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Abstract 

Social controllability, the ability to exert control over others, is critical in social interactions yet 

uninvestigated. Here, we used functional neuroimaging and a social exchange paradigm in which 

people’s current choices either did, or did not, influence their partners’ proposals in the future. 

Computational modeling revealed that participants used future-oriented thinking and calculated 

the downstream effects of their current actions regardless of the controllability of the social 

environment. Furthermore, greater levels of estimated control correlated with better performance 

in controllable interactions and less illusory beliefs about control in uncontrollable interactions. 

Neural instantiation of trial-by-trial values of social controllability were tracked in the 

ventromedial prefrontal cortex (vmPFC), striatum, and insula for controllable interactions, but 

only in vmPFC for uncontrollable interactions. These findings demonstrate that humans use 

future-oriented thinking, a strategy similar to model-based planning, to guide social choices; and 

that subjective beliefs about social controllability might not be grounded in reality. 
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Future thinking and social control 

From Hamlet to Hamilton, from the Great Gatsby to the Great War, power and control are 

central themes of almost all human interactions throughout history. Being in control is almost 

always preferred. One reason is that it can indicate one’s superior social status in a hierarchical 

structure such as being the king in a monarchy or the CEO of a company. However, even in non-

hierarchical relationships, social controllability can confer actual benefits such as access to more 

resources. One example is business negotiations, where controllability is crucial for exerting 

influence over one’s counterparts to achieve desired monetary outcomes. Furthermore, 

controllability in general has been also associated with better mental health outcomes such as 

higher subjective well-being1 and less negative affect2,3. However, the neurocomputational 

mechanisms that underlie how individuals exert control over others during social interactions 

have not been examined. 

 

We hypothesize that social controllability is implemented through future thinking in humans. 

This hypothesis is based on a major advance in recent decision-making literature – the 

emergence of computational and normative models demonstrating how people use ‘model-based’ 

planning to simulate the future and exert behavioral control, rather than merely relying on 

reinforcement learning of cached values alone (so-called 'model-free’ planning)4–6. Similar 

concepts have been applied to model iterative interactions such as the trust game7, where people 

plan future interactions with the same partner. In social contexts, one’s current choices could 

contribute to one’s reputation and thus have a long-lasting effect on future social interactions. 

Thus, we predict that this mode of future-oriented control would be crucial for strategic social 

interactions with multiple partners as well, such that a social agent takes into account not only 

decision variables related to the present, but also those related to the future.  

 

In future planning during social interaction, one’s subjective belief about the level of control 

could also have a key role. Given its importance, we might hope that individuals derive their 

beliefs about controllability from actual interactions. However, it is well established that human 

beliefs need not be perfectly calibrated or rooted in reality8. Pertinent to controllability, previous 

studies have shown that overly optimistic beliefs about control in environments with little or no 

controllability (i.e., an illusion of control8) could impede performance in gamblers8, traders9, and 

drivers10. In contrast, pessimistic beliefs of no control when environments are controllable (i.e., 

hopelessness or helplessness) have also been associated with negative affect and relevant neural 

circuits3. Indeed, subjective beliefs about social controllability might not necessarily be grounded 

in the actual controllability of one’s social interactions; such a disconnection could also be 

counterproductive and even, in extreme cases, be indicative of psychiatric symptoms11,12. Our 

second hypothesis is that during social interactions, humans’ subjective beliefs about control 

could also be an independent dimension from the actual controllability exerted in these 

interactions.  

 

To test the two aforementioned hypotheses – 1) future thinking serves as a mechanism for social 

controllability, and 2) actual social control exerted during interactions and subjective beliefs 

about control (i.e. based on self-reports) could be two independent dimensions –, we used 

computational modeling, fMRI, and a social exchange paradigm (see Fig. 1 and Methods). 

Forty-eight healthy individuals participated in the task where they could (‘In Control’; 40 

rounds) or could not (‘No Control’; 40 rounds) influence their partners’ proposals of monetary 

offers in the future (see Fig. 1a,b, and Methods for details). Participants were told that they were 
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Future thinking and social control 

playing members coming from two different teams, one each for the two control conditions (in a 

counterbalanced order across subjects); in fact, they played with a computer algorithm in both 

cases. Supplementary Notes 1 provides the task instruction provided to participants; 

Supplementary Fig. 1a-c describes a control experiment where participants were explicitly told 

they were playing against a computer algorithm.  

 

Against each team, participants played as the responder in 40 rounds of a typical ultimatum 

game13. In the No Control condition, on each round, participants were offered a split of $20 from 

their partners (unbeknownst to participants, the actual offer was randomly drawn from a normal 

distribution, except the first offer which was always $5) and decided whether to accept or reject 

the offer. Here, participants’ current choices had no influence on the next offers from their 

partners. In contrast, under the In Control condition, participants’ decisions to accept or reject the 

current offer influenced the next offers from their partners in a systematic manner. Subject only 

to being between $1 and $9 (inclusive), partners increased the next offer by $0, $1, or $2 

(probability of ⅓ each, subject to the constraints) if the participant rejected the present offer, and 

decreased the next offers by $0, $1, or $2 (probability of ⅓ each, again subject to the constraints) 

if the participant accepted the current offer (Fig. 1b and Methods). Again, the starting offer was 

$5. On 60% of the trials, participants were asked about their emotional state after they made a 

choice (i.e., 24 ratings per condition; see Supplementary Fig. 2), and at the end of the task, they 

were asked to rate how much control they believed they had over their partners in each condition 

(using a 0-100 scale). 

 

Note that participants were not instructed about the statistics of the task environment nor the 

nature of the condition they were playing; although the instruction about the existence of two 

separate teams was provided to encourage participants to learn contingent rules and norms within 

each condition. If participants were able to detect social controllability correctly within each 

condition, they would be expected to show strategic decisions that exert appropriate level of 

control over others’ subsequent choices.  

 

 

Results 

 

Participants exerted control over others in controllable interactions. We first examined 

whether participants were able to detect the difference in controllability between the two social 

environments without explicit instruction. Our primary measures here were the offer sizes 

participants received in each condition; their rejection behaviors; and their self-reported level of 

perceived control.  If individuals learned the contingency of controllable condition, we should 

observe that 1) offers received under In Control would be pushed up to a higher level than those 

under No Control; 2) people would need to reject more offers to obtain larger future offers under 

In Control than No Control; and 3) people would report higher perceived control for In Control 

than for No Control.  

 

First, we found that despite the same starting offer of $5, participants received higher offers over 

time under In Control compared to No Control condition (Fig. 2a1, 2), indicating that individuals 

in general successfully exerted control over their partners without being explicitly instructed 

whether or not they had control.  
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Future thinking and social control 

 

Next, we examined the rejection patterns for both conditions. On average, rejection rates in the 

two conditions were comparable (Fig. 2b1). By dissociating all trials in three levels of offer sizes 

(low: $1-3, medium: $4-6, and high: $7-9), we found that participants were more likely to reject 

medium to high ($4-9) offers when they had control, while they showed comparable rejection 

rates for the low offers ($1-3) between the two conditions (Fig. 2b2). These results suggest that 

participants behaved in a strategic way to utilize their influence over the partners. One possible 

confound is that individuals may have experienced different affective states in the two 

conditions, thus changing choice behaviors. However, this seemed unlikely because there was no 

significant difference in emotional rating between In Control and No Control conditions 

(Supplementary Fig. 2).  

 

As additional evidence about participants’ knowing and purposeful rejection behaved under In 

Control, we compared the self-reported belief about control between the two conditions. As 

expected, participants reported higher perceived control for In Control than No Control (Fig. 2c), 

indicating that participants were aware of the difference in controllability between the two 

conditions. Nevertheless, the mean level of perceived control for No Control was 42.3%, which 

was still substantially higher than 0%. This result suggests that participants suffered an illusion 

of control when they had no control over their partners’ offers. Taken together, these findings 

demonstrate that participants learned controllability on their own and that they were able to raise 

the offers of the computer program by rejecting when they were given control, despite having 

developed some level of illusion of control. We investigate the mechanisms underlying these 

behaviors in the next sections. 

 

Participants used future thinking to exert social control regardless of the actual 

controllability of the environment. Next, we sought to probe what cognitive processes would 

underlie such perception and behavior, by building computational models of participants’ 

choices. Previous studies on value-based decision-making have shown that people can use 

future-oriented thinking and mentally simulate future scenarios when their current actions have 

an impact on the future4,5,14. Relying on this framework, we hypothesized that individuals use 

future thinking to estimate their control over others and the values of exerting social control 

before making choices. To test this hypothesis, we constructed a set of future thinking (FT) 

models which assume that an agent computes the values of action (here, accepting or rejecting) 

by summing up the current and the future values based on her estimation of the amount of 

control she has over the social interactions. This model also incorporates norm adaptation15 to 

characterize how people calculate subjective values in social settings16 (versus non-social 

decision-making) and how to use these value signals to guide social choices (see Methods for 

details). The key individual-level parameter-of-interest in this model is estimated control, δ, 

representing the influence that participants thought they would have on the offer changes (see 

Methods). Moreover, we considered the number of steps one calculates into the future (i.e. 

planning horizon; Fig. 3a). We compared models that considered one to four steps further in the 

future in addition to model-free reinforcement learning and standalone social learning both 

considering only the current step without future thinking. In model fitting, we excluded the first 

five trials since we focused on the mechanism of exerting control rather than that of learning 

control. We also excluded the last five trials because the behavior could be different at the end of 
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the episodes (e.g., “It is not worth trying to influence the partner on the 40th trial, since there are 

no future interactions”).  

 

The results showed that for both conditions (In Control, No Control), all FT models significantly 

better explained participants’ choices than the model-free reinforcement learning and the 

standalone norm learning model without future thinking15, indexed by Bayesian Information 

Criteria (BIC) scores (Fig. 3b, c). These results suggest that participants engaged in future-

oriented thinking and specifically, calculated how their current choice might affect subsequent 

social interactions, regardless of the actual level of controllability of the environment. The FT 

models with longer planning horizon tend to show smaller BIC scores (i.e., better model fit), but 

the fit improvement became marginal after two steps (Fig. 3b, c). The 2-step FT model predicted 

participants’ choices with an average accuracy rate of 83.7% for In Control (Fig. 3d) and 90.1% 

for No Control (Fig. 3e). Model recovery test also confirmed that all the parameters in the 2-step 

FT model were identifiable (Supplementary Fig. 3a-j). We thus used parameters from the 2-

step FT model for subsequent neural analyses (see Table 1 for a full list of parameters from this 

model).  

 

The estimated control parameter δ captured trait-like characteristics. There are two 

possible interpretations about the estimated control δ, the key parameter in the 2-step FT model. 

First, the estimated control parameter δ could be a behavioral manifestation of illusion of control, 

consistent with the self-reported belief about control in the No Control environment shown in 

Fig. 2c; or second, the estimated control δ could reflect one’s general tendency to have a sense of 

control. To examine these possibilities, we conducted four subsequent analyses regarding 

individually estimated δ from In Control and No Control conditions. First, we found that the 

estimated control estimates were higher for In Control than for No Control (Fig. 4a), indicating 

that participants simulated greater levels of control when environments were in fact controllable 

than when they were uncontrollable. Second, δ estimates for In Control and No Control were 

correlated with each other (Fig. 4b), indicating that the estimated control has trait-like 

characteristics. This was not the case for the self-reported belief about control (Supplementary 

Fig. 4a).  

 

Third, under In Control, those who estimated greater control were more likely to raise the offers 

higher (Fig. 4c), suggesting a positive association between estimated control and task 

performance during the In Control condition. In contrast, under the same In Control condition, 

there was no significant correlation between the estimated control and self-report belief about 

control (Fig. 4d), or between self-reported beliefs and task performance (Supplementary Fig. 

4b). Last, we found that under No Control, the estimated control parameter δ was anticorrelated 

with self-reported perceived control (Fig. 4e). That is, those who estimated greater control during 

the task were less likely to end up with illusion of control at the end of the task. This result 

suggests that in uncontrollable social environments, using forward planning to estimate control 

helps detecting uncontrollability. While this finding seems counterintuitive at a first glance, we 

speculate that people with larger δ ended up experiencing larger prediction errors in the face of a 

lack of control, thus reporting reduced illusion of control at the end of the task.  Taken together, 

this finding suggests that the δ parameter is not just another index of illusion of control and is 

unlike the self-reported beliefs; the estimated control parameter from the 2-step FT model 

reveals distinct individual characteristics that self-reports could not capture. 
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Future thinking and social control 

Estimated values of social controllability were computed in overlapping, yet different 

neural regions in controllable and uncontrollable interactions. An important validation for 

any algorithm used by an information-processing system is the identification of the physical 

instantiation of the algorithm (e.g. the brain)17. Thus, to validate further that people did use 

future thinking to exert social control, we examined whether decision values drawn from the FT 

model were computed in the brain. We regressed trial-by-trial simulated values of the chosen 

option drawn from the 2-step FT model as parametric modulators against event related blood-

oxygen-level-dependent (BOLD) responses recorded during fMRI (see Methods). We found that 

the BOLD signals in the vmPFC tracked the value estimates in both In Control (Fig. 5a, 

Supplementary Table 1) and No Control conditions (Fig. 5b, Supplementary Table 2). This is 

consistent with the findings that vmPFC signals a common currency in value-based decision 

making in both social18 and non-social domains19. Additionally, the ventral striatum and anterior 

insula also encoded these value signals in the In Control condition (Fig. 5a, Supplementary 

Table 1), but not in the No Control condition (Fig. 5b, Supplementary Table 2). We further 

extracted the beta values from these ROIs for each condition (Fig. 5c-e). This set of analyses 

suggested that indeed, vmPFC encoded value signals regardless of the actual controllability of 

the environment, and there was no difference in the beta estimates of the vmPFC between the 

two conditions (Fig. 5c). In sharp contrast, both ventral striatum (Fig. 5d) and anterior insula 

(Fig. 5e) showed stronger encoding of these value signals in In Control, compared to No Control. 

Taken together, these neuroimaging results suggest that people used overlapping (i.e. vmPFC) 

yet different (e.g. striatum and insula) neural substrates to encode simulated social values in 

controllable and uncontrollable interactions. 

 

 

Discussion 

 

For social animals like humans, it is crucial to be able to identify situations where one is in 

control versus situations where the rules regulating strategic interactions are uncontrollable, and 

then to exert that social control when environment allows. The current study provides a 

mechanistic account for how people exert control over others during a social interaction. We 

demonstrate that 1) people are able to exert social control successfully through future thinking, a 

mechanism captured by our computational model; 2) greater levels of control estimated by our 

participants correlated with better performance in controllable interactions and less illusion of 

control (e.g. self-reported beliefs) in uncontrollable interactions; and 3) values of social control 

were computed in the vmPFC, striatum, and insula for controllable interactions, but only in 

vmPFC for uncontrollable interactions. These findings demonstrate that people use future-

oriented thinking to guide social choices, a process implemented in various neural regions 

important for value-based decision-making. 

 

Future thinking is an important high-level cognitive process that is frequently associated with 

abstract reasoning20, planning21, and model-based thinking4,5,22–24. Also known as prospection, 

future thinking has been suggested to involve four modes: mental simulation, prediction, 

intention, and planning21. All four modes are likely to have taken place in our study, as our FT 

model implies that a social decision-maker mentally simulates social value functions into the 

future, predicts how her action would affect the following offers from partners, sets a goal of 

increasing future offers, and plans steps ahead to achieve the goal. Future studies will be needed 
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to disentangle the neurocomputational mechanisms underlying each of these modes. Critically 

relevant to the future thinking literature, previous research on model-based control suggests that 

when faced with relatively novel, dynamically changing environments, decision-makers build 

and use an internal model or a cognitive map of simulated future states4,5,22–24. Despite several 

distinctions between our future thinking model and existing model-based or pre-play models of 

cognition, the current study supports this model-based control framework and further expands it 

to the social decision-making domain. Specifically, our 2-step FT model assumes that individuals 

not only use the current value, but also take the future consequences of their current actions into 

account to make social choices. This modeling result was corroborated by neural findings of 

simulated social value encoding in the vmPFC across both conditions. In addition to its role in 

encoding ‘the common currency’ of values in non-social decision-making19, the vmPFC has been 

shown to encode social decisions as well, such as computing ‘other-conferred utility’18 and 

combining social values with reward-based learning signals25. More recently, this region has also 

been shown to represent mental maps of state space23 and of conceptual knowledge22, in addition 

to other ‘map’-encoding brain structures such as the hippocampus26,27 and entorhinal 

cortex28.Thus, our results are consistent with these previous findings and further expand the role 

of vmPFC to compute mentally estimated values of social control. 

 

Given our results, it is compelling to design tasks that focus on the way that subjects learn the 

model (in our terms, acquiring a value for the parameter 𝛿) in early trials or build complex 

models of their partners’ minds (as in a cognitive hierarchy29). Indeed, even though, in our task, 

the straightforward model based on norm-adjustment characterized participants’ behavior well, 

there are more sophisticated alternatives that are used to characterize interpersonal interactions, 

such as the framework of interactive partially-observable Markov decision processes7,30,31. These 

might provide additional insights into the sorts of probing that our subjects presumably 

attempted in early trials to gauge controllability (and the ways this differs in both In and No 

Control conditions between subjects who do and do not suffer from substantial illusions of 

control). They would also allow us to examine whether our subjects thought that their partners 

built a model of them themselves (as in theory of mind or a cognitive hierarchy29), which would 

add extra richness to the interaction, and allow us to capture individual trajectories more finely – 

if, for instance, our subjects might have become irritated7 at their partners’ unwillingness to 

respond to their social signaling under No Control condition.  

 

One surprising finding from the current study is that people also used the 2-step FT model for the 

No Control condition, suggesting that they still estimated some level of control over their 

partners even when environment was in fact uncontrollable. At a first glance, estimated control 

derived from our model may seem as another index of subjective illusion of control (i.e. faulty 

belief that one has control even in uncontrollable environments). However, a closer examination 

suggests that the estimated control here reflects a dimension that is different from self-reported 

beliefs about control. Unlike the inconsistency of self-report beliefs (i.e. low correlation between 

belief ratings from In Control and No Control), estimated control (δ) from two different 

conditions were consistent within-subject, suggesting that this estimated control is capturing a 

trait-like characteristic. Furthermore, higher levels of estimated control in the No Control 

condition actually relates to reduced illusion of control, suggesting some potential positive 

outcomes of trying to exert control even in the No Control condition. We speculate that 1) people 

still attempted to simulate future interactions in uncontrollable situations due to their innate 
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preference and tendency to control32,33, and 2) those with higher levels of estimated control 

potentially experienced larger prediction errors and thus ended up with less illusion of control. 

Lastly, we also found that individuals who showed higher δ performed better in achieving higher 

offers from their partners under In Control, suggesting a direct association between future 

thinking and performance in strategic social interaction. These results demonstrate that the future 

thinking model and importantly the estimated control parameter captured a cognitive dimension 

that is distinct from self-reported beliefs about control, consistent with previous reports about the 

divergence between subjective and objective measures (e.g. 34,35).  

 

In sum, the current study provides a mechanistic account for how people exert control over social 

others and how belief plays a role during social exchange. The implications of these findings 

could be far-reaching and multifaceted. First, the finding of engaging future-oriented thinking in 

environments can help optimize normative social behavior, as often required during strategic 

social interaction (i.e. bargaining, negotiation). Second, our findings related to beliefs suggest 

that when beliefs are not grounded in reality, they can often be counter-productive in normative 

behavior, which are also a hallmark of many psychiatric disorders (e.g. schizophrenia). These 

findings might additionally imply that cognitive treatments that specifically target distorted 

beliefs may now be implemented and evaluated in a quantitative way. 

 

 

Online Methods 

 

Participants. The study was approved by the Institutional Review Board of the University of 

Texas at Dallas and the University of the Texas Southwestern Medical Center (S.N., V.G.F, and 

X.G.’s previous institute where data were collected). Participants were recruited in the Dallas-

Fort Worth metropolitan area. 56 healthy adults (38 female, age = 27.3 ± 9.2, 3 left-handed) 

provided written informed consent and completed this study. Five participants were excluded 

due to behavior data loss caused by computer collapse, one participant was excluded due to 

fMRI data loss, one participant was excluded due to excessive in-scanner head motion, and one 

participant was excluded due to poor quality of parameter recovery. The final sample had 48 

healthy adults (33 female, age = 27.6 ± 9.1, 3 left-handed). Participants were paid a reward 

randomly drawn from the outcomes of this task, in addition to their baseline compensation 

calculated by time and travel distance. 

 

Task. We designed an economic exchange task to probe social controllability based on an 

ultimatum game. This task consisted of two blocks, each representing an experimental condition 

(‘In Control’ vs. ‘No Control’). In both conditions, participants were offered a split of $20 by a 

partner and decided whether to accept or reject the proposed offer from the partner. If a 

participant accepted the proposal, the participant and the partner split the money as proposed. If a 

participant rejected the proposal, both the participant and the partner received nothing. At the 

beginning of each block, participants were instructed that they would play the games with 

members of Team A or Team B. This instruction allows participants to perceive players in each 

block as a group with a coherent norm, rather than random individuals. However, participants 

were not told how the players in each team would behave so that participants would need to learn 

the action-offer contingency. There were 40 trials in each block. In 60% of the trials, participants 

were also asked to rate their feelings after they made a choice. 
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In the No Control condition, participants played a typical ultimatum game: the offers were 

randomly drawn from a truncated Gaussian distribution (μ = $5, σ = $1.2, rounded to the nearest 

integer, max = $8, min = $2) and participants’ behaviors had no influence on the future offers.  

Importantly, in the In Control condition, participants could increase the next offer from the 

partner by rejecting the current offer, or decrease the next offer by accepting the present offer in 

a probabilistic fashion (⅓ chance of ±$2, ⅓ chance of ±$1, ⅓ chance of no change; the range of 

the offers for In Control was between $1 and $9 (inclusive) – the range was not matched for the 

two conditions unintendedly.) (Fig. 1b). We designed this manipulation based on the finding that 

reputation plays a crucial role in social exchanges36–38; thus, in a typical ultimatum game, 

accepting any offer (although considered perfectly rational by classic economic theories39) will 

develop a reputation of being “cheap” and eventually lead to reduced offers, while the rejection 

response can serve as negotiation power and will force the partner to increase offers. At the end 

of each condition, participants also rated how much control they perceived using a sliding bar 

(from 0-100%).  

 

Computational modeling. We hypothesized that people would estimate their social 

controllability by using the consequential future outcomes to compute action values. To test this 

hypothesis, we constructed a future-oriented value function with different lengths of time 

horizons: zero to four steps of future planning whereby zero-step represents the no planning 

model. For comparison purpose, we also considered model-free valuation4. 

 

First, we assumed that participants correctly understood the immediate rules of the task as 

follows: 

𝑎𝑖 ∈ {0, 1} 

𝑟𝑖 = {
0    if 𝑎𝑖 = 0
𝑠𝑖    if 𝑎𝑖 = 1

}.  

 

𝑎𝑖 represents the action that a participant takes at the 𝑖th trial where 0 representing rejection and 

1 representing acceptance. 𝑟𝑖 is the reward a participant receives at the 𝑖th trial depending on 𝑎𝑖. 

Participants receive nothing if they reject whereas they receive the offered amount, 𝑠𝑖, if they 

accept.  

 

Similar to our previous work on norm adaptation15, we assumed that people are averse to norm 

violations, defined as the difference between the actual offer received and one’s internal norm / 

expectation of the offers. Thus, the subjective utility of the expected immediate reward was 

constructed as follows.  

𝑈(𝑟𝑖, 𝑓𝑖) = {
𝑟𝑖 − 𝛼 max[𝑓𝑖 − 𝑟𝑖, 0]     if 𝑟𝑖 > 0
0                                        if 𝑟𝑖 = 0

}. 

 

Here, 𝑈, the utility, is a function of the reward and 𝑓(“internal norm”) at the 𝑖th trial. The 

internal norm, which will be discussed in detail in the next paragraph, is an evolving reference 

value that determines the magnitude of subjective inequality. 𝛼 (“sensitivity to norm violation”, 

0 ≤ 𝛼 ≤ 1) represents the degree to which an individual is averse to norm violation. We 

assumed that if one rejected the offer and received nothing, aversion would not be involved as 

the individual already understood the task rule that rejection would lead to a zero outcome. 
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Given that, if there is only one isolated trial, participants will choose to accept or reject by 

comparing 𝑈(𝑠𝑖, 𝑓𝑖) and 𝑈(0, 𝑓𝑖) = 0.  

 

For the internal norm updating, as our previous study15 showed that Rescorla-Wagner (RW)40 

models fit better than Bayesian update models, we used RW norm updates to capture how people 

learn the group norm throughout the trials as follows. 

𝑓𝑖 =  𝑓𝑖−1 + 휀(𝑠𝑖 − 𝑓𝑖−1). 
 

Here, 휀 is the norm adaptation rate (0 ≤ 휀 ≤ 1), the individual learning parameter that 

determines the extent to which the newly observed offer is reflected to the posterior norm. The 

initial norm was set as a free parameter ($0 ≤ 𝑓0 ≤ $20). 

 

Next, we formulated internal valuation as follows. 

∆𝑄𝑖 = 𝑣|𝑎𝑖=1 − 𝑣|𝑎𝑖=0 

 

∆𝑄𝑖, the difference between the value of accepting (𝑣|𝑎𝑖=1) and the value of rejecting (𝑣|𝑎𝑖=0), 

determines the probability of taking either action at the 𝑖th trial. Importantly, we incorporated 

future thinking procedure in calculation of 𝑣. For a n-step future thinking model, 𝑣 was 

calculated as follows.  

𝑣|𝑎𝑖
= 𝑈(𝑟𝑖, 𝑓𝑖) + ∑ 𝛾𝑗 × 𝑈(�̂�(𝑟𝑖+𝑗|𝑎𝑖, �̅�𝑖+1, … �̅�𝑖+𝑗), 𝑓𝑖)

𝑛

𝑗=1

 

�̂�(𝑠𝑘+1) = {
𝑠𝑘 + 𝛿                    if 𝑎𝑘 𝑜𝑟 �̅�𝑘 = 0
max(𝑠𝑘 − 𝛿, 1)    if 𝑎𝑘 𝑜𝑟 �̅�𝑘 = 1

}.  

�̅�𝑘 = {
1    if 𝑈(�̂�(𝑠𝑘), 𝑓𝑘) > 0

0                   otherwise
}.  

 

 

Given a hypothetical action 𝑎𝑖 in the current (𝑖th) trial, 𝑣 is the sum of the expected future reward 

utility assuming simulated future actions, �̅�. We used the term �̂� to represent an expected value 

in individuals’ perception and estimation. We assumed that in individual’s future thinking, her 

hypothetical action at the future trial (�̅�𝑘) increases or decreases the hypothetical next offer 

(�̂�(𝑠𝑘+1)) by 𝛿 (‘estimated control’, −$2 ≤ 𝛿 ≤ $2). Here, we assumed symmetric change (𝛿) 

for either action so the change applies to both rejection and acceptance with the same magnitude 

but in the opposite direction. We assumed that simulated future actions (�̅�𝑘) are deterministic 

contingent on the subjective utility of the immediately following rewards (𝑈(�̂�(𝑠𝑘), 𝑓𝑘)); this is 

a form of 1-level reasoning in a cognitive hierarchy29. The future values computed through 

estimated control was discounted by 𝛾, the temporal discounting factor. We fixed 𝛾 at 0.8, the 

empirical mean across the participants from one initial around of estimation, in order to avoid 

collinearity with the parameter of our interest, 𝛿.  

 

We modeled the probability of accepting the offer using the softmax function as follows: 

𝑃𝑖(𝑎𝑖 = 1) =
𝑒𝛽∆𝑄𝑖

1 + 𝑒𝛽∆𝑄𝑖
 .  
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Here, 𝛽 (‘inverse temperature’, 0 ≤ 𝛽 ≤ 20) indicates how strictly people base their choices on 

the estimated value difference between accepting and rejecting. The lower the inverse 

temperature is, the more exploratory the choices are. 

 

Model-free valuation was built as follows: 

𝑄𝑖+1(𝑠𝑖, 𝑎𝑖) = 𝑄𝑖(𝑠𝑖, 𝑎𝑖) + 휁𝜃𝑖 

𝜃𝑖 = 𝑈(𝑟𝑖, 𝑓𝑖) +  𝛾max(𝑄(𝑠𝑖+1, 1), 𝑄(𝑠𝑖+1, 0)) − 𝑄𝑖(𝑠𝑖, 𝑎𝑖) 

∆𝑄𝑖 = 𝑄(𝑠𝑖, 1) −  𝑄(𝑠𝑖, 0) 

 

That is, after the reward (𝑟𝑖) and the next offer (𝑠𝑖+1) is observed, the value of the offer given the 

chosen action (𝑄(𝑠𝑖, 𝑎𝑖)) updates the reward prediction error (‘RPE’), 𝜃𝑖 , with a learning rate of 

휁 (0 ≤ 휁 ≤ 1). The actual rewards compared with the prediction in RPE consist of the utility of 

the immediate reward and the discounted value of the observed following offer, where the value 

of the following offer assumes deterministic greedy choice at the corresponding trial, consistent 

with the model-based valuation. ∆𝑄𝑖, the difference in values between accepting and rejecting, 

was entered to the softmax function in the same way as the model-based valuation. 

 

We fit the model to individual choice data for the middle 30 trials. We cut the first 5 trials in 

which one might be still learning the contingency between their action and the outcomes. Also, 

we excluded the last 5 trials since the room to increase the offers becomes smaller and 

participants had less incentive to reject offers, as the interactions were close to the end 41. 

 

fMRI data acquisition and pre-processing. Anatomical and functional images were collected 

on a Philips 3T MRI scanner. High-resolution structural images were acquired using the MP-

RAGE sequence (voxel size =1 mm × 1 mm × 1 mm). Functional scans were acquired during the 

participants proceeded the task in the scanner. The detailed settings were as follows: repetition 

time (TR) = 2000 ms; echo time (TE) = 25 ms; flip angle = 90°; 38 slices; voxel size: 3.4 mm × 

3.4 mm × 4.0 mm. The functional scans were preprocessed using standard statistical parametric 

mapping (SPM12, Wellcome Department of Imaging Neuroscience; www.fil.ion.ucl.ac.uk/spm/) 

algorithms, including slice timing correction, co-registration, normalization with resampled 

voxel size of 2mm × 2mm × 2mm, and smoothing with an 8mm Gaussian kernel. A temporal 

high-pass filter of 128 Hz was applied to the fMRI data and temporal autocorrelation was 

modeled using a first-order autoregressive function. 

 

fMRI general linear modeling. We specified GLM with a parametric modulator of the chosen 

actions’ values estimated from the 2-step FT model for each condition at the individual level 

using SPM12. The event regressors were 1) offer onset, 2) choice submission, 3) outcome onset, 

and 4) emotion rating submission. The parametric modulator was entered at the event of choice 

submission. In addition, six motion parameters were included as covariates. After individual 

model estimation, we generated the contrast images of whole-brain coefficient estimates of the 

chosen value. At the group level, we conducted a one-sample t-test for the simulated value 

regressor. Whole brain level analysis was thresholded at voxelwise P < 0.005 uncorrected and P 

< 0.05 family-wise error (FWE). Activations of regions of a priori interest (ROIs; including the 

vmPFC, striatum, and insula, based on their roles in value-based42 and social decision-making43) 

were determined using small volume correction44. For the ROI analysis for chosen value signals 

(Fig. 5c-e), the ventral striatum (a 4mm-radius sphere centered at [12, 6, -14]), left anterior 
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insula (a 8mm-radius sphere centered at [-36, 18, -14]), and right anterior insula (a 8mm-radius 

sphere centered at [32, 20, -12]) were taken from the peak voxels for chosen values under In 

Control condition. ROIs were extracted using the MarsBaR toolbox45. 
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Table 1. Parameter estimates from the 2-step future thinking (FT) model. 

 

  
Inverse 

temperature 

Sensitivity to 

norm violation 
Initial norm 

Adaptation 

rate 

Estimated 

control 

  β α μ ε δ 

In Control           

Mean 8.33      0.76      8.21      0.24      1.33      

SD 8.55      0.29      7.14      0.24      0.79      

No Control      

Mean 10.38      0.79      8.84      0.29      0.98      

SD 8.84      0.31      6.96      0.24      0.62      
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a 

 
 

Figure 1. Experimental paradigm. (a) Participants played a social exchange task based on the 

ultimatum game. There were two blocks, one ‘In Control’ condition and the other ‘No Control' condition. 

The order of the condition was counterbalanced. Each block had 40 trials. In each trial, participants 

needed to decide whether to accept or reject the split of $20 proposed by virtual members of a team. 

Participants rated their emotions after their choice in 60% of the trials. Upon the completion of the game, 

participants rated their subjective beliefs about control for each block. (b) The schematic of the offers (the 

proposed participants’ portion of the split) generation under In Control condition. Under the In Control 

condition, if participants accepted the offer at trial t, the next offer at trial t+1 decreased by 0, 1, or 2 (1/3 

chance each). If they rejected the offer, the next offer increased by 0, 1, or 2 (1/3 chance for each option).  

Such contingency did not exist in the No Control condition, where the offers were randomly drawn from a 

Gaussian distribution (μ = 5, σ = 1.2, rounded to the nearest integer, max = 8, min = 2) and participants’ 

behaviors had no influence on future offers. 

  

d = {0, 1, 2} 

b 
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Figure 2. Model agnostic behavioral results. (a1) Participants raised the offers along the trials when 

they had control, compared to when they had no control. (a2) The mean offer size was higher for the In 

Control condition than the No Control condition (meanic = 5.9, meannc = 4.8, t(47.48) = 4.28, P < 0.001). 

(b1) The overall rejection rates were not different between the two conditions (meanic = 50.2%, meannc = 

48.6%, t(67.75) = 0.39, P = 0.70). (b2) However, participants were more likely to reject middle ($4-6) 

and high ($7-9) offers when they had control (paired t test: low($1-3) meanic = 77%, meannc = 87%, t(22) 

= -1.38, P = 0.18, middle($4-6) meanic = 65%, meannc = 44%, t(47) = 5.26, P < 0.001, high($7-9) meanic 

= 28%, meannc = 8%, t(40) = 4.57, P < 0.001). Each offer bin for In Control condition in c2 represents 23, 

48, and 41 participants who were proposed corresponding offers at least once, whereas each bin for No 

Control condition represents all 48 participants. (c) The perceived control ratings were higher for In 

Control than No Control (meanic = 65.9, meannc = 42.3, t(76.99) = 4.48, P < 0.001; Six participants did 

not report perceived control ratings for at least one condition and were excluded from the ratings 

analysis). The t-statistics for the mean offer size, overall rejection rate, and perceived control are from 

two-sample t tests assuming unequal variance according to the results of the F-test for equal variance 

(offer: stdic = 1.8, stdnc = 0.1, F(47, 47) = 194.38, P < 10-40; overall rejection rate: stdic = 12%, stdnc = 

25%, F(47, 47) = 0.23, P < 10-5;  perceived control: stdic = 20.3, stdnc = 28.8, F(45, 43) = 0.50, P < 0.05). 

Satterthwaite’s approximation was used for the effective degrees of freedom for t-test with unequal 

variance. The variance did not significantly differ for the binned rejection rates. Errorbars represent 

s.e.m.. ***P < 0.001, n.s. indicates not significant. 

 

 

 

 

a1 a2 c 

b1 b2 
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Figure 3. Computational modeling of social controllability. (a) The figure displays how the expected 

value of the offers evolve contingent on the choice along the future steps for In Control condition. To 

examine how many steps of horizon participants might simulate to exert control, we tested the candidate 

models considering zero to four steps of future horizon in addition to model-free learning. (b-c) For both 

In Control (b) and No Control (c) condition, the future thinking (FT) models better explained 

participants’ behavior than the model-free learning and the no simulation model. The 2-step FT model 

was selected for the further analysis, as the marginal improvement in the BIC score drops for the longer 

simulation models (paired t-test comparing 2-step FT model with: (i) model-free learning IC t(47) = -

13.50, P < 10-17 NC t(47) = -18.61, P < 10-22; (ii) 0-step IC t(47) = -4.45, P < 0.0001 NC t(47) = -4.21, P 

< 0.001; (iii) 1-step IC t(47) = -4.41, P < 0.0001 NC t(47) = -3.01, P < 0.001; (iv) 3-step IC t(47) = 0.39, 

P = 0.70 NC t(47) = -0.04, P = 0.97; (v) 4-step IC t(47) = 0.06, P = 0.95 NC t(47) = -0.12, P = 0.91). The 

error bar represents the standard error of the mean. *** P < 0.001, ** P < 0.01. (d-e) The choices 

predicted by the 2-step FT model were matched with individuals’ actual choices with an average accuracy 

rate of (d) 83.7% for In Control (e) and 90.1% for No Control.  
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Figure 4. Estimated social control. (a) The levels of estimated control drawn from the 2-step future 

thinking (FT) model were higher for In Control than for No Control (meanic = 1.33, meannc = 0.98, t(47) = 

2.90, P < 0.01). (b) Estimated control showed trait-like characteristics in the sense that parameter 

estimates between the two conditions were positively correlated. (c) Under In Control, estimated control 

correlated with the mean offers. (d) Under In Control, estimated control was not significantly correlated 

with self-reported belief about control. (e) Under No Control, estimated control was anticorrelated with 

self-reported belief about control, suggesting that those who simulated higher level of control during the 

task ended up with more accurate perception of controllability. *P < 0.05, ** P < 0.01. 
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Figure 5. Neural computation of estimated values of social controllability. (a) For In Control (IC) 

condition, the ventromedial prefrontal cortex (vmPFC), ventral striatum, and insula encoded the mentally 

simulated values  of the chosen actions drawn from the 2-step future thinking (FT) model.  (b) For No 

Control (NC) condition, only vmPFC, but not ventral striatum or insula encoded the estimated total values 

of the chosen actions drawn from the 2-step FT model. (Displayed at P < 0.005, uncorrected, k > 15. 

Cluster significance determined at P < 0.05 family-wise error (FWE), small volume correction). (c) ROI 

analyses showed that vmPFC encoding of simulated values was not statistically different between IC and 

NC (parameter estimate meanic = 0.09, meannc = 0.06, t(47) = 0.79, P = 0.43). d-e) ROI analyses also 

suggests that d) ventral striatum (parameter estimate meanic = , meannc =, t(47) = 2.09, P < 0.05,) and e) 

anterior insula value signals (parameter estimate right anterior insula meanic = 0.10, meannc = 0.01, t(47) = 

2.26, P < 0.05; left anterior insula meanic = 0.11, meannc = -0.02, t(47) = 2.32, P < 0.05) were significantly 

greater for In Control than No Control.  
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