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Abstract 

De novo protein-coding innovations sometimes emerge from ancestrally non-coding DNA, despite the 

expectation that translating random sequences is overwhelmingly likely to be deleterious. The “pre-

adapting selection” hypothesis claims that emergence is facilitated by prior, low-level translation of non-

coding sequences via molecular errors. It predicts that selection on polypeptides translated only in error 

is strong enough to matter, and is strongest when erroneous expression is high. To test this hypothesis, 

we examined non-coding sequences located downstream of stop codons (i.e. those potentially 

translated by readthrough errors) in Saccharomyces cerevisiae genes. We identified a class of “fragile” 

proteins under strong selection to reduce readthrough, which are unlikely substrates for co-option. 

Among the remainder, sequences showing evidence of readthrough translation, as assessed by 

ribosome profiling, encoded C-terminal extensions with higher intrinsic structural disorder, supporting 

the pre-adapting selection hypothesis. The cryptic sequences beyond the stop codon, rather than 

spillover effects from the regular C-termini, are primarily responsible for the higher disorder. Results are 

robust to controlling for the fact that stronger selection also reduces the length of C-terminal 

extensions. These findings indicate that selection acts on 3′ UTRs in S. cerevisiae to purge potentially 

deleterious variants of cryptic polypeptides, acting more strongly in genes that experience more 

readthrough errors. 

 

  

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 25, 2019. ; https://doi.org/10.1101/737452doi: bioRxiv preprint 

https://doi.org/10.1101/737452
http://creativecommons.org/licenses/by/4.0/


3 
 

Introduction 

One of the more surprising recent developments in molecular evolution is that adaptive protein-coding 

innovations sometimes arise out of DNA sequences that were previously non-coding. Sometimes only 

part of a protein arises in this way, via new or expanded coding exons (Sorek 2007), or via annexation of 

3′ untranslated regions (UTRs) (Giacomelli, et al. 2007; Vakhrusheva, et al. 2011; Andreatta, et al. 2015) 

or 5′ UTRs (Wilder, et al. 2009) into an ORF. More dramatically, completely new protein-coding genes 

can also arise de novo (reviewed in McLysaght and Guerzoni 2015; Van Oss and Carvunis 2019). This 

contradicts the classic stance that it is implausible under modern conditions of life for a useful protein to 

appear de novo from a random sequence of nucleotides with no history of selection (Zuckerkandl 1975; 

Jacob 1977).  

As an example of how important a history of selection is for protein function, consider amino acid 

composition. Hydrophilic residues promote intrinsic structural disorder (ISD), i.e. a propensity to avoid 

stable conformational structures and instead exist as a dynamic ensemble of many conformational sub-

states separated by low energy barriers (Guharoy, et al. 2015). Disordered regions are a key component 

of many proteins and perform important functions such as scaffolding and DNA binding (Uversky 2013; 

Habchi, et al. 2014; Guharoy, et al. 2015). Disordered proteins are also less prone to toxic aggregation 

(Linding, et al. 2004; Angyan, et al. 2012). Proteins are more disordered than would be expected from 

the translation of intergenic (Wilson, et al. 2017) or frameshifted (Willis and Masel 2018) sequences, as 

a consequence of a history of selection on their protein products. 

The de novo evolution of a protein-coding sequence occurs when a “co-option” mutation converts a 

non-coding sequence into a coding sequence, e.g. a point mutation destroys a stop codon, or a mutation 

makes an intergenic ORF more prone to translation. Prior to such a co-option mutation taking place, we 

call the hypothetical gene product a “potential polypeptide.” Naïvely, we do not expect potential 

polypeptides to have been previously exposed to the selection needed to purge dangerous (e.g. 

excessively hydrophobic) sequence variants. However, this is not a foregone conclusion, because 

potential polypeptides are translated at low levels, as a consequence of widespread spurious 

transcription (Clark, et al. 2011; Tisseur, et al. 2011; Palazzo and Lee 2015; Neme and Tautz 2016; 

Blevins, et al. 2019) and translation (Wilson and Masel 2011; Ruiz-Orera, et al. 2014; Ji, et al. 2015; Ruiz-

Orera, et al. 2018; Blevins, et al. 2019; Durand, et al. 2019). 
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The products of this spurious translation of non-coding sequences provide a preview of the effects of 

possible future co-option mutations (fig. 1). To show how, consider the case of reading beyond a stop 

codon. When a ribosome skips a stop codon, the same sequence beyond the stop codon is translated as 

would become the norm were a mutation to destroy or frameshift that stop codon. When this 3′ UTR 

sequence contains a backup stop codon, a stop codon readthrough error and a stop codon mutation will 

append the same C-terminal extension to a protein (fig. 1A and 1B). If no backup stop codon exists, both 

will trigger non-stop mediated mRNA decay (Vasudevan, et al. 2002) (fig. 1C and 1D). If a backup stop 

codon exists, but the extension sequence is unfavorable, the protein may be targeted for degradation 

(Arribere, et al. 2016). In all three cases, we refer to the sequence beyond the stop codon as a “cryptic 

sequence.” The cryptic sequence encodes both the consequences of expressing the potential 

polypeptide via readthrough, and the consequences of a future stop codon loss mutation. Normally, we 

consider selection as always occurring after mutation. But because a stop codon readthrough error 

previews a future stop codon mutation, selection on the consequences of a mutation can act before 

mutation occurs. 

This similarity between the consequences of a gene expression “error” in the present and a mutation in 

the future is not restricted to stop codon loss. For example, splicing errors/splice site mutations can 

include an intron in an existing ORF, and near-cognate start codons can easily mutate to become 

constitutive start codons. More broadly, mutations might also convert a promiscuous enzymatic or 

binding interaction into a constitutive one (Khersonsky and Tawfik 2010; Pal and Papp 2017). While we 

focus here on stop codon readthrough, the principles we illustrate are broadly applicable. 

We expect the distribution of fitness effects (DFE) of errors to be a dampened version of the 

corresponding DFE of new co-option mutations, because translation errors lead to the same expression 

or degradation events, at lower levels. In general, the DFE of new mutations is bimodal, with strongly 

deleterious mutations forming one mode and relatively benign mutations (mostly weakly deleterious 

and neutral, but also including rare beneficial mutations) forming the other (Keightley and Eyre-Walker 

2007; Lind, et al. 2017). Intuitively, these two modes correspond, in the case of changes to an existing 

protein, to mutations that break their associated protein and are strongly deleterious, versus those that 

make a minor tweak and are relatively “benign.” We consider potential polypeptides to be “benign” or 

“deleterious” according to the DFE mode of their corresponding co-option mutation. In order for a co-

option mutation to contribute to evolutionary innovation, it must not cause too much collateral harm, 

i.e. it must co-opt a benign potential polypeptide (Masel 2006; Rajon and Masel 2011).  
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Some proteins may be resilient to mutations adding amino acids to their C-terminal, while other 

proteins may be “fragile,” corresponding to significant vs. negligible frequencies for the benign mode of 

the DFE of possible C-terminal extensions. For example, proteins with C-terminal ends that are ordered 

and buried within the folds of the protein structure, making an extension likely to disrupt folding, may 

be particularly fragile to stop codon mutations. 

If the DFE of translation errors is a dampened version of the DFE of new co-option mutations, then 

erroneous translation of benign potential polypeptides will be effectively neutral, and translation of 

strongly deleterious potential polypeptides will be only weakly deleterious, with the magnitude of 

deleterious-ness dependent on the error rate (Masel 2006; Rajon and Masel 2011). A mutation to a 

cryptic sequence that converts its erroneous expression from benign to deleterious will be effectively 

purged if and only if the deleterious effect of the corresponding potential polypeptide is strong enough 

and its translation by error is frequent enough (Xiong, et al. 2017). In other words, if errors occur 

frequently enough, potential polypeptides of strong effect will be exposed to enough selection to 

remove cryptic sequences with dangerous effects, leaving behind benign cryptic sequences that form 

better raw material for de novo innovations (Rajon and Masel 2011; Wilson and Masel 2011; Xiong, et al. 

2017).  

We use the term “pre-adapting” selection to describe selection that purges deleterious potential 

polypeptides before a co-option mutation occurs. The goal of this paper is to investigate whether pre-

adapting selection occurs in nature. The pre-adapting selection hypothesis has the potential to explain 

how de novo protein-coding sequences avoid toxicity and hence can sometimes be adaptive, by showing 

that they have a history of exposure to and purging by selection (Wilson and Masel 2011). 

Pre-adapting selection theory predicts that selective pressures on potential polypeptides are sometimes 

strong enough to purge deleterious variants, especially in populations of large effective population size. 

As a more testable corollary within a single genome, potential polypeptides expressed at higher levels 

are predicted to be more likely to be benign (Xiong, et al. 2017). To test this, we need both to quantify 

relative levels of erroneous translation of different potential polypeptides, and to identify correlates of 

polypeptide benign-ness, in order to show an association between the two. 

To measure erroneous translation, we focus on stop codon readthrough errors that preview de novo C-

terminal extensions to existing genes. While the translation of intergenic ORFs is perhaps of more 

interest because it previews complete de novo genes, de novo C-terminal extensions are more tractable 
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while still being relevant to de novo protein-coding evolution. Erroneous translation products, whether 

from an intergenic ORF or from part of a 3′ UTR, are difficult to detect by proteomic methods because 

they tend to be short and sparse, and may be targeted by degradation machinery (Arribere, et al. 2016). 

We therefore quantify translation through ribosomal association with transcripts. This is not 

straightforward for intergenic ORFs (Ruiz-Orera, et al. 2018; Durand, et al. 2019), e.g. transcriptional 

analysis must confirm that translation is contiguous, and unannotated functional proteins must be 

excluded. In contrast, cryptic sequences past the stop codon are not part of the functional protein (see 

paragraph below) and are already known to be contiguously transcribed. It is therefore straightforward 

to count ribosome profiling hits (“ribohits”) beyond the stop codon as a direct measure of readthrough. 

This is better than using protein abundance as an indirect measure of opportunities for readthrough, 

because highly abundant proteins tend to have lower readthrough rates per translation event (Bonetti, 

et al. 1995; Li and Zhang 2019). Our ability to directly quantify the amount of erroneous translation 

using ribohits makes stop codon readthrough a perfect test case for assessing whether pre-adapting 

selection can ever occur. 

One possible concern with using ribohits is that not all stop codon readthrough is necessarily in error. 

For example, Drosophila melanogaster has been shown to have significant functional (“programmed”) 

readthrough (Jungreis, et al. 2011). However, pervasive programmed readthrough seems to be 

phylogenetically restricted to Pancrustaceae (Jungreis, et al. 2016), and does not occur in our focal 

species of S. cerevisiae (Jungreis, et al. 2016; Li and Zhang 2019). We can therefore assume that ribohits 

to 3' UTR sequences indicate translational errors, rather than alternative already-functional protein 

products. Some ribohits might also indicate non-translating ribosomes, especially in mutant yeast 

(Guydosh and Green 2014; Young, et al. 2015; Yordanova, et al. 2018); appropriate ribosome profiling 

methodology (Gerashchenko and Gladyshev 2014; Miettinen and Björklund 2015) in wild-type yeast can 

reduce the scale of this problem. 

We expect benign polypeptides to share some traits, such as a tendency towards high ISD, with 

functional proteins that have been shaped by selection. Once such traits are identified, they can be used 

to differentiate potential polypeptides that are likely to be benign (and hence co-optable, as has been 

documented to occur (Giacomelli, et al. 2007; Vakhrusheva, et al. 2011; Andreatta, et al. 2015)) from 

those that are likely to be deleterious. We call these traits “preadaptations” because they are found 

prior to co-option and facilitate future adaptation. Longer extensions are more likely to do harm; this is 

reflected in their tendency to be degraded (Arribere, et al. 2016). Selection on cryptic sequences should 
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therefore shorten potential polypeptides. However, while documenting selection for short selection 

length can demonstrate that selection is powerful enough to act, shortness is not the most interesting 

benign trait with respect to potential to contribute to substantial (i.e. longer) protein-coding 

innovations. Our primary focus is therefore on high ISD as a preadaptation. 

The term “preadaptation” has a complicated history, so some discussion is warranted to avoid conflating 

our use with the various past uses of the term. Cuénot (1914) discussed “preadapted” characters that 

are either neutral or adaptive in one environment, then fortuitously become useful in a later 

environment (are co-opted) (Casinos 2017). Gould and Vrba (1982) took issue with this term, claiming it 

was implicitly teleological despite Cuénot’s explicit rejection of orthogenesis, and attempted to replace 

“preadaptation” with the mostly-synonymous term “exaptation” (Casinos 2017). Gould and Vrba (1982) 

distinguished between two types of exaptation, depending on whether co-option is of a character 

previously shaped by natural selection for a different function (an adaptation), versus a character not 

shaped by natural selection for any particular function (a nonaptation). Potential polypeptides are 

nonaptations.  

Gould and Vrba (1982) did not consider systematic variation among nonaptations in their probabilities 

that future co-option might be beneficial. In contrast, Eshel and Matessi (1998) argued that there may 

be systematic variation in suitability for future adaptive co-option. Such variation justifies the use of the 

prefix “pre-”, even in the absence of a teleological claim. Specifically, Eshel and Matessi (1998) used the 

term “preadaptation” to refer to the presence of cryptic genetic variants (i.e., co-optable nonaptations) 

whose effects are enriched for trait values with an elevated probability of being adaptive after an 

environmental shift. Populations become preadapted in this sense because future environmental 

changes tend to resemble existing marginal environments (Eshel and Matessi 1998).  

Masel (2006) similarly justified the use of the term “preadaptation” to describe a somewhat different 

process that also leads to systematic variation in suitability for co-option. When a stock of cryptic 

variants is expressed at low levels, it can be purged of variants in the deleterious mode of the DFE 

(which have no chance of becoming adaptive exaptations). As discussed above, this enriches, via a 

process of elimination, for variants in the benign mode, which have more adaptive potential. This 

process, which we here call “pre-adapting selection,” occurs when cryptic variants are not completely 

phenotypically silent, but are instead expressed at low levels (Masel 2006; Rajon and Masel 2011). Low 

expression of cryptic variants can also help cross fitness valleys (Whitehead, et al. 2008). 
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Here we follow Wilson et al. (2017) in using the term “preadaptation” to refer not to the process 

described by Masel (2006), but to a trait that systematically makes a protein less likely to be harmful. 

Our usage here thus distinguishes clearly for the first time between the process of “pre-adapting 

selection” and the existence of traits that are “preadaptations.” This distinction is necessary, because 

pre-adapting selection may be occurring even if the nature of preadaptations is unknown, while 

preadaptations might be identifiable even if pre-adapting selection is not in force. Preadaptation can 

simply refer to backward-time conditional probability; given that de novo gene birth occurred, new 

genes are more likely than the average non-coding sequence to have properties that facilitate gene 

birth. 

We hypothesize that cryptic sequences are subject to pre-adapting selection. Cryptic sequences with a 

history of higher levels of pre-adapting selection (e.g. due to higher expression) should therefore display 

more preadaptation, i.e. they should be more likely to be benign. High ISD/hydrophilicity is a 

preadaptation for sequences beyond stop codons (Arribere, et al. 2016), just as it is for the de novo birth 

of complete genes (Wilson, et al. 2017; Willis and Masel 2018). We test whether sequences beyond 

yeast stop codons that show more evidence of translation, as indicated by ribosomal profiling, encode 

higher ISD. 

Results 

Likely targets of non-stop decay have no readthrough ribohits  

Fragile proteins are those which are prone to breaking when a C-terminal extension is added. Their C-

terminal extensions are therefore unlikely to contribute to de novo evolution. Our ability to detect 

evolvability-relevant pre-adapting selection will be enhanced if we are able to identify and exclude the 

most fragile proteins. 

Proteins that are fragile to readthrough are expected to be under strong selection for low readthrough 

rates. In the rare cases where a fragile protein is read through, degrading the readthrough product can 

mitigate its harms. If a 3′ UTR has no backup stop codon, readthrough should trigger non-stop mRNA 

decay, degrading the readthrough product and the potentially faulty mRNA that produced it 

(Vasudevan, et al. 2002). We therefore expect selection on fragile proteins to remove backup stop 

codons from their 3'UTRs, as well as to lower their readthrough rates.  

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 25, 2019. ; https://doi.org/10.1101/737452doi: bioRxiv preprint 

https://doi.org/10.1101/737452
http://creativecommons.org/licenses/by/4.0/


9 
 

We tested whether lacking a backup stop codon is an indicator of low readthrough. There are three 

distinct frames that might have or lack a backup stop codon. Readthrough can either be in-frame (where 

the stop codon is read by a near-cognate tRNA) or result from a frameshift to one of two different 

frames. Genes lacking a backup stop codon in at least one frame do not contain any ribohits in their 3′ 

UTRs (Table 1, P < 10-300, Pearson’s Chi-squared test on contingency table). 

The dramatically lower levels of ribohits in genes lacking a backup stop codon cannot be explained by 

lower abundance, shorter 3′ UTRs, or shorter extensions in frames that still have a backup stop codon. 

Using a uniform [0, 1] prior, we obtain from the Table 1 data 95% credibility intervals for the probability 

of seeing a ribohit of 0.88-0.90 when all 3 frames have a backup stop, and 0-0.003 otherwise (see code 

on GitHub). We are thus fairly confident of at least a 290-fold difference between the two groups. In 

contrast, in genes in which a least one frame lacks a backup stop codon, protein abundance is 1.4-fold 

lower (P = 3 × 10-6, Student’s t-test), 3′ UTRs are about 2-fold shorter (fig. 2A), and distances to the next 

backup stop codon (in frames where one exists) are 1.2 to 1.3-fold shorter, depending on frame (fig. 2B), 

with considerable overlap between the distributions (supplementary fig. 1). These modest differences 

fall far short of explaining a 300-fold difference. 

Genes that lack a backup in one frame are more likely to lack a backup in another, even after controlling 

for 3'UTR length and nucleotide content. To show this, we shuffled the nucleotides of each 3'UTR that 

was missing a backup stop codon in frame Y, and across 100,000 shufflings, recorded the simulated 

probability of lacking a backup in frame X, conditional on lacking it in frame Y. Then we generated a 

distribution of how many of these genes were expected to lack a backup in frame X, by summing over a 

Bernoulli sample from each gene-specific probability, repeating 10,000 times. The real genes had fewer 

backups in frame X than the simulated versions, for all frames X and Y, with p-values ranging from <10-4 

to 0.01. 

If this lack of readthrough is due to non-stop decay, we expect genes lacking a backup stop codon to be 

enriched for activity of Dom34, which is involved in ribosome rescue and is thought to be important for 

non-stop decay (Tsuboi, et al. 2012). Dom34 target genes, which exhibit elevated 3′ UTR ribohits in a 

Dom34 knockout strain, were identified by Guydosh and Green (2014) in a dataset independent from 

ours. Genes lacking at least one backup stop codon in our dataset are indeed enriched for Dom34 target 

genes relative to our full group of proteins (Table 2, P = 6.3 × 10-47, Pearson’s Chi-squared test on 

contingency table). Note that Dom34 target genes were only about 7-fold less likely than other genes to 

have a 3′ UTR ribohit in our dataset; lacking a backup stop codon is more predictive. 
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When a protein lacking a backup stop codon in one frame is read through in a frame in which it does 

have a backup stop codon, other decay pathways could be employed. Decay might occur via no-go 

decay (Simms, et al. 2017) or slowness-mediated decay (Radhakrishnan, et al. 2016; Rak, et al. 2018) if 

inefficient codons in the extension cause slow or stalled translation, and hence a backup of ribosomes. 

We therefore hypothesize that proteins that lack backup stop codon(s) following frameshift employ slow 

codons immediately after the ORF stop codon. This prediction is restricted to in-frame extension codons 

because the location of the slow codons can be predicted, in contrast to frameshifts that can occur at 

many different positions prior to the stop codon. We assess codon speed using the tRNA adaptation 

index (tAI) (dos Reis, et al. 2004), a measure of codon preference based on tRNA copy number. With 

speed dominated by the slowest codon, we calculate geometric mean tAI (see Materials and Methods) 

for codon positions 1 to n. Proteins lacking out-of-frame backup(s) have more slowly translated in-frame 

extensions for values of n between 2 and 12 (P < 0.05 in each case, Student’s t-test). The effect size was 

largest for n=4, which we show in fig. 2D.  

In the Introduction, we hypothesized that when the C-terminus is highly structured, extensions are likely 

to be disruptive. In agreement with this, ISD is lower in the last 10 amino acids of the ORFs of proteins 

lacking backup(s) than of fully backed up proteins (fig. 2C). We found no significant Gene Ontology 

enrichments (Ashburner, et al. 2000; Carbon, et al. 2017; Mi, et al. 2017) among proteins lacking 

backup(s) compared to our full set of analyzed proteins (P > 0.05, Fisher’s exact test with Benjamini-

Hochberg false discovery rate correction).  

Our central interest in this paper is in pre-adapting selection on sequences beyond stop codons. This 

interest is motivated by pre-adapting selection’s potential to contribute to the de novo evolution of 

protein-coding sequences. Fragile proteins are unlikely to ever contribute, and so are excluded, as 

identified by the absence of a backup stop codon, from the following analyses. So far we have 

demonstrated that selection has minimized the damage from readthrough of potentially fragile proteins. 

This selection on the readthrough of fragile proteins might be stronger than selection on non-fragile 

proteins, but it is the latter that we care about because of their potential for de novo evolution.  

Similarly, we care most about the consequences of readthrough in the frame in which readthrough is 

most frequent. In-frame readthrough errors, driven by near-cognate tRNA pairings with stop codons, 

seem to occur more frequently than frameshift-driven readthrough errors. Specifically, work on 

nonsense suppression in reporter genes in Escherichia coli and other bacteria (Parker 1989), yeast 

(Namy, et al. 2001; Williams, et al. 2004), and mammals (Floquet, et al. 2012) has estimated wild-type 
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in-frame readthrough rates of approximately 10-2 to 10-4. In contrast, stop-codon-bypassing +1 

frameshifts occur on the order of 10-4 per translation event in E. coli, while +2 events occur on the order 

of 10-5 (Curran and Yarus 1986), and these observed frameshifting rates are likely elevated due to 

ribosome stalling associated with the premature nature of the stop codon. Stronger selection on the 

consequences of in-frame readthrough is supported in our data by the fact that in-frame extensions are 

shorter than both types of frameshift extension in proteins with fully backed up stop codons (fig. 2B). 

We therefore focus on in-frame readthrough of proteins with fully backed-up stop codons, and present 

these figures and tables in the main text. We also check extensions resulting from +1/+2 frameshifts at 

the stop codon, and present these figures and tables in our supplement. 

High ISD is a preadaptation 

We primarily assess disordered status using IUPred2 (Dosztányi, et al. 2005; Meszaros, et al. 2018), 

except where noted. This program uses a sliding window to assess each amino acid’s interactions with 

its neighbors. We also sometimes assess or review other analyses of disorder at the level of individual 

amino acids in isolation, in terms of disorder propensity (Theillet, et al. 2013), relative solvent 

accessibility (RSA) (Tien, et al. 2013), or simply proportion of hydrophobic amino acids (where e.g. G, A, 

V, I, L, M, F, Y, and W are considered hydrophobic (Li and Zhang 2019)). 

If high ISD is a preadaptation for C-terminal extensions, we expect coding sequences to display higher 

ISD than non-coding sequences. This prediction is supported for non-coding sequences beyond the stop 

codon (fig. 3A; previously found by Kleppe and Bornberg-Bauer (2018) for a high-readthrough subset of 

non-coding sequences, and by Li and Zhang (2019) for all genes using the proportion of hydrophobic 

amino acids), just as it was previously supported for mouse non-coding intergenic sequences (Wilson, et 

al. 2017) and alternative reading frames of viral coding sequences (Willis and Masel 2018). High ISD 

appears to be particularly important for C-termini, as disordered regions are most commonly found in 

the protein C-terminus (Uversky 2013), and adding hydrophobic amino acids to a C-terminus tends to 

lead to protein degradation (Arribere, et al. 2016). This is evidence that high ISD is indeed a 

preadaptation for C-terminal extensions.  

Genes with detectable readthrough have higher ISD 

Pre-adapting selection predicts that extensions that are read through more often will be more 

preadapted. In agreement with this prediction, in-frame extensions with more 3′ UTR ribohits have 

higher ISD (fig. 4A, Original), as do +2 shifted extensions to a slightly lesser degree (supplemental fig. 2A, 
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Original) but not +1 shifted extensions (supplemental fig. 3A, see Discussion for an explanation as to why 

+1 frameshifts might be more naturally preadapted and have less need for pre-adapting selection). Note 

that Li and Zhang (2019) did not find low hydrophobicity in a set of 172 yeast genes suspected of having 

programmed readthrough. Our ribohit detection is more sensitive, i.e. we detect ribohits for many 

genes that Li and Zhang (2019) classed as non-readthrough, which might help increase our power. 

ISD is driven in part by the interactions amino acids form with their neighbors (Dosztányi, et al. 2005); 

selection to differentially elevate ISD in protein C-termini could thus contribute to differentially elevated 

ISD in extensions, giving a false impression of pre-adapting selection on the extensions themselves. 

Kleppe and Bornberg-Bauer (2018) found that yeast proteins with more readthrough have more 

disordered C-termini. However, this relationship is at least partly driven by the low-readthrough, low-

disorder fragile proteins described above, which do not contribute to protein innovation; once we 

exclude proteins lacking backup stop codons, genes with detectable readthrough still have higher ISD in 

the last 10 amino acids of the ORF, but this relationship is not statistically significant (P = 0.09, 2-tailed 

Student’s t-test on square-root transformed ISD). More convincingly, abundant proteins have higher ISD 

in their C-termini (fig. 3B, P = 9  10-17, see figure legend). This may be because selection shapes the C-

terminus to mitigate the effects of readthrough, as suggested previously (Kleppe and Bornberg-Bauer 

2018), or disordered C-termini may be intrinsically beneficial even in the absence of readthrough. This 

elevated protein ISD appears to be specific to the C-terminus; in a linear model where log abundance is 

predicted by the root transform of the ISD of the last 10 amino acids of the ORF, the root transformed 

ISD of the full ORF is no longer a significant predictor of protein abundance (P = 0.4, likelihood ratio 

test).  

In order to test for pre-adapting selection on the extension sequences themselves, the effects of the C-

terminal amino acids on the ISD of the extensions need to be controlled for. To do this, we grafted each 

extension onto the C-terminus of the same forty randomly selected non-fragile proteins, and took the 

average transformed ISD of the extension across those 40 standardized contexts. The effects of the 

extension sequences themselves are responsible for ≈60% of the readthrough-associated elevation in 

ISD in-frame (fig. 4A, Grafted has ≈60% the effect size of Original) and 50% of the elevation in ISD for +2 

shifted extensions (supplemental fig. 2A). 

IUPred accounts for nearby amino acid interactions via a 21 amino acid sliding window (Dosztányi, et al. 

2005; Meszaros, et al. 2018), meaning that the first 10 amino acids of an extension are influenced by the 

last 10 amino acids on the ORF. Because proteins have higher ISD than expected from non-coding 
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sequences, shorter extensions have more influence from the ORF and thus higher ISD by reason of short 

length alone. Thus, the results in fig. 4A and supplemental fig. 2A could be driven by extension length 

rather than ISD. 

The number of ribohits is also confounded by extension length: there are more opportunities to detect 

ribohits when extensions are longer. Because high ISD is associated with short extensions which are 

associated with fewer ribohits, this negative confounding relationship makes our attempts to detect pre-

adapting selection on ISD (i.e. higher ISD with more ribohits) conservative. However, selection on short 

extension length might create a positive confounding relationship between ribohits and ISD (mediated 

by short extensions), and this might swamp the negative confounding relationship between ribohits and 

ISD already described. This could lead to high ISD with more ribohits even in the absence of pre-adapting 

selection on ISD. In this case, we may mistake selection for short length for pre-adapting selection on 

ISD. 

We therefore control for the effects of extension length on ISD as part of a linear regression model, as 

described in “ISD model” in the Methods. Extensions with more 3′ UTR ribohits have higher ISD even 

after controlling for length for both in-frame (fig. 4B; P = 3 × 10-5, grafted in-frame ISD model, Table 3) 

and +2 shifted extensions (supplemental fig. 2B, P = 5 × 10-4, grafted +2 frame ISD model, supplemental 

Table 1). Controlling for length strengthened rather than weakened our results: including the effects of 

C-termini, the length-controlled slope on ribohits is about 1.4 and 1.3 times the non-length-controlled 

slope for in-frame and +2 shifted extensions, respectively, and about 1.7 times after grafting for both in-

frame and +2 shifted extensions.  

Amino acids after stop codon are shaped by pre-adapting selection 

The ISD results above involve complicated methods to control for confounding factors, in particular 

extension length. Because IUPred uses a sliding window, the degree to which C-terminal amino acids 

elevate extension ISD depends on extension length, even after grafting. We therefore also use two 

straightforward amino acid scores that do not involve a sliding window: RSA, which scores how often 

amino acids are found in the interior vs. surface of globular proteins (Tien, et al. 2013), and disorder 

propensity (Theillet, et al. 2013), which scores how often amino acids tend to be found in disordered 

regions compared to ordered regions. As predicted by pre-adapting selection, in-frame extensions with 

more ribohits have higher RSA (fig. 5A) and disorder propensity (fig. 5A), as do +2 shifted extensions 

(supplemental fig. 4A) but not +1 shifted extensions (supplemental fig. 5A). Surprisingly, and in contrast 
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to results for extension disorder as a whole, the +2 effect sizes are slightly larger than in-frame: about 

1.05 times larger for RSA and 1.4 times larger for disorder propensity. 

Short in-frame extensions also have higher RSA (fig. 5B, left) and disorder propensity (fig. 5B, right), in 

agreement with suggestions that they are less likely to lead to protein degradation (Arribere, et al. 

2016). The same is even more true for +2 shifted (supplemental fig. 4B; 1.7 times and 1.6 times the 

effect size as for in-frame RSA and disorder propensity, respectively) and +1 shifted extensions 

(supplemental fig. 5B; 3.6 times and 4.1 times the effect size as for in-frame RSA and disorder 

propensity, respectively). The effect of length on RSA and disorder propensity was notably larger than 

the effect of ribohits. Specifically, the change in in-frame extension RSA from the 25% to the 75% 

quantiles of length was 2.9 times as large as from the 25% to the 75% quantile of ribohits, and 1.7 times 

for disorder propensity; similar comparisons for +2 shifted extension RSA and disorder propensity 

yielded 4.6 and 2.0, respectively. Shortness of extension might thus be a better metric of the quantity of 

readthrough products subjected to pre-adapting selection than the number of ribohits. 

Discussion 

The pre-adapting selection hypothesis predicts that the more often an erroneous gene product is 

produced, the more likely it is to be preadapted. We found that non-fragile proteins that are read 

through more often have C-terminal extensions with higher disorder. These high disorder extensions 

constitute a pool of preadapted cryptic sequences that evolution could draw from for de novo evolution, 

in a C-terminus extension process known to occur (Giacomelli, et al. 2007; Vakhrusheva, et al. 2011; 

Andreatta, et al. 2015)). 

Higher readthrough could impose pre-adapting selection on a C-terminal extension, or a fortuitously 

preadapted C-terminal extension could alleviate selective pressure against readthrough – our methods 

are not able to conclusively determine the causal direction. However, we have two pieces of evidence to 

suggest that selection is operating in the direction posited by pre-adapting selection. First, in-frame 

extensions in genes with fully backed up stop codons are shorter than frameshifted extensions (fig. 2B). 

A few fortuitously short extensions are unlikely to change the fact that most readthrough occurs in-

frame, so the fact that in-frame extensions tend to be shorter than frameshifted extensions (fig. 2B) in 

proteins with fully backed up stop codons indicates causality in the appropriate direction. Second, 

observed readthrough reflects a combination of leakiness (probability of readthrough per translation 

event), protein abundance, and degradation of readthrough products. The consequences of 
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readthrough are unlikely to be the most significant factor shaping the evolution of protein abundance, 

and so the problematic scenario, in which causation works in the opposite direction to that posited by 

pre-adapting selection, is presumably restricted to selection on leakiness and degradation. We found 

that more abundant proteins tend to have shorter in-frame extensions (P = 4 × 10-6, Pearson’s 

correlation coefficient = -0.083), further suggesting that a causal direction from readthrough to selection 

on extensions is valid, at least for in-frame extensions.  

Evidence for pre-adapting selection based on extension ISD was, as expected, stronger for in-frame 

extensions than for frameshifted extensions. Consistent with this is the high frequency with which in-

frame extensions are incorporated into C-termini during evolution (Giacomelli, et al. 2007). Part of this 

stronger in-frame effect comes from the C-terminal itself, whose identity is less consistent for 

frameshifts given variation in frameshift location. Perhaps for this reason, pre-adapting selection on the 

RSA and disorder propensity of amino acids beyond the stop codon, which excludes any influence of the 

C-terminal itself, is slightly stronger +2 than in-frame. 

Surprisingly, we found evidence for pre-adapting selection on +2 shifted extensions but not on +1 

shifted extensions, despite other evidence that the latter form of readthrough occurs at higher rates 

(reviewed in Results). A possible explanation is that a bias towards hydrophilicity makes the +1 shifted 

extensions more naturally preadapted, alleviating the need for pre-adapting selection, while +2 frame 

extensions are biased toward hydrophobicity. The bias stems from the identity of the codons created by 

a frameshifted stop codon. If a +1 frameshift occurs upstream of the stop codon, the T beginning the 

stop codon becomes the last nucleotide of the first codon of the extension, introducing little bias. But 

whether the +1 frameshift occurs at or prior to the stop codon, it creates a codon that begins with AA, 

AG, or GA, which creates a bias towards hydrophilicity. Specifically, AAY and AGY encode asparagine and 

serine, both of which are polar, while AAR, AGR, GAY, and GAR encode lysine, arginine, aspartic acid, 

and glutamic acid, respectively, all of which are charged. This guaranteed hydrophilicity increases the 

ISD of the +1 extension, alleviating the need for pre-adapting selection. For +2 frameshifts, one codon 

must end with TA or TG when the frameshift occurs upstream of the stop codon, while the next codon 

must start with A or G. While the latter introduces little bias, codons ending in TA code for leucine, 

isoleucine, and valine, while codons ending in TG code for leucine, methionine, and valine. All of these 

are strongly hydrophobic, creating a bias toward low ISD in real extensions generated by upstream +2 

frameshifts, albeit not captured by our ISD metrics based on frameshifts occurring precisely at the stop 

codon. The extra hydrophobicity of these +2 shifted extensions may make them less likely to be 
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preadapted, exacerbating the need for pre-adapting selection. As for in-frame extensions, our ISD 

calculation simply excised stop codons to generate in-frame extensions, but real extensions usually 

result from a near-cognate tRNA pairing with a stop codon. The most common near-cognate decodings 

in yeast are tyrosine or glutamine for UAA, tyrosine for UAG, and tryptophan for UGA (Blanchet, et al. 

2014). Glutamine is hydrophilic, tyrosine is amphipathic, and tryptophan is sometimes grouped as 

hydrophobic and sometimes as amphipathic, collectively suggesting that bias will not be strong. 

We found that extensions with more ribohits tend to be shorter, implying selective pressure for shorter 

extensions in budding yeast. Previous studies have also shown evidence of selection for shorter 

extensions in eukaryotes (but not in bacteria; Ho and Hurst 2019). In yeast, backup stop codons are 

more frequent than expected by chance alone (Williams, et al. 2004), show evidence of conservation 

(Liang, et al. 2005), and are overrepresented in genes with a high codon adaptation index (Liang, et al. 

2005). However, shorter extensions are unlikely to contribute appreciably to de novo innovations, 

precisely because of their short length. We have not only confirmed that selection prefers short 

extensions in yeast, but also found for the first time that selection favors high ISD extensions. High ISD 

increases the potential for de novo innovation (Wilson, et al. 2017; Willis and Masel 2018). 

Error rates are not constant throughout the genome. We found that fragile proteins have dramatically 

lower readthrough than non-fragile proteins. Lack of backup stop codons triggering non-stop mediated 

mRNA decay (Vasudevan, et al. 2002) due to the absence of a backup stop codon, and slow codons in 

extensions triggering no-go (Simms, et al. 2017) or slowness-mediated decay (Radhakrishnan, et al. 

2016; Rak, et al. 2018), are two of the mechanisms by which this might occur. Another possible 

mechanism is an mRNA structure that physically blocks ribosome progression into the 3′ UTR, which 

would stall ribosomes and also lead to no-go decay (Harigaya and Parker 2010). 

Many molecular errors are less common in highly expressed genes, including errors in transcription start 

site in human and mouse (Xu, et al. 2019), mRNA polyadenylation in mammals (Xu and Zhang 2018), 

post-transcriptional modifications in human and yeast (Liu and Zhang 2018b, a), and mistranscription 

errors in E. coli (Meer, et al. 2019). Most importantly for our study, readthrough errors in yeast are less 

common in highly expressed genes (Li and Zhang 2019). However, this does not remove selection for 

benign extensions that are more disordered. 

Here we have provided a proof of principle that pre-adapting selection shapes the sequences beyond 

stop codons, facilitating later de novo evolution of C-termini. This makes it plausible that pre-adapting 
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selection also works on the precursors of full de novo genes, junk polypeptides (Wilson and Masel 2011; 

Ruiz-Orera, et al. 2018; Blevins, et al. 2019; Durand, et al. 2019), facilitating later de novo birth of 

complete proteins. This can reconcile the perceived implausibility of de novo gene birth (Zuckerkandl 

1975; Jacob 1977) with recent convincing evidence that de novo gene birth is a real phenomenon.  

Materials and Methods 

Data 

Pre-processed ribosome profiling data on wild-type [psi-] and [PSI+] strains of S. cerevisiae was taken 

from Jarosz et al. (In prep), and is available at https://doi.org/10.6084/m9.figshare.11418789.v1. Jarosz 

et al. (In prep) used flash freezing to inhibit elongation according to a modified protocol of Brar et al. 

(2012).   

We chose Jarosz et al.’s (In prep) dataset for four reasons: 1) it has very high coverage with a substantial 

number of reads mapping to 3′ UTR regions (supplementary fig. 6; overall coverage is higher than (e.g. 

Baudin-Baillieu, et al. 2014; Cheng, et al. 2018; Spealman, et al. 2018)), 2) it is methodologically designed 

to minimize spurious 3′ UTR ribohits, such as avoiding use of micrococcal nuclease which is known to 

elevate 3′ UTR ribohits (Miettinen and Björklund 2015), 3) it uses wild-type yeast rather than mutants 

that perturb translation termination (e.g. Nedialkova and Leidel 2015; Guydosh and Green 2017), and 4) 

it uses both [psi-] and [PSI+] strains. [PSI+] sequesters the translation release factor Sup35p, increasing 

the rate of stop codon readthrough (Cox 1965; Liebman and Sherman 1979; Firoozan, et al. 1991). This 

elevated readthrough is thought to be favored by selection for its role in evolvability (Masel and 

Bergman 2003; Lancaster, et al. 2010), making it biologically relevant. Conveniently, [PSI+] increases the 

rate of readthrough (Cox 1965; Liebman and Sherman 1979; Firoozan, et al. 1991) and hence our ribohit 

coverage in extensions across the board rather than in a gene-specific manner (Jarosz, et al. In prep). 

Note that Kleppe and Bornberg-Bauer (2018) used the data of Nedialkova and Leidel (2015), which was 

high coverage but primarily composed of mutants prone to ribosomal pausing due to wobble base-

pairing deficiencies, so the wild type coverage was lower than the data used here. Li and Zhang (2019) 

used the data from Dunn et al. (2013), which was primarily focused on Drosophila melanogaster and 

appeared to have limited publically available yeast data. 

Sequences for 6,752 protein-coding genes were downloaded from the Saccharomyces Genome 

Database (SGD, http://www.yeastgenome.org) using the 2011 S288C reference S. cerevisiae genome 

sequence and associated annotations, matching the strain used for ribosomal profiling and the gene 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 25, 2019. ; https://doi.org/10.1101/737452doi: bioRxiv preprint 

https://doi.org/10.6084/m9.figshare.11418789.v1
http://www.yeastgenome.org/
https://doi.org/10.1101/737452
http://creativecommons.org/licenses/by/4.0/


18 
 

annotations used to analyze that data (Jarosz, et al. In prep). 3′ UTR sequence annotations were done by 

Jarosz et al. (In prep) by taking the average 3′ UTR length from transcript isoform profiling data 

(Pelechano, Wei, and Steinmetz 2013). We excluded 2,032 genes without a 3′ UTR annotation, and a 

further 646 whose ORF was not “verified” as protein-coding in SGD, resulting in 4,083 genes with 

verified ORFs. Lastly, one gene, YOR031W, has a blocked reading frame with an in-frame stop codon 

after only eight amino acids; excluding it left 4,082 genes. 

We scored how often a ribohit was found within the 3′ UTR region, including both [psi-] and [PSI+] 

strains. For our statistical analyses, we log transformed total 3′ UTR ribohits for each extension, which 

achieved an approximately linear relationship with ISD (fig. 4A and supplemental figs. 2A and 3A), RSA 

(fig. 5A and supplementary figs. 4A and 5A), and disorder propensity (fig. 5A and supplementary figs. 4A 

and 5A). Note that some of our genes had zero 3′ UTR ribohits – to include our zero 3′ UTR ribohits 

genes in our log transform, we added 0.5 to all genes’ 3′ UTR ribohits. 

Protein abundance data was downloaded (11/30/15) from PaxDB (Wang, et al. 2012; Wang, et al. 2015) 

using the integrated S. cerevisiae dataset, expressed as parts per million individual proteins (ppm). Of 

the 4,082 genes in our analysis, abundance data was available for all but two; these two genes were 

excluded from analyses that used abundance data. Abundance values were log transformed before 

analysis; based on manual inspection, this achieved approximately normally distributed values. 

In-frame readthrough occurs when a near-cognate tRNA pairs with a stop codon (Blanchet, et al. 2014). 

Rather than guess at tRNA pairings, we simply excised the stop codon and scored extensions as the 

codons between the stop codon and the next in-frame backup stop codon. When calculating in-frame 

extensions lengths, we included the unknown amino acid corresponding to the stop codon itself.  

+1 and +2 frameshifted extensions were scored by shifting the reading frame downstream by one or two 

nucleotides, respectively, at the stop codon. +1 and +2 frameshifts therefore include either the last two 

or last one stop codon nucleotides, respectively, in the extension. Real frameshifts do not have to 

happen at the stop codon and can occur at any location along the ORF. Our analysis was restricted to 

frameshifts that happen at the stop codon, both for convenience, and because these do not disrupt the 

normal amino acids of the ORF and are the most likely to be at least relatively benign. If at least one 

frame had no backup stop codon in the 3′ UTR as annotated by Jarosz et al. (In prep), that gene was 

placed in our “lacks backup” class of proteins (see Results, table 1 and fig. 2).  
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All in-house scripts for our analyses can be found at https://github.com/MaselLab/Kosinski-and-Masel-

CTerminalExtensions. All figures were made in R (R Core Team 2019) using the “ggplot2” package 

(Wickham 2016). 

Scoring ISD 

We used the “long” setting in IUPred2 (Dosztányi, et al. 2005; Meszaros, et al. 2018), which returns a 

score between zero and one for each amino acid in a sequence. These scores represent non-

independent quasi-probabilities that the amino acid is in a disordered region. We estimate the ISD of a 

sequence using a simple average of the IUPred2 quasi-probabilities for the amino acids in the sequence 

of interest. Because this procedure creates heteroscedasticity, by making the error a function of 

sequence length, we use sequence length as a weight in later analyses. Note that the unknown near-

cognate amino acid that pairs with the stop codon was not scored for its ISD, RSA or disorder propensity. 

Consequently, we did not count this unknown amino acid as part of in-frame extension length when 

using in-frame extension length as a weight for in-frame extension ISD/RSA/disorder propensity (but it 

was counted as part of in-frame extension length at all other times). 

To calculate the ISD of the last 10 amino acids of an ORF, we fed the full ORF into IUPred2, then took the 

average only of the last 10 amino acids. Similarly, to calculate the ISD of extensions, we fed the 

sequence up to the backup stop codon into IUPred2, and took the average score only of the amino acids 

in the extension. 

Square-root-transformed ISD values were approximately normal for ORF, C-terminal, and grafted 

extension ISD, and were used in subsequent statistical analyses. This corresponds to the biological 

intuition that an ISD difference of 0.7 vs 0.8 is less important than a difference between 0 and 0.1. Note 

that we transformed sequence ISD; we did not transform IUPred2 quasi-probabilities prior to averaging 

to produce sequence ISD. 

IUPred2 was downloaded on April 7th, 2018. 

RSA calculation 

Relative solvent accessibility (RSA) is a measurement of how often an amino acid tends to be found in 

the exterior versus interior of globular proteins (Tien, et al. 2013), calculated from high quality crystal 

structures using the DSSP program (Kabsch and Sander 1983; Tien, et al. 2013). More hydrophilic 

residues tend to be found on the exterior. 
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tAI 

tAI was calculated for each codon in a sequence using a script provided by Roni Rak, and tRNA copy 

numbers for S. cerevisiae were taken from Percudani et al. (1997). Standard practice for calculating 

sequence tAI is to use the geometric mean (dos Reis, et al. 2004). Equivalently, we calculated sequence 

tAI as the arithmetic mean of the log-transformed tAI codon scores. 

Regression models  

During model building, we used log10 transforms of our predictors when this gave a better model fit. 

Tests of statistical significance for all models came from the likelihood ratio test associated with 

dropping the variable of interest from its respective regression model shown in Tables 3-4. P-values 

reported from linear models come from models controlling for all predictive factors listed below, not 

just the predictive factors mentioned in the Results until that point. All listed predictor coefficients (β) 

come from the model with all listed predictors included. 

ISD models: A separate model was built to predict root-transformed ungrafted ISD values and for 

average root-transformed grafted ISD values (Table 3). ISD is a mean across extension amino acids, so 

we weight each value by the length of the extension. We tested the effects of log (ribohits + 0.5) while 

controlling for extension length. For +2 and +1 shifted extension ISD models, see supplementary tables 1 

and 2, respectively. 

RSA and disorder propensity models: We built models for extension mean RSA and for disorder 

propensity in the same way as for ISD (see section above), including weighting (Table 4). Manual 

inspection showed that both RSA and disorder propensity were approximately normal, and hence 

neither was transformed. For +2 and +1 shifted extension mean RSA and disorder propensity models, 

see supplementary tables 3 and 4, respectively. 
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Fig. 1. Stop codon readthrough previews the effects of stop codon mutations. Large and small black 
arrows represent constitutive and readthrough-dependent translation, respectively. When a backup 
stop codon exists (A and B), both translate the cryptic sequence between the stop codon and the 
backup stop codon, appending the product to the protein as a C-terminal extension. If there is no 
backup stop codon before the end of the 3'UTR (C and D), translation proceeds into the poly A tail, 
triggering non-stop decay instead of producing a C-terminal extended protein product. 
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Fig. 2. Proteins lacking a backup stop codon in at least one frame have shorter 3′ UTRs and 
extensions, more ordered C-termini, and slower in-frame codons beyond the stop codon. A) 

Proteins lacking backup(s) have shorter 3′ UTRs (P = 8  10-191, Student’s t-test on log-transformed 3′ 
UTR length). B) Proteins lacking backup(s) have shorter extension(s) in those frame(s) for which they 

do have a backup stop codon (P = 3  10-4, 1  10-12, and 1  10-13 for in-frame, +1 frame, and +2 
frame extensions, respectively, Student’s t-test on log-transformed extension length). In-frame 
extensions are also shorter than both +1 shifted and +2 shifted extensions to proteins with fully 
backed up stop codons (P = 0.004 and 0.003, respectively, Student’s t-test on log-transformed 
extension lengths), but extension lengths between frames are not significantly different in proteins 
lacking backup(s) (P > 0.1 for both). C) Proteins lacking backup(s) have more ordered C-termini, 

assessed as the last 10 amino acids of the ORF (P = 5  10-6, Student’s t-test on square-root-
transformed ISD). D) The first four codon positions after the stop codon create slower in-frame 
translation in proteins that lack backup(s) than in proteins with fully backed up stop codons (P = 
0.005, Student’s t-test on geometric mean tAI). Error bars represent +/- one standard error. 3′ UTRs, 
extension lengths, and codon tAI values were log-transformed, and ISD was root-transformed, to 
calculate means and standard errors, and then back-transformed for the figure. 
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Fig. 3. High ISD is a preadaptation. A) ISD is higher in coding regions than in non-coding sequences 
beyond the stop codon. Higher ISD in extensions than in complete 3′ UTRs is partly an artifact of the 
IUPred algorithm, which uses a sliding window in which C-terminal amino acids can affect the 
assessed ISD of extensions. Error bars represent +/- one standard error. ISD was root-transformed to 
calculate weighted means and standard errors, weighted by the length of the sequences, and then 
back transformed for the figure. B) More abundant non-fragile proteins have higher ISD in their C-
termini. The regression line comes from a model where the root transform of the ISD of the last 10 

amino acids of the ORF is predicted by log(protein abundance) (P = 9  10-17, likelihood ratio test). 
Note that while the data in B is very noisy (R2 = 0.022), the effect size is substantial, with a C-terminal 
ISD changing from 0.25 to 0.30 from the 25% to the 75% quantiles of protein abundance. 
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Fig. 4. In-frame extensions with more 3′ UTR ribohits have higher ISD. A) Linear (red) and loess 
(blue) regressions of square-root transformed extension ISD on log-ribohits (without controlling for 
length). All regressions are weighted by the length of the extensions. The fact that after grafting 
(right) the curve persists with a similar slope, about 74% as steep, shows that elevated ISD in genes 
with more readthrough is at least partly driven by amino acids beyond the stop codon. Note that 
the downturn in the loess curve past 100 ribohits has wide confidence intervals (shaded gray), 
indicating sparse data. B) Ribohits still predict higher ISD (P = 4 × 10-6 and 3 × 10-5 for original and 
grafted extensions, respectively, in-frame ISD models, Table 3) after controlling for the large effect 
of extension length (P = 8 × 10-50 and 5 × 10-90). “Median” is the line for the grafted in-frame ISD 
model in Table 3 when there are 13 3′ UTR ribohits, which is the median value for fully backed up 
proteins (see supplemental fig. 6), and “None” is for the same model with zero ribohits. Weighting 
by the length of the extensions (see Materials and Methods) means that the ISD values represent 
expectations from sampling an amino acid from the extensions rather than from sampling an 
extension. 
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Fig. 5. Metrics that do not use a sliding window provide further evidence that pre-adapting selection 
acts on extension amino acids. A) Linear (red) and loess (blue) regressions of in-frame mean RSA 
(left) and disorder propensity (right) on log-ribohits (without controlling for length). All regressions 
are weighted by the length of the extensions. B) After controlling for the effect of extension length, 
mean in-frame extension RSA and disorder propensity are still higher with more 3′ UTR ribohits (P = 
5 × 10-4 and 0.002, RSA and disorder propensity models, respectively, Table 4). Extension length is 
also predictive; mean extension RSA and disorder propensity are both lower for longer extensions (P 
= 3 × 10-8 and 0.003). Lines for “Median” and “None” are as described in fig. 4. As in fig. 4, weighting 
by the length of the extensions means that RSA and disorder propensity values represent 
expectations from sampling an amino acid from the extensions rather than from sampling an 
extension. Note that the effect size in B) here appears larger than the effect size in fig. 4B, but this is 
misleading; the effect size in 4B is actually larger but appears smaller because it is dwarfed by the 
large effect size of extension length on ISD. 
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Table 3. Regression model predictors of in-frame original and grafted ISD 

 

 

Table 4. Regression model predictors of in-frame mean RSA and disorder propensity. 

PREDICTOR FOR 

RSA/DISORDER 

𝑹𝑺𝑨 𝑫𝒊𝒔𝒐𝒓𝒅𝒆𝒓 𝒑𝒓𝒐𝒑𝒆𝒏𝒔𝒊𝒕𝒚 

β P-value β P-value 

𝑰𝒏𝒕𝒆𝒓𝒄𝒆𝒑𝒕 0.25 0 0.36 0 

𝒍𝒐𝒈(𝑹𝒊𝒃𝒐𝒉𝒊𝒕𝒔 + 𝟎. 𝟓) 0.0031 5 × 10-4 0.0057 0.002 

𝒍𝒐𝒈(𝑳𝒆𝒏𝒈𝒕𝒉) -0.012 3  10-8 -0.0014 0.003 

 

PREDICTOR FOR 

EXTENSION ISD 

√𝑶𝒓𝒊𝒈𝒊𝒏𝒂𝒍 √𝑮𝒓𝒂𝒇𝒕𝒆𝒅 

β P-value β P-value 

𝑰𝒏𝒕𝒆𝒓𝒄𝒆𝒑𝒕 0.55 3  10-209 0.58 0 

𝒍𝒐𝒈(𝑹𝒊𝒃𝒐𝒉𝒊𝒕𝒔 + 𝟎. 𝟓) 0.023 4 × 10-6 0.017 3 × 10-5 

𝒍𝒐𝒈(𝑳𝒆𝒏𝒈𝒕𝒉) -0.19 8  10-50 -0.21 4  10-90 

Table 1. Lacking a backup stop codon in at least one frame greatly decreases the probability of 
observing ribohits in the 3′ UTR (P < 10-300, Chi-squared test). 

GENES WHERE THE 3ʹ UTR 
CONTAINS: 

BACKUP STOP CODON (IN ALL 
THREE FRAMES) 

NO BACKUP STOP CODON (IN 
AT LEAST ONE FRAME) 

RIBOHITS 2769 0 

NO RIBOHITS 340 973 

 

Table 2. Genes lacking a backup stop codon in at least one frame are enriched for Dom34 targets (P 
= 6.3 × 10-47, Chi-squared test). 

GENES WHERE THE 3ʹ UTR 
CONTAINS: 

BACKUP STOP CODON (IN 
ALL THREE FRAMES) 

NO BACKUP STOP CODON (IN 
AT LEAST ONE FRAME) 

KNOWN DOM34 TARGET 54 122 

NOT A KNOWN DOM34 TARGET 3055 851 
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