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Abstract 

The biological effects of human missense variants have been studied experimentally for decades but 

predicting their effects in clinical molecular diagnostics remains challenging. Available computational 

tools are usually based on the analysis of sequence conservation and structural properties of the 

mutant protein. We recently introduced a new machine learning method that demonstrated for the first 

time the significance of protein dynamics in determining the pathogenicity of missense variants. Here 

we present a significant extension that integrates coevolutionary data from Pfam database and we 

also introduce a new interface (Rhapsody) that enables fully automated assessment of pathogenicity. 

Benchmarked against a dataset of about 20,000 annotated variants, the methodology is shown to 

outperform well-established and/or advanced prediction tools. We illustrate the utility of our approach 

by in silico saturation mutagenesis study of human H-Ras. The tool is made available both as a 

webtool (rhapsody.csb.pitt.edu) and an open source Python package (pip install prody-

rhapsody).    
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Introduction 

Single Nucleotide Polymorphisms (SNPs) are single DNA base pair changes that are inherited 

(germline variants) or occur during the organism’s lifetime (somatic variants). A SNP located in a 

coding region of the DNA may lead to translation of the gene codon into a different amino acid than 

the wild-type (non-synonymous SNPs), giving rise to a Single Amino acid Variant (SAV or missense 

variant). Both synonymous and non-synonymous SNPs can perturb the normal activity of a cell. For 

example, synonymous SNPs, can affect splicing, regulatory mechanisms and gene and/or protein 

expression levels although they do not affect the gene product’s sequence. SAVs can additionally 

have molecular effects in multiple ways, e.g. by affecting a protein’s active sites, its interaction with 

other proteins, or its stability.  

More than half of the mutations implicated in human inherited diseases are estimated to be associated 

with SAVs (Stenson et al., 2017). As a result, devising analytical and computational approaches for 

predicting the effect of point mutations has been of broad interest, but equally challenging due to 

complex interrelated effects in the cell. In recent years, it became evident that comprehensive 

approaches integrating multiple perspectives are the only viable solutions to achieve higher accuracy 

in pathogenicity predictions and to interpret experimental data at the molecular level. In the case of 

SAVs, this means understanding not only the significance of the mutated amino acid vis-à-vis the 

biochemical activity of the protein, often captured by sequence-based conservation models, but also 

its importance for the fold stability and conformational mechanics and interactions, both intra- and 

intermolecular (Ancien et al., 2018).  

Sophisticated analytical tools that focus on protein sequence conservation and residue coevolution, 

such as context-dependent modeling of sequence evolution (Feinauer and Weigt, 2017; Hopf et al., 

2017) reached a good level of maturity in recent years. These computational tools predict the 

pathogenicity of missense variants by estimating the mutant’s fitness based on the reconstructed 

evolutionary history of the protein and comparative studies of its orthologs.  

In contrast, structure-based modeling approaches have been lagging behind, even though classifiers 

that take account of 3D structures have shown considerable success (Adzhubei et al., 2010; Ancien et 

al., 2018). This class of computations has been limited by two factors: first, they are possible only 

when the 3D structure of the protein is known, either from experiments or from comparative modeling. 

Second, even when a structure is available, the traditional methods to investigate the effect of 

missense variants require expensive computations such as molecular dynamics (MD) simulations. 
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Such simulations do not lend themselves to genome-scale analyses; they are applicable on a case-by-

case basis only and are limited by the time and space limitations of MD simulations. 

Yet, recent years have seen a rapid growth in the structural characterization of the proteome with 

advances in structure determination (e.g. cryo-EM) technologies. In parallel, computationally efficient 

methods such as those based on Elastic Network Models (ENMs) have been developed, which 

efficiently provide insights into the intrinsic dynamics of proteins uniquely defined by their inter-residue 

contact topology (Bahar et al., 2010). Many analytical tools have been developed within the framework 

of ENMs, which focus on different aspects of protein equilibrium dynamics, both on a local (e.g. 

fluctuations in residue positions) and a global (e.g. coupled domain movements and allosteric 

switches) scale. ENMs have been broadly used for mechanistic studies of protein activities, but their 

potential utility in genome-scale studies of the impact of mutations became clear only in recent studies 

(Ponzoni and Bahar, 2018; Rodrigues et al., 2018).  

The rapidly growing experimental data on the functional impact of missense variants and on protein 

structures provide a unique opportunity for building upon that first generation of pathogenicity 

predictors to develop and make accessible a classifier trained not only on well-established sequence- 

and structure-dependent properties, but also on intrinsic dynamics, derived from ENMs. A first attempt 

in that direction (Ponzoni and Bahar, 2018) yielded promising results and paved the way to the current 

development and implementation of Rhapsody, an advanced tool and user-friendly server for Rapid 

high-accuracy prediction of SAV outcome based on dynamics, accessible at rhapsody.csb.pitt.edu.  

The inclusion of dynamics-based features distinguishes Rhapsody from tools broadly used in the field 

for evaluating the pathogenicity of SAVs, e.g. PolyPhen-2 (Adzhubei et al., 2010), SIFT (Ng and 

Henikoff, 2003), CADD (Kircher et al., 2014) and others [see (Grimm et al., 2015) for a comparative 

review]. In addition to sequence-, structure- and dynamics-based features (Ponzoni and Bahar, 2018), 

the underlying algorithm now (i) incorporates conservation and coevolution features extracted from 

Pfam domains, inspired by the success of recent studies in the field (Feinauer and Weigt, 2017; Hopf 

et al., 2017), (ii) utilizes a refined dataset of about 20,000 human missense variants, built from 

consensus between clinical interpretations of variants found in multiple databases (DBs), (iii) is 

implemented as a standalone package, which may be used in conjunction with our ProDy API  (Bakan 

et al., 2014, 2011). The server offers the option of using as input customized PDB structures, such as 

those stabilized under different conformational and oligomerization states along an allosteric cycle as 

well as those resolved for orthologues or obtained by comparative modeling.  

The utility of Rhapsody is illustrated by way of application of human H-Ras, a highly conserved G-

protein belonging to Ras subfamily of small GTPases, and comparison with deep mutational scanning 
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data for this protein reported by Kuriyan, Ranganathan and coworkers (Bandaru et al., 2017). The new 

tool provides not only an efficient independent assessment of the pathogenicity of mutations, but also 

mechanistic insights into the molecular basis of the observed and/or predicted effect.  

Results 

Development of a new generation of dynamics-based pathogenicity predictors 

We consider three groups of features, sequence-based (SEQ), structure-based (STR) and dynamics-

based (DYN), in a Random Forest classifier (Ponzoni and Bahar, 2018). In the original version of the 

algorithm (“reduced” classifier in Fig 1A), SEQ features were computed by the PolyPhen-2 server 

(Adzhubei et al., 2010), STR features by using structural data from the Protein Data Bank (PDB) 

(Berman et al., 2000) and DYN features by the ProDy API (Bakan et al., 2014, 2011). This classifier 

was shown in previous work to achieve accuracy levels comparable to, if not better, than 11 existing 

tools (Ponzoni and Bahar, 2018). The current “full” version also evaluates the site entropy and 

coevolution properties of the mutated amino acid using Pfam domains (El-Gebali et al., 2019) and 

uses scores from BLOSUM62 amino acid substitution matrix (Henikoff and Henikoff, 1992). A detailed 

description of the features is presented in Table S1 and in the Methods section. As will be presented 

below in more details, the “full classifier” outperforms the “reduced” classifier, based on various 

metrics (Fig 1B). This comes with a cost, however: the coverage is reduced as the tool requires that a 

variant be localized in a conserved Pfam domain of a protein.  

Construction of an integrated dataset 

A dataset of labelled (deleterious/neutral) human SAVs for training the algorithm has been generated 

by combining five publicly available datasets [HumVar (Adzhubei et al., 2010), ExoVar (Li et al., 2013), 

PredictSNP (Bendl et al., 2014), VariBench (Thusberg et al., 2011), SwissVar (Mottaz et al., 2010)] 

with the Humsavar DB of all human missense variants annotated in the UniProtKB/Swiss-Prot DB 

(“UniProt: a worldwide hub of protein knowledge,” 2019) and the ClinVar archive of reports on the level 

of concordance between human variations and phenotypes (Landrum et al., 2016). Table S2 provides 

information on the content of these datasets and their level of agreement. After filtering out discordant 

labels, we obtained a new “Integrated Dataset” (IDS) of 87,726 SAVs, of which 27,655 could be 

mapped onto PDB structures, a prerequisite for computing STR/DYN features, and 23,085 had PDB 

structures with at least 150 residues (see below for details about the choice of an optimal lower cutoff 

for the size of PDB structure).  

The ClinVar DB provides a reliability assessment for each variant interpretation, on a scale between 0 

to 4 (best) “review stars”, based on the number and consensus between the sources. In a preliminary 
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analysis (Fig. 1C), we measured the average Area Under the ROC curve (AUROC) attained by the full 

classifier in a 10-fold cross-validation procedure while gradually excluding from the IDS those SAVs 

with lower rating. Notably, the exclusion of SAVs with 0 stars (assigned to variants with “no assertion” 

or “no assertion criteria provided”) resulted in a sizeable increase in accuracy (blue curve in Fig. 1C). 

This was followed by marginal improvements when excluding the 1-star (“single submitter” or 

“conflicting interpretations”) SAVs and a plateau/decrease after excluding the 2-star (“no conflicts and 

multiple submitters”), 3-star (“reviewed by experts”) and finally 4-star (“practice guideline”) SAVs. We 

therefore elected to exclude variants with 0-star ClinVar ranking only, which accounted for ~12% of 

cases. The final, optimized dataset (optIDS) is thus composed of 20,361 SAVs with at least 1 ClinVar 

review star and 150+-residue PDB structures. 

 

Fig. 1: Rhapsody features and prediction accuracy 

(A) List of random forest features organized into different classification schemes. See Methods and Table 

S1 for detailed descriptions. 

(B) Accuracy measurements of the three Rhapsody classification schemes compared to two other 

representative prediction tools, PolyPhen-2 and EVmutation. Light green bars (right ordinate) in the 

background represent the relative size of the datasets of variants used for cross-validation, in the case 

of Rhapsody, and testing for the other two methods. Blue, orange and gray bars represent the results 

from three metrics of accuracy, Area Under ROC curve, Area Under Precision-Recall Curve and Out-Of-

Bag score, respectively (left ordinate). See Methods and Table S2 for dataset composition. 

(C) Impact of excluding variants from the training dataset on the “full” Rhapsody classifier, based on their 

rating (review stars) in the ClinVar DB. The bars represent the numbers of SAVs (right ordinate) that 

could actually be processed by Rhapsody, in different subsets distinguished by different numbers of 

“stars” (or reliability levels) reported in ClinVar. The leftmost bar refers to the “complete” set with of 0 - 4 

stars; the 2nd bar excludes those with zero stars; the 3rd excludes those with 0 and 1 stars, and so on. 

The blue curve (left ordinate) displays the corresponding prediction accuracy levels (left ordinate).  
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Cross-validation and comparison with other tools 

The optimized integrated dataset (optIDS) of 20,361 SAVs was used for evaluating the accuracy of the 

classifier through cross-validation. In Fig. 1B, we compare the performances of three variants of 

Rhapsody against two other methods, PolyPhen-2 (Adzhubei et al., 2010) and EVmutation (Hopf et 

al., 2017). The former is a broadly used tool for predicting the functional effects of human variants, 

which relies on a supervised naïve Bayes classifier trained on annotations, conservation scores and 

structural features that characterize the amino acid substitution. It is chosen here as a representative 

tool among several other publicly available tools [many of which we considered and compared in our 

earlier work (Ponzoni and Bahar, 2018)] because of its widespread use. The second method, 

EVmutation, is arguably the most accessible and powerful among the recent wave of tools that 

leverage coevolution analysis for predicting the fitness of mutants, going beyond the limitations of 

conservation analyses by taking account of the inter-dependencies between pairs of sequence 

positions. The change in “evolutionary statistical energy” ΔE incurred upon mutation is directly 

interpreted as a proxy for the mutant fitness. However, a cutoff energy for binary classification of 

mutants as deleterious or neutral is not defined. 

The colored bars in Fig. 1B represent different metrics used for assessing the accuracy of each 

method. For the three Rhapsody variants on the left, we calculated the average AUROC, AUPRC 

(Area Under Precision-Recall Curve) and OOB (Out-Of-Bag) score from a 10-fold cross-validation on 

optIDS, while for PolyPhen-2 and EVmutation we plot the individual AUROC and AUPRC over the 

same dataset of variants. The light green bars in the background indicate the actual number of SAVs 

that could be evaluated by each approach. From the comparison, we notice that the “full” Rhapsody 

classifier outperforms both PolyPhen-2 and EVmutation according to both AUROC and AUPRC 

metrics. The introduction of Pfam-derived features, however, comes at the cost of a slightly decreased 

coverage, since Pfam domains often do not encompass the full span of a protein sequence, but only 

those portions that are preserved across species. In this regard, we notice that PolyPhen-2 has the 

widest scope, being able to return a prediction even for variants without a PDB structure. 

Beside the full and reduced versions of Rhapsody, we also considered a third option, which 

incorporates the EVmutation “epistatic” score ΔE into the feature set (“Rhapsody+EVmut”). This 

variant slightly improved the Precision-Recall tradeoff and OOB score, but it also reduced the number 

of SAVs it could be applied to. Of note, the integration of EVmutation and Rhapsody leads to 

significantly more accurate predictions than EVmutation used alone. 
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Contribution of selected features 

Fig. 2A illustrates the relative weights of features in the “Rhapsody+EVmut” version of the classifier. In 

parallel with previous findings (Ponzoni and Bahar, 2018), sequence-based features (wtPSIC, ΔPSIC 

and entropy of Pfam domain) rank higher than dynamics-based (ENM-derived) features, since the 

latter lack residue specificity and cannot distinguish between different types of amino acid 

substitutions. Dynamics-based features, in turn, prove to be more informative than a widely used 

structural property, solvent accessibility (SASA). We note that these features are not necessarily 

independent. The heat map in Fig. 2B provides a quantitative description of their similarities. Yet, their 

explicit inclusion in the training algorithm has assisted in increasing prediction accuracies. We note in 

this context that a remarkable weight difference between two coevolution properties, the “ranked” 

Mutual Information and EVmutation’s ΔE score, is also evident. We emphasize that the former was 

chosen for its simplicity, which makes it orders of magnitude faster to evaluate computationally than 

EVmutation scores, for which a DB of precomputed values was used in practice (Hopf et al., 2017). 

For real-time evaluation of coevolution properties, the integration of more efficient coevolution 

algorithms might be envisioned.  

Higher accuracy achieved with larger structures 

Fig. 2C illustrates the dependency of pathogenicity prediction accuracy on the minimum size of the 

PDB structure included in the evaluation of the STR and DYN features. An initial improvement in 

accuracy is observed when excluding structures with less than 150 residues and again when limiting 

the analysis to bigger structures with at least 500 residues. Such increased accuracy might be 

attributed to the importance of filtering out partially resolved protein structures and fragment that may 

not be suitable for computing overall structural and dynamical features. On the other side, the changes 

in the training dataset size and composition (blue and red curves, respectively, in Fig. 2D) might 

prevent a more direct detection of a correlation between PDB structures’ size and prediction accuracy. 

The non-monotonic behavior of the AUROC plot in Fig. 2C observed after the 150-residue cutoff could 

be attributed to the accentuated imbalance between deleterious and neutral variants in the training 

dataset. For these reasons, we deemed safe to set a minimum PDB size of 150 residues for our 

training examples (optIDS), where both dataset size and imbalance are maintained at more 

reasonable levels. 

In Fig. 2D, we also note the increased accuracy achieved in the full version (set of red/blue curves for 

different ENM models, see Methods for details) compared to the reduced version (yellow curve), that 

resembles the original implementation of the algorithm (Ponzoni and Bahar, 2018) which did not 

include coevolutionary features.  
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Overall, these results confirm the usefulness of including intrinsic dynamics features in the context of 

functional assessment of variants, and further demonstrate the power of adopting an integrative 

approach that incorporates coevolution analysis into supervised learning approaches, thus taking 

advantage of its superior predictive power compared to single amino acid conservation properties. 

 

Fig. 2: Analysis of the Rhapsody classifier 

(A) Relative weights of features from the training of the Rhapsody classifier including EVmutation’s ΔE 

score. See also Figure 2—figure supplement 1. 

(B) Spearman’s correlations between all considered features. 

(C) Cross-validation of different versions of the “full” Rhapsody algorithm (GNM vs ANM dynamics features, 

with and without environmental effects), on different subsets of the Integrated Dataset obtained by 

setting a minimum PDB structure size (i.e. number of resolved residues). In yellow, we show the 

performance of the previous version of the algorithm (RAPSODY) (Ponzoni and Bahar, 2018). See also 

Figure 2—figure supplement 2. 

(D) Training dataset size (blue) and fraction of positive training examples (i.e. deleterious SAVs, in red) as a 

function of the minimum number of residues used to filter PDB structures based on their size. 
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Application to H-Ras and comparison with experimental and clinical data  

Saturation mutagenesis analysis of human H-Ras protein 

Kuriyan, Ranganathan and workers recently presented results from deep mutational scanning of 

human H-Ras (Bandaru et al., 2017), a highly conserved signaling protein which transduces signals 

through a nucleotide-dependent switch between active (GTP-bound) and inactive (GDP-bound) 

conformations. In order to recreate the natural, wild-type environment of this G protein as closely as 

possible, they isolated a “minimal biochemical network” comprised of one of the protein’s effectors 

(Raf) and two regulatory factors (GAP and GEF). The impact of a single mutation on the protein’s 

normal activity was then experimentally linked to the survival of the hosting bacterial system and 

quantified by a “fitness score” (ΔE). Different contexts have been considered and compared, by 

excluding one (“attenuated Ras”) or all (“unregulated Ras”) regulatory elements and by introducing a 

background oncogenic mutation (“Ras-G12V”). For the purpose of our analysis, we mainly focus on 

the complete (“regulated Ras”) experimental setup, designed to include those regulatory factors that 

might constrain Ras sequence variability and that are necessary to obtain a realistic assessment of 

mutants’ fitness. 

Fig. 3 presents the results from our so-called “in silico saturation mutagenesis” analysis. The results 

are presented in a 20 x N heatmap (Fig. 3A), where the entries are the color-coded pathogenicity 

probabilities (see Figure 3—figure supplements 3) predicted for all 19 possible substitutions at each 

of the N = 171 structurally resolved sequence positions of H-Ras (Uniprot sequence ID: P01112). The 

entries corresponding to the wild type amino acids are in white. The table structure mirrors that of 

analogous tables of experimental fitness measurements (Bandaru et al., 2017).  

The structure-dependent (STR) and dynamics-based (DYN) features required by Rhapsody, were 

computed on the active, GTP-bound conformation of H-Ras (PDB ID: 6Q21, chain A). If allowed to 

automatically select a PDB structure, Rhapsody would select one of the inactive conformations (PDB 

ID: 4Q21, chain A), based on structure size alone. Repeating the computations for the latter showed 

that the predictions are very similar (see Figure 3—figure supplements 1 and 2), with the main 

differences localized at the switches I and II (Fig. 3B). These results are consistent with the 

robustness of ENM results to structural details, i.e. H-Ras structural dynamics is predominantly 

defined by its 3D fold, which defines its inter-residue contact topology, which in turn determines the 

intrinsically accessible spectrum of motions. Therefore, the potential impact of SAVs on collective 

mechanics can be inferred from either active or inactive form, provided that they retain the same 

overall fold.  
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Fig. 3: In silico saturation mutagenesis results for human H-Ras.  

(A) The predicted pathogenicity probabilities for all possible SAVs in H-Ras computed by Rhapsody are 

shown as a heatmap with a color code ranging from red (deleterious) to blue (neutral); see Methods for 

more details about the definition of pathogenicity probability. The corresponding residue-averaged 

pathogenicity profile is shown in red in the bottom panel, compared to analogous profiles from 

PolyPhen-2 (blue) and EVmutation (green) and from experimental fitness measures (grey). The two 

strips along the upper abscissa of the heatmaps display the secondary structure and solvent 

accessibility (SASA) along the sequence. The Rhapsody results are obtained for the structure in active 

state. The counterpart for the inactive form is presented in Figure 3—figure supplement 1. 

(B) Residue pathogenicities displayed by color-coded ribbon diagrams for active (top panel) and inactive 

(middle panel) H-Ras. Red and blue colors indicate the regions with high and low propensities for 

pathogenicity, respectively. The difference is shown in the bottom panel, with the respective purple and 

green regions referring to sites exhibiting increased and decreased pathogenicities in the active form. 

Note that the purple regions include the two switches involved in activation. 

 

At first glance, the heat maps in Fig. 3A show an alternating pattern of blue (neutral) and red 

(pathogenic) vertical bands that loosely correlate with either secondary structure or surface exposure 

of residues (top strips). Such a pattern can also be discerned in the bottom panels of Fig. 3A, which 

show the residue-based pathogenicity profiles (red line) computed upon averaging the entries in the 
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corresponding column of the maps. Analogous profiles obtained using PolyPhen-2 (blue), EVmutation 

(green) and experimental fitness scores for “regulated-Ras” (Bandaru et al., 2017) (-ΔE, gray) reveal 

an overall agreement between computational predictions and experimental data (see also Table S3).  

Comparison with experimental data shows that Rhapsody performs slightly better than EVmutation 

and PolyPhen-2 on the residue-averaged pathogenicity predictions. The Spearman’s rank-order 

correlations between computational results and experimental data for the “regulated” case (Fig. 4A) 

are |ρ| = 0.60 and 0.57 for Rhapsody predictions based on the inactive and active states, respectively, 

as opposed to |ρ| = 0.52 and 0.51 with EVmutation and PolyPhen-2; and both Rhapsody and 

EVmutation perform better than PolyPhen-2 in predicting individual fitness scores (|ρ| ≈ 0.42 vs 0.36). 

We also estimated the prediction accuracies using standard metrics such as AUROC and AUPRC. 

These, however, require a binary labelling of variants (neutral/pathogenic) that cannot be readily 

deduced from the distribution of experimental ΔE values, see Figure 4—figure supplement 2. We 

arbitrarily set the median of the distribution as a cutoff, while the 40th and 60th percentiles have been 

used to compute an uncertainty interval. The resulting ROC curves (Fig. 4B) confirm similar accuracy 

levels for Rhapsody and EVmutation, with respect to both individual (AUC) and residue-averaged 

(‹AUC›res) experimental data, and slightly lower accuracies for PolyPhen-2. Analogous conclusions 

emerge from the analysis of Precision-Recall curves, presented in Fig. 5A and Figure 5—figure 

supplement 1.  

Taken together, these results suggest that Rhapsody can be advantageously used for a first 

assessment of the regions that are most sensitive to mutations. Moreover, the consideration of a more 

diverse set of properties, such as dynamics-based features on top of sequence- and structure-based 

ones, as in Rhapsody, leads to improved prediction accuracy, and provides the opportunity of 

interpreting the observations in the light of structural and dynamic features of the investigated protein. 

A visualization of Rhapsody incorrect predictions on Ras 3D structure (Fig. 5B-C) reveals that most 

False Negatives are localized on the protein’s surface, while False Positives are generally found in 

less exposed positions. A possible explanation is that the method is inherently biased towards the 

identification of residues important for the fold stability or internal dynamics, while locations subjected 

to other kinds of constraints, e.g. allostery and interactions with other proteins and small molecules, 

are more difficult to evaluate with the current set of features. 
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Fig. 4: Pathogenicity predictions of human Ras protein variants 

(A) Scatter plots and Spearman’s ρ correlations between experimental fitness scores from (Bandaru et al., 

2017) and predictions from Rhapsody (based on inactive/active conformations), EVmutation and 

PolyPhen-2. Red circles correspond to residue-averaged values. See also Figure 4—figure 

supplement 1. 

(B) ROC curves for amino acid-specific (blue) and residue-averaged (red) predictions. The median of 

experimental ΔE measurements has been used as cutoff to assign binary labels to variants (see Figure 

4—figure supplement 2). 40th and 60th percentiles have also been considered and used to compute 

uncertainty bands, represented in figure by semi-transparent blue/red shades. See also Figure 4—

figure supplement 3. 

 

The systematic mischaracterization of gain-of-function variants (i.e. with ΔE > 0) in the “attenuated-

Ras” and “unregulated-Ras” assays in Figure 4—figure supplement 1, prompted us to consider an 

alternative classification of variants’ effects as pathogenic or neutral, used for AUROC and AUPRC 

calculations. In principle, any deviation from wild-type activity levels induced by a variant might be 

viewed as a negative outcome—including an increased activity. We, therefore, considered an 

alternative labelling scheme where both significantly negative (loss-of-function) and positive (gain-of-

function) fitness scores were interpreted as pathogenic, see Figure 4—figure supplement 4. 

Although performances of the classifiers do not change in most cases, we notice slightly higher 

accuracies in the “attenuated” cases (Figure 4—figure supplement 5). These results suggest that 

the interpretation of experimental data is of primary importance, and criteria for meaningful functional 

assessment of mutants must be set a priori based on the specific biological context. 
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Fig. 5: Analysis of Ras predictions 

(A) Precision-recall plot for individual (blue curve) and residue-averaged (red curve) Rhapsody predictions 

of experimental fitness values. Corresponding AUCs are 0.72 and 0.80 respectively. Analogous plots for 

EVmutation and PolyPhen-2 are reported in Figure 5—figure supplement 1. 

(B) Scatter plot of Rhapsody predicted pathogenicity probabilities vs experimental measurements. 

(C) False Positives (green) and False Negatives (red) highlighted in plot (B) and displayed on the protein 

structure (active conformation). 

 

Analysis of H-Ras variants in gnomAD  

We tested our predictions on a set of human variants found in healthy individuals, as collected by the 

gnomAD database (Karczewski et al., 2019). The assumption is that those substitutions seen in the 

140,000 people tested (mostly normal population) are somewhat permissive. We therefore compared 

the distribution of predictions obtained by Rhapsody on this set of gnomAD SAVs with the 

corresponding fitness scores from the experimental study considered above (Bandaru et al., 2017). 

The results, illustrated in Fig. 6, show that the predictions for the gnomAD SAVs are skewed towards 

“neutral” classification in both distributions, with 49 out of 82 total variants classified as “neutral” or 

“probably neutral” by our algorithm. Of note, 3 out of 4 “high count” SAVs (i.e. seen in 10 or more 

people) are interpreted as non-pathogenic by Rhapsody, while 2 out of 4 SAVs have a fitness score 

ΔE, as measured in the saturation mutagenesis study, significantly lower than the wild-type amino acid 

(when choosing the median of all values as cutoff). 
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Fig. 6: Analysis of H-Ras SAVs from gnomAD database 

H-Ras SAVs (dark blue dots) collected from the gnomAD database found in healthy population are shown along 

with the results for all SAVS (light blue dots) on the scatter plot between Rhapsody pathogenicity probabilities 

and experimental fitness scores reported in (Bandaru et al., 2017). “High-count” SAVs (yellow stars) were seen 

in at least 10 individuals. The marginal plots show the corresponding distributions computed for all variants ( light 

blue) and gnomAD variants (dark blue). 

 

Discussion 

In this paper, we presented a novel machine learning approach for evaluating the functional impact, or 

“pathogenicity”, of human missense variants and illustrated its application to H-Ras. The newly 

introduced interface, Rhapsody, integrates dynamical features computed from ENMs of protein 

structures and attains a state-of-the-art prediction accuracy with a relatively simple design. We also 

highlighted how the method can be used not only for hypothesis generation (pathogenicity predictions 

of variants of unknown significance) but also for hypothesis testing, by providing a unified framework 

for comparing the predictive power of new as well as more established features. For instance, we 

demonstrated the potential of including in our machine-learning algorithm the ENM-derived dynamics-

based features, in addition to more traditional conservation and structural features, and emphasized 
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the need for a better integration with coevolution analysis, whose recent application to variant 

pathogenicity predictions produced outstanding results.  

Through the analysis of saturation mutagenesis studies and other experimental and clinical data, we 

identified the strengths and limitations of our approach, and compared it against other prediction tools. 

We observed a general robustness of computational predictions, especially in the identification of 

residue sites that are sensitive to any mutation, regardless of the specific amino acid substitution. This 

information can be invaluable for the study of the functional mechanisms of proteins, especially when 

projected on the 3D structures. The use of structure-based properties, in combination with sequence 

conservation properties (“reduced” classifier), remains as a valid replacement for the more 

sophisticated coevolutionary analysis, whenever the latter cannot be applied due to lack of suitable 

multiple sequence alignments (MSAs). 

The comparison with clinical and experimental data also revealed a few issues that, in our opinion, 

ought to be resolved in order to advance the field. Beside the more obvious shortcomings, such as the 

imbalance of available datasets towards pathogenic variants and the often-contradictory clinical 

interpretations found in different DBs, we reported our difficulties in interpreting data from more recent 

large-scale experimental studies. These studies provide a unique opportunity for dramatically 

increasing the size of training datasets. However, there is a need for a systematic definition of what is 

considered as a “pathogenic” variant, that would account for both loss-of-function and gain-of-function 

effects in relation to the biological context of the affected protein.  

We expect future improvements to our method to address some of these shortcomings. Future 

developments will primarily focus on the definition of better structure-based features, for instance by 

using residue-specific ENMs (Kaynak et al., 2018), and on the identification and selection of more 

context-dependent structural data, e.g. the biological assembly rather than the asymmetric unit usually 

reported in the PDB. A recent ENM study has demonstrated how the consideration of the intact 

structures of multimers, complexes or assemblies improves the accuracy of predicted fluctuation 

spectrum of residues, and predictions from that server (DynOmics) (Li et al., 2017) could be used for 

evaluating context-dependent structural and dynamic properties. For example, a region that is deemed 

to be tolerant to mutations by virtue of its solvent-exposure in the PDB resolved structure, may actually 

represents a buried site in the physiologically relevant complex/assembly in which it participates, and 

a substitution at that region could alter its binding properties or interfacial packing. Another important 

property is protein-protein interactions. A recent study has demonstrated how disease-associated 

SAVs are likely to be located at singlet hot spots at protein-protein interfaces (Ozdemir et al., 2018). 
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Consideration of the involvement of residues in interfacial interactions is expected to improve the 

prediction accuracy of current algorithms 

We will also consider permanently including “coevolution-based” features into our algorithm, by either 

querying DBs of precomputed scores, as done with EVmutation, or by implementing interfaces to 

external libraries for Direct Coupling Analysis (DCA) [EVcouplings (Hopf et al., 2018), PconsC4 

(Michel et al., 2018), Gremlin (Ovchinnikov et al., 2014), plmDCA (Ekeberg et al., 2014)]. A direct 

implementation would allow for much more flexibility in both fine-tuning the feature definitions, for 

instance by introducing normalizations that were shown to improve their predictive power (Feinauer 

and Weigt, 2017), and in the selection of MSAs for DCA calculations. MSAs could be either obtained 

from up-to-date DBs, such as Pfam, or built from scratch (as done by PolyPhen-2) whenever Pfam 

domains cannot be found, or even manually provided by the user. This upgrade would also make it 

possible to derive approximate dynamics information from the inferred contact map, thus 

circumventing the need for 3D structures (Butler et al., 2018), and to extend the analysis to non-

human proteins. 

Another possible improvement would be the consideration of the signature dynamics of the protein 

family to which the investigated protein belongs, as opposed to the dynamics of the protein alone 

(Zhang et al., 2019). In the same way as variations in sequence among family members point to sites 

that can, or cannot, tolerate mutations, family-based analyses can provide deeper insights into sites 

whose mechanistic properties are indispensable for function or for differentiation among subfamily 

members. Finally a decomposition of the mode spectrum and focus on the global modes could help 

extract information on high-energy localization (hot) spots, emerging as peaks in high frequency 

modes, which would likely be pathogenic if substituted by a larger size amino acid, as well as those 

residues at the flexible (hinge) region between domains, where an opposite effect (replacement of a 

small amino acid, like Gly or Ala, by a larger/stiffer one) may be detrimental (Dorantes-Gilardi et al., 

2018; Rodrigues et al., 2018; Sayılgan et al., 2019). It remains to be seen if incorporation of such 

features in our random forest algorithm can assist in further improving the accuracy of pathogenicity 

predictions.   

The Rhapsody algorithm is provided both as an open-source Python package (pip install 

prody-rhapsody) and a web tool (rhapsody.csb.pitt.edu). The latter has been designed as a 

user-friendly service that requires minimal user input or computing skills, but also allows for some 

customization, such as selecting or uploading a specific PDB structure. The Rhapsody webserver can 

be used for both obtaining predictions on a list of human missense variants (batch query) and for 

visualizing a complete in silico saturation mutagenesis analysis of a human sequence, akin to those 
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presented in Fig. 3 for H-Ras. Finally, the site offers tutorials, training data (optIDS) and precomputed 

features needed for reproducing all results presented here, or for analyzing new variants. The 

documentation also explains how to train a model on a completely different set of features and using a 

different training dataset, thus providing researchers with a flexible tool for analyzing personalized 

datasets and testing new predictors with the help of all the functionalities implemented in Rhapsody. 

Materials and Methods 

Datasets of SAVs 

The detailed composition of the Integrated Dataset (IDS) of annotated SAVs used for training and 

testing of the Rhapsody classifier is shown in Table S2. Five datasets, namely HumVar (Adzhubei et 

al., 2010), ExoVar (Li et al., 2013), predictSNP (Bendl et al., 2014), VariBench (Sasidharan Nair and 

Vihinen, 2013) and SwissVar (Mottaz et al., 2010), were already considered in the first implementation 

of the algorithm (Ponzoni and Bahar, 2018) and the actual data and labels were extracted from a 

published review of prediction tools (Grimm et al., 2015). In addition, we included data from Uniprot’s 

Humsavar DB of annotated human missense variants (release: 2018_03) (“UniProt: a worldwide hub 

of protein knowledge,” 2019) and from ClinVar, a public archive of associations between human 

variants and phenotypes (release: Feb. 20, 2019) (Landrum et al., 2016). The resulting dataset, after 

discarding SAVs with conflicting interpretations, contained 87,726 SAVs, of which 27,655 could be 

mapped to a PDB structure, see Table S2. About 70% of SAVs were labelled as “deleterious”. 

Random forest and features  

All features used by the random forest classifier are summarized in Fig. 1A and detailed in Table S1. 

In brief, the reduced classifier is similar to the original version presented in (Ponzoni and Bahar, 2018): 

it uses a combination of two sequence-based conservation features, extracted from the output of 

PolyPhen-2 (Adzhubei et al., 2010); one structural property, the solvent-accessible surface area 

computed by the DSSP algorithm (Touw et al., 2015) on PDB structures; four dynamical features 

[mean square fluctuation, perturbation-response scanning (Atilgan and Atilgan, 2009) 

effectiveness/sensitivity and mechanical stiffness (Eyal and Bahar, 2008) of a residue], based on ENM 

representation of protein structures [either Gaussian Network Model (GNM) (Li et al., 2016) or 

anisotropic network model (ANM) (Eyal et al., 2015)]; and substitution scores from the BLOSUM62 

matrix (Henikoff and Henikoff, 1992). In addition to these, the full classifier also includes two 

sequence-based features computed on Pfam domains (El-Gebali et al., 2019): the Shannon entropy at 

the mutation site and its (ranked) average Mutual Information (MI) with respect to all other sites in the 

conserved domain. The latter incorporates coevolution effects, yet such a simplistic (and 
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computationally feasible) approach does not significantly improve on single-site conservation analysis, 

see Fig. 2A. For this reason, we also considered a more advanced coevolution measure, the change 

ΔE in evolutionary statistical energy predicted by EVmutation (Hopf et al., 2017) epistatic model. 

Precomputed predictions of mutation effects provided by EVmutation have been both used for 

comparison and included as an additional feature in an expanded version of the classifier, see e.g. 

Fig. 1B. 

When computing ENM features, the presence of other chains in the PDB structure can be accounted 

for either by including environmental effects in an “effective” way, i.e. by modifying the Hessian matrix 

[“reduced” model (Ming and Wall, 2005; Zheng and Brooks, 2005)], or by explicitly extending the 

system to include all chains in the complex and using the portion of eigenvectors corresponding to the 

investigated system (“sliced” model). We evaluated the performances of each model (see e.g. Fig. 2C, 

where different classification schemes are compared, while simultaneously increasing the minimum 

size of PDB structures): The results proved to be robustly maintained, irrespective of the selected 

model, apart from a slightly better accuracy using ANM. However, no effort has been made for 

selecting biological assemblies (e.g. actual functional complexes rather than, for instance, 

crystallographic asymmetric units), a further development that we deem worthy of future 

investigations. 

The final score returned by the random forest classifier is converted to a “pathogenicity probability”, 

computed as the fraction of deleterious training examples that have been assigned with a similar score 

during cross-validation (see Figure 3—figure supplement 3). A pathogenicity class is also assigned 

based on a score cutoff chosen as to maximize the Youden’s index in the relative ROC curve 

computed during the cross-validation procedure. A similar criterion is used to define a binary 

classification from EVmutation’s epistatic score ΔE. 

The two main hyperparameters of the random forest classifier, the number of trees and the max 

number of features considered when looking for the best split, were optimized through 10-fold cross-

validation, see Figure 2—figure supplement 3. The open-source Python library scikit-learn was used 

for the implementation of the random forest classifier and accuracy metrics calculations. 

Data availability 

The “Tutorials” section on the Rhapsody website (rhapsody.csb.pitt.edu) contains all the data and 

Python scripts needed to replicate the results illustrated in this paper. The training dataset (IDS) is 

also included in the public release of the Rhapsody package available on the Python Package Index 

(PyPI) and relative git repository (see “Download” section on the website) and can be used for the 
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training of a customized version of the classifier. Step-by-step instructions for local installation and 

usage, and on how to expand and contribute to the Rhapsody package can be found in the “Tutorials” 

section as well. 
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