using persistent activity to

maintain associations.

When optimizing networks in Fig. 2, random extinction and second-order conditioning trials were

drawn. For half of these trials, CS or US are randomly omitted (and the target valence updated

accordingly – e.g., if the US is omitted, the network should not report a nonzero valence upon the

second CS presentation; Fig. 2B) in order to prevent the networks from overgeneralizing to uncon-

ditioned CS. Optimization progressed for 5000 epochs for networks trained to perform extinction

and second-order conditioning. For networks trained only for first-order conditioning, (Fig. 2E,

top; Fig. 3), only first-order conditioning trials were drawn, and optimization progressed for 2000
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epochs.

Principal components of dopamine neuron activity (Fig. 4) were estimated using 50 randomly

chosen trials of extinction and second-order conditioning in previously optimized networks. To

order dopamine neurons based on their response similarity (Fig. 4A), hierarchical clustering was

performed using the Euclidean distance between the vector of firing rates corresponding to pairs

of dopamine neurons during these trials.

For networks also trained to report stimulus novelty (Supplemental Fig. 3), an additional readout

dimension n(t) that is active for the first presentation of a given CS and inactive otherwise is added.

The full network readout is then given by

R(t) =

v(t)

n(t)

 = WreadoutrMBON(t), (10)

and the loss equals

Lθ =
1
T

T∑
t=1

||R(t)− R∗(t)||2 + λ
T

T∑
t=1

NDAN∑
i=1

[rDAN
i (t)− 0.1]2+. (11)

Adding this second readout does not significantly impact the performance of the networks for clas-

sical conditioning tasks.

Networks without dopamine-gated plasticity

For networks without dopamine-gated plasticity, KC-to-MBON synaptic weights are drawn randomly

from a uniform distribution between 0 and 0.05 and then fixed. The time of CS+ presentation

is chosen uniformly between 5 s and 15 s, and the second CS presentation occurrs uniformly

between 20 s and 30 s. Networks are optimized to perform first-order conditioning with positive

and negative valence US for a fixed set of CS+ stimuli numbering between 1 and 10 (2 to 20

possible associations). On half of the trials, a random CS is presented instead of the second CS+

presentation (Fig. 3B) and networks are optimized to not respond to this CS.
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Continual learning

To model continual learning (Fig. 5), networks were augmented with non-specific potentiation gated

by dopamine neuron activity according to Eq. 5. The potentiation parameter β is compartment-

specific and updated through gradient descent. Each parameter is initialized at 0.01 and con-

strained to be positive.

Trials consist of 200 s intervals, during which two CS+ and two CS- odors are presented randomly.

For each CS, the number of presentations in this interval is chosen from a Poisson distribution with

a mean of 2 presentations. Unlike other networks, for these networks the values of WKC→MBON

at the end of one trial are used as the initial condition for the next trial. To prevent weights from

saturating early in optimization, the weights at the beginning of trial t are set equal to:

wt = (1 − x)w0 + xwt−1, (12)

where w0 = 0.05 corresponds to the initial weight at the beginning of optimization, and x increases

linearly from 0 to 1 during the first 2500 epochs of optimization. Networks were optimized for a

total of 5000 epochs.

Networks that encode changes in state

For networks that encode changes in state (Fig. 6), we modified our training protocol for networks

optimized for conditioning tasks to include an additional three-dimensional readout of output neuron

activity optimized to encode the state (at each moment in time, the target is equal to 1 readout

dimension and 0 for the others; Eq. 6). The external input rext is three-dimensional and signals

state transitions using input pulses of length 2 s. The length of time between pulses ΔTstate is a

random variable distributed according to ΔTstate ∼ 10 s · (1 + Exp(1)). Networks were optimized

for 500 epochs.

To test how state-dependent dopamine neuron dynamics affect stimulus encoding, a CS is pre-

sented for 2 s, beginning 8 s prior to the second state change of a 300 s trial. Afterward, the same

CS is presented for 5 s. This was repeated for 50 CS, and the correlation coefficient between

output neuron responses during the second 5 s presentation was calculated (Fig. 6C).
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Models of navigation

To model navigation toward a rewarded odor source (Fig. 7), a CS+/US pairing is presented at

t = 2 s in a 20 s training interval with a US strength of rext
i = 0.1. This is followed by a 200 s interval

during which the model organism navigates in a two-dimensional environment.

During navigation, two odor sources are present, one CS+ and one neutral CS. The sources are

randomly placed at x1 = ±1 m and x2 chosen uniformly between 0 m and 2 m, with a minimum

spacing of 0.5 m. Associated with each odor source is a wind stream that produces an odor plume

that the model organism encounters as it navigates. These are assumed to be parallel to the x1

axis and oriented so that the odor plume diffuses toward the origin, with a height of 0.5 m and

centered on the x2 position of each odor source. For locations within these plumes and downwind

of an odor source, the concentration of the odor is given by:

c(Δx1, Δx2) =
1

1 + 0.5Δx1
exp

(
−(Δx2)

2/(0.1Δx1)
)
, (13)

where Δx1 and Δx2 are the x and y displacements from the odor source in meters. This equation

expresses a Gaussian odor plume with a width that increases and magnitude that decreases with

distance from the odor source.

During navigation, when the model organism encounters an odor plume, Kenyon cell activity is

assumed to be proportional to the pattern of activity evoked by an odor (as before, a random

pattern that activates 10% of Kenyon cells) scaled by c(Δx1, Δx2). The network further receives

4-dimensional wind direction input via Wext. Each input is given by [w ·hi]+, where w is a unit vector

representing wind direction and hi for i = 1 . . . 4 is a unit vector pointing in the anterior, posterior,

or lateral directions with respect to the model organism.

The organism is initially placed at the origin and at an angle distributed uniformly on the range

[π
2 (1−γ), π

2 (1+γ)], with γ increasing linearly from 0 to 0.5 during the optimization. The movement

of the organism is given by two readouts of the feedback neurons. The first determines the forward

velocity u(t) = Softplus(Wu · r(t)+bu), and the second determines the angular velocity ω(t) = Wω ·

r(t)+bω. The weights and bias parameters of these readouts are included in the parameter vector

θ that is optimized using gradient descent. For each trial, the loss is determined by the Euclidean

distance of the model organism from the rewarded odor source at the end of the navigation interval
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(Eq. 7). Networks were optimized for 500 epochs.

Code availability

Code implementing the models will be made available upon publication.
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