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Abstract 
Drawing movements have been shown to comply with a power law constraining local 
curvature and instantaneous speed. In particular, ellipses have been extensively studied, 
enjoying a 2/3 exponent. While the origin of such non-trivial relationship remains 
debated, it has been proposed to be an outcome of the least action principle whereby 
mechanical work is minimized along 2/3 power law trajectories. Here we demonstrate 
that such claim is flawed. We then study a wider range of curves beyond ellipses that can 
have 2/3 power law scaling. We show that all such geometries are quasi-pure with the 
same spectral frequency. We then numerically estimate that their dynamics produce 
minimum jerk. Finally, using variational calculus and simulations, we discover that equi-
affine displacement is invariant across different kinematics, power law or otherwise. In 
sum, we deepen and clarify the relationship between geometric purity, kinematic scaling 
and dynamic optimality for trajectories beyond ellipses. It is enticing to realize that we 
still do not fully understand why we move our pen on a piece of paper the way we do. 

Keywords: power law; minimum jerk; equi-affine speed; drawing. 

Highlights: 

· Several curves beyond ellipses have power-law kinematics with 2/3 exponent. 

· The curvature spectrum of each of such geometries is quasi-pure at frequency 2. 

· Their dynamics are shown to comply with minimum of jerk. 

·  But the 2/3 power law is not an outcome of minimizing mechanical work. 

· Yet, equi-affine displacement is invariant upon different kinematics. 
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 “We must represent any change, any movement, as absolutely indivisible.” — Henri Bergson 

 

1. INTRODUCTION 

In 1609 Kepler published in the book Astronomia Nova (Kepler, 1609) his celebrated First 
Law of planetary motion: Mars moves along an elliptical trajectory with the sun at one of 
its foci. This left behind Ptolomaic and Copernican models; not circles, but ellipses. In 
the same book we find Kepler's Second Law, which specifies an invariant (which was 
later understood as conservation of angular momentum): the area of between the Sun, 
Mars and any previous point of Mars is constant along the motion of the planet. In sum: 
equal areas in equal times. This was generalized to all other planets. We move faster 
when close to the sun (fastest when nearest, at the perihelion), and slower when far away 
(slowest when furthest, at the aphelion).  

Ten years later, Kepler published in Harmonices Mundi (Kepler, 1619) his Third Law of 
motion: the semi-major axis A is related to the period P of a planet by means of the 
following relation: A=k· P2/3 (the parameter k is a constant, which can be renormalized 
by using the Earth's semi-major axis and number of years as units). It was Kepler's big 
achievement to establish such a lawful regularity despite the fact that nobody understood 
why planets would care to follow it. No one could derive Kepler's celebrated two-thids 
power law until Newton's Law of Universal Gravitation (Newton, 1687) was proposed 
nearly seventy years later. From geometric properties and kinematic laws one would then 
strive to "climb up" in order to establish dynamic laws that frame the former. 

Physics is full of celebrated examples of this sort, where constraints of motion are first 
discovered and later explained by other more general empirical laws, which in turn are 
then shown to derive from even more fundamental theoretical principles. Such is a 
hallmark understanding phenomena, from the motion of planets across the solar system 
to the movement of Picasso's brush along a canvas (in preparation). However, when it 
comes to biology, the zeitgeist is mechanistic. The explanatory work seems to be done 
when a molecule or a circuit is shown to be "necessary and sufficient" for the appearance 
(or disappearance) of the phenomenon under investigation (Gomez-Marin, 2017).  

In the midst of the reductionistic zeitgeist obsessed with efficient mechanical causes in 
the form of counterfactual reasoning within purely interventionist approaches (Krakauer 
et al. 2017), it is conceptually refreshing (and empirically exciting) to realize that 
relationships like Kepler's laws can be understood as formal causes. Science is actually 
the art of interpreting correlations, be it in terms of efficient causation or, in arguably 
more mature sciences, by actually giving up causation (or, rather, by framing it in) the 
notion of invariance (Bailly & Longo, 2011). Isn't it ironic that, while the stone falls for 
symmetry reasons, the insect is thought to fly for neural reasons? 

Scaling laws are a particularly relevant sub-class of deep relations, ranging from physics 
to psychophysics, ecology or language. They all point to unifying principles in complex 
systems (West, 2011). Note that not all power laws are statistical; some relate one degree 
of freedom to another (like the speed-curvature power law studied here), rather than 
expressing the functional dependency of a probability distribution.  

In curved hand movements, the instantaneous angular speed also scales with local 
curvature via a power law, whose exponent is 2/3 (Lacquaniti et al., 1983). This 
relationship, simple as it seems, is not a trivial mathematical fact nor is it given by physics 
(Zago, Matic et al., 2017). Cortical computations have been proposed as the controlling 
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mechanism (Schwartz, 1994). However, it is still unclear how the neuro-musculo-skeletal 
system may actually do so. Moreover, the trajectories of insects also comply with the 
speed-curvature power law (Zago, Matic et al., 2016), suggesting that a much simpler 
explanation —perhaps via simple central pattern generators— may be at work (at least in 
the humble fruit fly). Nearly forty years later, the origins of the law remain debated.  

Most theoretical but also phenomenological studies of the power-law have concentrated 
on ellipses, also decomposing scribbling into monotonic segments (Lacquaniti et al., 
1983). On a few occasions shapes other than ellipses have been studies, such as the 
cloverleaf, lemniscate or limaçon (Flash et al., 2018). Invoking optimality as a normative 
explanation, one can derive the power law by powerful mathematical frameworks. 
Requiring that the trajectory produces minimum jerk (jerk is the time derivative of 
acceleration, or equivalently the second derivative or speed, or the third derivative of 
position) naturally implies such speed-curvature constraints (Flash & Hogan, 1985). 
Also recently, a spectrum of power laws with different exponents has been empirically 
demonstrated upon drawing a whole range of “pure frequency” curves beyond ellipses, 
and shown to theoretically derive from minimization of jerk (Huh & Sejnowski, 2015).  

Notably, it has also been proposed that the 2/3 power-law is an outcome of the least 
action principle, namely, that imposing mechanical work to be minimal along the 
trajectory naturally produces the power law with its well-known 2/3 exponent (Lebedev 
et al., 2001). Here we correct such mistaken statement, which allows us to deepen into 
the relationship between geometrical purity, kinematic scaling and dynamic optimality 
beyond elliptical trajectories. Planets do not move at constant speed along their (quasi) 
elliptical trajectories around the Sun. Nor does your finger when tracing an ellipse on a 
tablet (Matic & Gomez-Marin, 2019). And yet, while planets do not follow the speed-
curvature power law (Zago, Matic et al., 2016), nor do finger movements derive from 
the physical principle of least action, as we hope to show in what follows.  

 

2. MATERIALS AND METHODS 

2.1. Mathematical calculations 

Basic notation and equations. Let us use the following notation: A is the angular 
speed (A=V/R), where V is the instantaneous speed (the module of the velocity vector) 
and R is the local radius of curvature. Curvature is then defined as C=1/R.	The speed-
curvature power law then reads: A=k· CBETA, where k is a constant and BETA is the 
power law exponent. By definition, the power law can also be written as V=k· CBETA-1.  	

Space-time dilation for arbitrary power-law generation. Since V=ds/dt (where dt is 
the time differential, and ds the arc-length differential), then one can obtain an explicit 
relation for how time dilates with space at every infinitesimal increment along the 
trajectory: ds/dt=k· CBETA-1. Since C can be numerically calculated as dtheta/ds, we arrive 
at the final equation that allows to transform any trajectory into a power law kinematics 
that respects the original geometry: dt = k-1 dsBETA dtheta1-BETA. 

2.2. Numerical simulations.  

Trajectory generation. Trajectories were generated by numerically integrating (with a 
dt=0.001s) the x and y positions and their derivatives for curves expressed and governed 
via the following differential equation: d3x/dt3+x· q(t)=0 for x(t), and also for y(t): 
d3y/dt3+y· q(t)=0. Note that the initial conditions can be different but both x and y are 
governed by the same equation with the same time-dependent coefficient q(t). The four 
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different curves explored in this manuscript were generated by choosing the function q(t) 
as follows:  q(t)=1 corresponds to the ellipse, q(t)=t for the spiral-like ellipse, 
q(t)=|sin(t)| for "wobbly" curve, and q(t)=|3sin(4t)| for the flower-like curve (see 
Figure 1A).  

Curvature spectrum. Curvature frequency spectrum analysis is based on (Huh and 
Sejnowski, 2015), expanded to approximate also the frequency spectrum of non-
monotonic angle profiles. We calculate the first derivative of the unwrapped local angle 
profile, then take its absolute value, and find the anti-derivative. This anti-derivative 
profile is re-sampled to a uniform step in the local angle coordinate. We take the log of 
the profile, de-trend it, and apply the Fourier transform. 

Generating power-law kinematics of any exponent from arbitrary geometries. 
Selecting an arbitrary power law between angular velocity and curvature is solved by 
recalculating the time period between each point of the discretized curve, so that the 
angular velocity fits a desired relationship with curvature (the power-law relation; A=k· 
CBETA), or equivalently, that tangential velocity fits equation (V=k· CBETA-1). First, we 
sample or construct the trajectory using constant step in time (dt). We calculate the arc-
length dsi, and curvature Ci at each point (xi, yi) of the trajectory. Next we construct a 
new time-difference vector, where each dti follows equation dt=(ds/k)· C1-BETA. We then 
construct a time vector T as a cumulative sum of all dti.. Next, using a cubic spline, we fit 
the existing (x, y) points to times T. Then we sample the splined trajectory again with 
constant dt, obtaining new vector of points (xi, yi) as a discrete approximation of an 
arbitrary power law trajectory. Modifying the parameter k then sets the total time of 
traversing the trajectory without changing the power law relationship. 

2.3. Behavioral experiments 

Ellipse trace. Using data from a previous study (Matic & Gomez-Marin, 2019), one of 
the authors traced an ellipse on an android tablet device in a fast and fluid manner. The 
data was recorded at 85Hz. Raw data was smoothed with a low-pass, 2nd order 
Butterworth filter, with a cutoff at 8Hz. 

Homer's trace. A member of the lab traced a contour of Homer Simpson’s head shown 
on a Wacom Cintiq interactive graphics monitor, using an electronic pen. The tracing 
movement was done without lifting the pen from the screen. Several practice traces 
preceded the trace used in this paper. The data was recorded at 150Hz. Raw data was 
smoothed with a low-pass, 2nd order Butterworth filter, with a cutoff at 8Hz. 

* 

For more details (in fact, virtually all details), please see the Supplementary material at 
the end of the manuscript for the code that generates all analyses and plots. 

* 
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Figure 1. A wide range of geometries beyond ellipses can have two-thirds power law kinematics. 
(A) The four main generated trajectories analyzed in this work: ellipse, elliptic spiral, wobbly ellipse and 
elliptic flower. (B) Time dependence of the function q(t), which generates those trajectories via the third 
order differential equation d3u/dt3+u· q(t)=0 satisfied for both x(t) and y(t). (C) Time course of 
instantaneous angular speed A and local curvature C for each curve. (D) The numerically estimated log-log 
plot of angular speed versus curvature reveals, as predicted, an exact power law relationship with exponent 
2/3 for each of the curves. Thus an ellipse is not the only geometry that naturally admits kinematic scaling. 

 

3. RESULTS 

3.1. A wide range of curves beyond ellipses naturally lead to a 2/3 power law 

The speed-curvature power law is the relation A=k· CBETA, where A is the instantaneous 
angular speed (defined as A=V/R) and C is the local curvature (defined as C=1/R), and 
V is the absolute instantaneous speed of movement and R the local radius of curvature 
of the trajectory. The term k is a proportionality factor that remains more or less 
constant empirically (and a precise constant theoretically), and BETA is the power law 
exponent. This relation is non-trivial since aspects of geometry (like curvature; which 
concerns only space) and aspects of kinematics (like speed; which concerns time) need 
not constrain one another in general (like in the motion of a pendulum). 

Using the definition of the radius of curvature R as a function of the time derivatives of 
the trajectory (we are always referring to movement in two dimensions here), it is not 
difficult to show that, if the power law holds, the term k=D1/3, where D=|vX aY - vY aX|. 
Obviously, vi and ai are the velocity and acceleration components in both orthogonal 
directions x and y. The 2/3 power law is often written as A=D1/3C2/3, with D constant. 
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Now, if k is constant (namely, if the 2/3 power-law holds), then the term |vX aY - vY 

aX|should also be constant. This implies that its time derivative should be zero, and thus 
one gets:  aX aY + vX jY - vY jX - aY aX = 0 (where "j", known as jerk, is the time derivative of 
acceleration; just as "a" is the time derivative of speed). Two terms cancel out, and thus 
we finally get that any trajectory that complies with the 2/3 power-law must satisfy the 
following differential equation: jX/vX=jY/vY. This geometric-kinematic constraint is very 
interesting because it dictates that both x(t) and y(t) must behave so that the ratio of their 
third and first time derivatives is equal which, without losing generality, can be expressed 
as j/v = q(t), where q(t) is any arbitrary temporal function. In other words, one can 
choose any q(t) at will and, by means of the equation d3u/dt3+u· q(t)=0 —where u(t) 
here denotes both x(t) and y(t), although initial conditions can be different—, generate 
geometric curves whose kinematics follow the 2/3 power law.  

Following these mathematical reasoning (Lebedev et al., 2001), we generated four 
different trajectories (Figure 1A). Selection of the q(t) function determines the shape of 
the trajectory: for the ellipse, it is constant, q=1; for the elliptic spiral q=t; the wobbly 
ellipse, q =|sin t|; and for the elliptic flower we chose q=|3 sin t⁄4| (Figure 1B). Not 
only are curvature and angular speed of these trajectories strongly correlated (Figure 
1C), they in fact follow the 2/3 speed-curvature power law exactly (Figure 1D).  

 

Supplementary Figure 1. Apart from the ellipse, the hyperbola and the parabola are generated with 
constant q, and also lead to 2/3 power-law kinematics. (A) Both curves. (B) Function q(t) that generates 
the curves. (C) Speed and curvature in time. (D) Log-log plot of speed and curvature, numerically 
demonstrating an exact power law constraint. 

Lebedev and colleagues explicitly listed the ellipse, hyperbola and parabola as the 
trajectories resulting from constant q(t), noting the relationship between constant q and 
the resulting geometry (q=0 for parabola, q < 0 for ellipse, and q > 0 for hyperbola). In 
Supplementary Figure 1 we analyzed those three curves in the same way as four 
mentioned curves in Figure 1. Curvature and angular speed are visibly constrained, 
following a power law with the exponent of exactly 2/3.  

To the best of our knowledge, nobody has analyzed the family of curves that are 
generated with a non-constant q(t), some of whose exemplars we show in Figure 1. In 
what follows, we will concentrate on such four curves to gain further insights into 
geometric purity, kinematic scaling, and dynamic optimality. We will also correct an 
important physics error in (Lebedev et al., 2001). 
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Figure 2. Very different geometries can have the same quasi-pure curvature spectrum. (A) The four 
studied curves in Euclidean space. (B) Their local curvature parametrized in time “t”. (C) Curvature 
parametrized in arc length space “s”. (D) Curvature reparametrized in local angle “alpha”. (E) Geometric 
spectrum of the curves —Fourier transform of the logarithm of C(alpha)—, showing that all curves are 
quasi-pure with a dominant peak at frequency 2. 

 

3.2. Two-thirds power law trajectories have quasi-pure geometrical spectra 

Let us now concentrate on the geometry of the curves presented in the previous section. 
It has been recently shown that the speed curvature power laws (of different exponents, 
not just 2/3) are achieved for so-called "pure frequently curves" (Huh and Sejnowski, 
2015). Actually, (as we will see in the last section of the Results) trajectories with "mixed 
curvature frequencies" cannot comply with the kinematic scaling of the power law, 
unless they give up dynamic optimality. So, how does one estimate the "geometric 
purity" of a curve? 

Parametrization of local curvature can be done in many ways. To estimate power laws 
one usually parametrizes curvature in time, namely, C(t), so that it can be compared, 
moment to moment, with speed V(t), which is naturally defined as a function of time. 
Time parametrization of log curvature is convenient in the regression analysis with log 
angular velocity, also parametrized in time (as in Figure 1D). In Figure 2B we show 
curvature parametrized in time for the four study-case trajectories shown in Figure 2A. 

However, cumulative arc length (s) is the natural parametrization for curvature, since 
curvature is by construction a purely geometrical quantity, and so the time 
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parametrization natural in kinematic quantities (such as speed) injects a temporal bias 
that geometry should be indifferent to. In Figure 2C we re-parametrize curvature now in 
terms of arc length, C(s). Note the subtle change in the functions with respect to the 
time parametrizations in Figure 2B. 

There is a third way to parametrize curvature: rather than time or length, one can use 
angle. Based on (Huh, 2015) we can parametrize curvature in the local angle coordinate, 
as shown in Figure 2D. This representation has many advantages in understanding 
essential properties of the curves, as well as revealing the connection between geometry 
and kinematics in power law constraints (Huh and Sejnowski, 2015).  

In particular, once any curve is parametrized in the angle, one can detect a shared feature 
in the four curves studied here: note how the profiles of Figure 2D have naturally 
rescaled with respect to those in Figure 2C and Figure 2B, so that now, every 2π, 
curvature undergoes exactly two complete oscillations. If these were temporal functions, 
a Fourier transform would immediately reveal a dominant frequency there. 

Following (Huh and Sejnowski, 2015) we apply the Fourier transform to the log of the 
curvature profile, once parametrized in the local angle coordinate (Figure 2E). The 
resulting amplitude profile shows curvature frequency spectrum in angle space. The 
frequency of a curve is the number of curvature oscillations per unit of local angle (full 
oscillation is 2π radians), and the local angle is defined as the angular direction of the 
velocity vector. Despite their very different appearance in X-Y space (Figure 2A), all 
four curves share a main peak at exactly ν=2 (which corresponds to Huh's pure ellipse; 
see below) as well as some ripples.  

The quasi-pure spectrum of these geometries, and specially that of the ellipse shown in 
on the left side of Figure 2A, makes one wonder why they are not exactly pure (namely, 
with a single peak at ν=2, without any ripples). To better understand this, we went back 
to Huh's pure frequency curve with ν=2 (Huh, 2015), which is visually very similar to 
the classical ellipse, (x/a)2+ (y/b)2=1. Both curves are shown in Supplementary Figure 
2A, together with ellipses empirically traced on a tablet. 

Huh's ellipse (on the left) has a single strong peak at ν=2 by design, and no peaks at 
other frequencies, meaning that its log-curvature profile in angle space is a pure sinusoid. 
The classic ellipse, constructed with two orthogonal sine waves with 90° phase 
difference, has a few harmonics at frequencies multiples of ν=2 (4, 6, 8, etc), but it is still 
quasi-pure. The empirically recorded ellipse trace, similarly, shows some harmonics and 
also peaks at other frequencies (Supplementary Figure 2B). It is also decently pure. In 
sum, this precise geometrical analysis of the spectrum of curvature is both informative as 
to whether we shall expect a power law and of what exponent, but also a necessary 
condition to know that we are dealing with a pure frequency curve in the first place, 
which is very important when trying to determine whether the speed-curvature power 
law holds empirically. 

Finally, to gain even further insight into what these spectra are reflecting, we morphed an 
ellipse into a circumference by reducing the eccentricity of the former (Supplementary 
Figure 2C). The amplitude of the peak at ν=2 is progressively reduced, as well as all the 
other harmonic frequencies, until the circumference does not show peaks at any 
frequency (as it should, since its curvature is constant). 

We can proceed now with kinematic and dynamic considerations on these curves. 
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Supplementary Figure 2. Further exploration of basic properties of curvature spectra for ellipses. 
(A) Three ellipses: a pure frequency curve with ν=2, or "Huh's ellipse" (left), the "classic" ellipse 
constructed with two orthogonal sine waves, ninety degrees out of phase (middle), and empirically traced 
ellipse (right). (B) Curvature spectra with the pure peak at ν=2 shown in red. (C) Classic ellipses with 
decreasing eccentricity turning into a circumference. (D) Corresponding geometry spectra, showing the 
peak at ν=2, with the amplitude of the peak decreasing with eccentricity. 
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Figure 3. For 2/3 power law trajectories, the term D is constant but mechanical work is not. (A) 
Analyzed segments of the curves marked in solid black. (B) Magnitude of the cross product of the velocity 
and acceleration vectors (which is mathematically equal to D) as a function of time along the trajectory. It 
is constant for all curves. (C) Dot product of the velocity and acceleration vectors (which is proportional 
to mechanical work) over time. It is not constant for any curve. (D) Velocity, acceleration and jerk vectors 
for two of the curves at a given time instant. Graphically, the term D is the area of the parallelogram 
formed by velocity and acceleration, and it has the property of remaining constant along the trajectory. The 
jerk vector also has the property of being anti-parallel to the velocity vector. Mechanical power (depicted in 
color) is not constant along the trajectory. It is actually zero at the extremes of the ellipse (since velocity 
and acceleration vectors are orthogonal there) but non-zero at other times. See also animations of panel 
(D) as Supplementary Material. 

3.3. The power law does not imply that mechanical work is constant nor minimal 

For 2/3 power law trajectories, we have seen that D is constant. It turns out that D is 
actually the magnitude of the cross product between the velocity and acceleration vectors. 
And so, for the trajectories displayed in (Figure 3A) that dot product should be constant 
too (Figure 3B). Such magnitude can be represented as the surface of the parallelogram 
closed by such vectors (Figure 3D). So far, so good. 
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Remember that one can rewrite the 2/3 power law (A=kC2/3) as A=D1/3C2/3, and then 
simply as V= D1/3R1/3, so that V3/R=D. With similar mathematical manipulations 
(Lebedev et al., 2001) arrive at this last same equation and, rewriting D=V(V2/R) realize 
that the term in parenthesis is the magnitude of centripetal acceleration (An), and so 
D=V· An. The fatal error comes in their equation (5), when they say that "[t]his product 
is known in physics as mechanical power", which they call P. The essential mistake that 
invalidates the main claim of their paper is that D=P.  

If that was the case, then a 2/3 power law would constraint movement along the 
trajectory to have constant mechanical power (because we have seen that D is constant). 
As we will unpack further below, the authors are naturally thrilled to discover that, 
mathematically, the time integral of D is minimal when D happens to be constant. In 
other words, the "optimal" way to move is to do so that D is constant, aka, the 2/3 
power law. They are thrilled (as we would) because, if the physics were true, the 
mathematics would prove that "drawing movements [which fulfill the 2/3 speed 
curvature power law] are "an outcome of the Principle of Least Action" (which is 
precisely the title of their paper). But if D is not the mechanical power, then the claim 
evaporates. 

Why isn't D=P, then? 

Lebedev and colleagues equate mechanical power with D, namely, the authors take the 
product of centripetal acceleration with the speed to be proportional to physical force 
that would push a particle moving along such 2/3 power law trajectories.  

Mechanical power is the amount of mechanical work per unit of time. Mechanical work 
is the amount of energy transferred by a force. It is calculated as the integral of the force 
vector along the trajectory vector. Force is proportional to acceleration, and the 
trajectory vector can be rewritten as velocity times dt. Thus, in practice, mechanical work 
is proportional to the product of velocity and acceleration. But (and here comes the 
subtle mistake), it is the dot product (also called scalar product) of the vectors, rather than 
the simple product of their magnitudes. Put plainly, the dot product of two orthogonal 
vectors is zero, no matter how large they are; while the product of their magnitudes is 
large. In sum, mechanical work is calculated via the scalar product —rather than the cross 
product (which gives us D)— of velocity and acceleration. And thus, as shown in Figure 
3C, work is far from constant along the trajectory, as opposed to D (Figure 3B). 

Animated traversals of the spiral and elliptical trajectories are available in the github 
repository as video files (see Supplementary Material). They show the constancy of the 
magnitude of the cross product D during the whole trajectory, and the changes in the 
position, acceleration, velocity and jerk vectors over time. See Figure 3D for snapshots. 

In sum, and contrary to what was claimed in (Lebedev at al., 2001): the 2/3 power law 
is not an outcome of the physical principle of least action. 

 

* 
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Figure 4. Numerical evidence that the time integral of D is (locally) minimal when D is constant. 
(A) Start and end points of trajectory segments (of 6 seconds of duration) for each of the four main curves. 
(B) The time integral of D as time elapses from the beginning to the end of the segment. Respecting the 
same geometry and total duration of the movement, different kinematics were explored (generated by 
power laws with different exponents; depicted in green, red blue). (C) The integral of D, when numerically 
calculated for all exponents between 0 and 1 turns out to be minimal for β=2/3 (red dot), for all curves.  

3.4. Trajectories with constant D minimize the time integral of D  

The mathematical derivation that, by means of a variational analysis, shows that the time 
integral of D is minimal when D is constant (Lebedev et al., 2001) is still valid and 
somewhat insightful. Agnostic about the existence of a meaningful physical or 
mathematical interpretation of the term D, next we sought to numerically demonstrate 
that constant-D prescribes the most "economical" way to move amongst the infinitely 
many ways to do so. To our knowledge, such minimization hasn't been done numerically. 
 
Because we seek a numerical demonstration that trajectories complying with the 2/3 
power law constrain their geometry (curvature) and kinematics (speed) so as to minimize 
the integral of D, we can only aspire to show local, rather than global, minima. To that 
end, we invented a way to systematically generate a range of different kinematics that 
would transverse the exact same geometry in the exact same total duration (see below). 
 
We take a segment (of a trajectory that complies with the 2/3 speed curvature power 
law) with starting points A and B (Figure 4A), and whose total time duration is T 
(vertical black line in the plots of Figure 4B). We then maintain the geometry but rescale 
the kinematics so that the same segment is traversed in the same amount of time but 
now with a kinematics that would still yield a power law but with an exponent different 
than 2/3 (say, with hypo-natural exponent 1/3, and hyper-natural exponent equal to 1). 
We then numerically calculate D as we integrate it in time all the way to t=T (Figure 4B) 
for such three different (power law) kinematics. Exponent 2/3 always yields the 
minimum value at the end of the segment. In Figure 4C we can calculate I(t=T) for a 
whole range of values of β on the given path. Compared to trajectories with any other 
values of β, trajectories with β=2/3 indeed have the minimal time integral of D. 
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Supplementary Figure 4. Creating speed-curvature power law trajectories of arbitrary exponents. 
Given a fixed geometry, a trajectory of any power law exponent can be generated (A) A ‘classic’ ellipse 
geometry (B) Y positions in time for trajectories with different exponents. (C)	The corresponding arc-
length rescaling of the original trajectory, and (D) the log-log plot shows the generated power laws with 
different exponents. (E) Speed over cumulative arc length (path traveled), rescaling for different 
exponents. (F) Angular speed over time. 

In case it is not already clear by now, let us emphasize that a given geometry can in 
principle be traversed with any kinematics. Let us now have a brief interlude to explain 
and illustrate how to kinematically re-scale a given geometry with any kinematics to a 
power-law kinematics with our exponent of choice. For each β in the required range, we 
start with a generated path as an ordered list of points. Given the path, the β and k, we 
calculate the time periods between each point of the path, so that they satisfy the formula 
dt = (ds/k)· C1-BETA, derived as explained in the Methods. The resulting trajectory does 
not necessarily have the desired average speed. The whole trajectory is then re-calculated 
with the same points and β, but with a different k parameter until the average speed is 
within tolerance from desired average speed.  

We illustrate the effects of such rescaling algorithm for the classical example of an ellipse 
(Supplementary Figure 4A). Generating an elliptical trajectory with orthogonal sine 
waves yields a β=2/3 power law (Supplementary Figure 4D, red line). We can rescale 
this trajectory into β=1 (blue line) and β=1/3 (green line) power laws. The Y coordinate 
over time (Supplementary Figure 4B) of the β=2/3 trajectory is shown in red, and is a 
pure sinusoid. A trajectory with exponent β=1 is more ‘round’ in the Y coordinate, and a 
trajectory with β=1/3 is more ‘triangular’. The arc-length for the β=2/3 trajectory 
changes over time: an object moving on such trajectory slows down in more curved 
parts, and speeds up in straighter parts of the path (Supplementary Figure 4C). 
Because human participants produce speed profiles similar to these, the β=2/3 trajectory 
is called ‘natural’. In comparison, a trajectory with β=1 is called ‘hyper-natural’ and has a 
constant arc length, because it has constant tangential speed. Trajectories with β=1/3 are 
called ‘hypo-natural’, as they slow down more and speed up more than β=2/3 ‘natural’ 
trajectories. Similar relationships are visible in the speed over cumulative arc length plot 
(Supplementary Figure 4E), illustrating the transformations made by the rescaling 
algorithm. When shortening the time period of crossing the same distance, we get higher 
speed, as illustrated by the peaks of the β=1/3 (green) plot. For longer times, speed goes 
down, as in the valleys of the β=1/3 plot. Angular speed over time (Supplementary 
Figure 4F) shows some inverted relationships. Here, the hyper-natural trajectory has 
highest peaks and lowest valleys of the three trajectories.  

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted August 16, 2019. ; https://doi.org/10.1101/737460doi: bioRxiv preprint 

https://doi.org/10.1101/737460
http://creativecommons.org/licenses/by/4.0/


	 14	

Figure 5. The time integral of equi-affine speed is invariant for different kinematics with fixed 
geometry. (A) Trajectory segments of duration T (in black) with their start and end points. (B) Time 
integral of equi-affine speed for various kinematics (power laws of different exponents). Unexpectedly, all 
kinematics lead to the same value of the integral at t=T, for all curve segments. 

3.5. Equi-affine displacement is invariant under different kinematics  

We have seen how the time integral of the term D is minimal when D is constant. 
However, we have also seen that D does not correspond to mechanical power, and so 
the minimization of D does not imply that the power law is the outcome of the least 
action principle of physics. Is there any other quantity whose integral, when minimized, 
lends itself to a meaningful interpretation? 

The cube root of D has been identified as the so-called equi-affine speed (Pollick and 
Sapiro 1997; Flash and Hadzel, 2007): VEA=D1/3. Of course VEA is constant when D is 
constant. But note that the fact that the integral of D is minimal when D is constant does 
not mean that the integral of VEA is minimal when VEA is constant. What happens when 
we minimize the integral of VEA? 

We can answer such question mathematically by means of variational calculus. When 
deriving Euler-Lagrange equation that results in minimizing the equi-affine speed as the 
Lagrangian, we found that the terms in such equation cancel out completely. Aren't there 
any particular solutions that make the functional an extremum?  

We then answered such question numerically. We followed in Figure 5 the same 
procedure as in Figure 4. We took our four main curves and chose a segment of 
duration T (Figure 5A) and numerically estimated the time integral of VEA upon 
movement along the same geometry with three different kinematics (Figure 5B), this is, 
power laws with different exponents. To our surprise, and as opposed to the integral of 
D in Figure 4, the integral of VEA yields the same value at the end of the segment (t=T) 
regardless of the kinematics. There seems to be no minimal. Is it thus an invariant? 

Note that, generally, the time integral of speed along a path is precisely its total 
displacement. In fact, the integral of affine velocity is known as the equi-affine arc-length 
or the special affine arc-length (Izumiya and Sano, 1998). Our analytical and numerical 
results thus indicate that affine arc-length is invariant under different power law 
kinematics. 

Next we asked whether such invariance remains when the kinematics does not follow a 
power law (Supplementary Figure 5A) and/or when the geometry between A and B is 
different (Supplementary Figure 5B). 
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Supplementary Figure 5. Equi-affine displacement is invariant upon different kinematics 
traversing the same geometry, but not for different geometries with the same start/end positions.  
(A) Left: Segment of an elliptical path between points A and B of duration T. Middle: Its corresponding 
log-log plot of speed and curvature (middle). Black color indicates that the trajectory follows a power law 
(PL), while the red one does not (both by construction). Right: The time integral of equi-affine speed 
from t=0 to t=T yields the same value for both PL and non-PL kinematics, given the same geometry. (B) 
Left: Three pseudo-random paths (different geometry) and different kinematics, all going from point A to 
B in the same time interval T. Middle: Dotted lines have power law kinematics, and colored lines non-
power law kinematics. The integral of equi-affine speed is the same for power law kinematics and non-
power law kinematics. 

In a similar analysis to Figure 5, we show that the affine arc-length is the same for 
power law and non-power law kinematics. An elliptical trajectory segment (Figure 5.1 A) 
is traversed with power law kinematics (with exponent β=2/3) (in black) and non-power 
law kinematics (with ellipse's sine angle theta increasing with time squared) (in red). The 
integral of equi-affine speed is the same for both (Supplementary Figure 5A). 

Let us note an interesting pathological case: in movement from A to B in a straight line 
at constant speed, there is no acceleration vector, and so VEA  is zero and so is its integral. 

To explore the effect of different ways to get from one point to another in space 
(geometry), not just in time (kinematics), we also tested three pseudo-random paths from 
points A to B. Using the procedure described in (Supplementary Figure 4), we 
imposed power law kinematics (black lines), while colored lines had non-power law 
kinematics, as shown in the middle plot. The integral of equi-affine speed is the same for 
both kinematics, but not across different geometries (Supplementary Figure 5B). 

Equi-affine speed is not invariant under arbitrary transformations. It has been shown 
that equi-affine length is invariant under affine transformations using the signed volume 
of the parallelepiped created by vectors of first, second and third derivative with respect 
to time of the curve r, raised to the power 1/6 (Pollick et al., 2009). Equi-affine speed 
has also been shown to be piecewise constant along movement segments and so, rather 
than Euclidian, it becomes a natural geometric description of hand trajectories (Flash 
and Handzel, 2007; Polyakov et al., 2009; Bennequin et al., 2009; Meirovitch et al., 
2016). However, we have not been able to find an explicit claim that the time integral of 
equi-effine speed is a kinematic invariant, as our findings suggest. 
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Figure 6. Numerical estimation of minimum jerk for the four quasi-pure (ν=2) frequency curves. 
(A) Trajectory segments analyzed (in black). (B) Total jerk as a function of different power law kinematics 
shows a minimum near β=2/3.  

3.6. Pure curves with two-third power law scaling minimize jerk  

Having found a way to numerically estimate whether certain functionals (such as D and 
VEA respectively in Figure 4 and Figure 5), are (locally) minimal for a fixed geometry 
upon different kinematics, we now apply the method to confirm (Huh and Sejnowski, 
2015) mathematical derivations: minimum of total jerk is achieved for pure frequency 
curves when their kinematics follow a speed-curvature power law (where the exponent 
value β depends on the frequency ν of the curve). 

It is well known now that ellipses (which we have shown to have ν near to 2), when 
traversed with a power law kinematics of β=2/3 (which is how they are traced by 
humans), have minimum jerk (Wann et at, 1988; Viviani and Flash 1995; Huh and 
Sejnowski, 2015). But, our knowledge, nobody has estimated this numerically. Nor has 
this claim been shown for the large family of curves that, despite not being an ellipse, 
have ν=2 (like those in Figure 6A).  

So, to end we show that quasi-pure curves with a peak at ν=2, produce minimum jerk 
when kinematically traversed at β=2/3 (Figure 6B). This confirms and expands the 
findings in (Huh and Seknowski, 2015), at the same time that provides a numerical 
method to estimate and predict the intricate relationship between geometric purity, 
kinematic scaling and dynamic optimality for any drawn movement beyond (the ultra-
studied) ellipses. 
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Figure 7. Using Homer's face to illustrate purity, scaling and optimality in drawing movements. 
(A) Trace of Homer Simpson’s face contours. (B) X and Y positions of the tip of the pen as a function of 
time. (C) Speed and curvature for a brief segment a function of time. (D) Log-log plot of speed and 
curvature reveals that kinematics does not comply with a power law. (E) Curve spectrum reveals that the 
drawing is not a pure-frequency geometry, having several peaks at low frequencies and a decreasing tail. (F) 
One can transform the original kinematics so that both X and Y follow the same third-order differential 
equation with the shared time-dependent parameter q(t), which can be calculated as the ratio between the 
third and first derivatives of position, shown here. (G) Homer's face now must follow a 2/3 power law. 
(H) The term D, as compared to the original drawing (grey) is quasi constant along the trajectory (blue). 

3.7. The subtle relationship between curve purity, scaling and optimality 

Let us end with a fun and illustrative example to recapitulate. Tracing the contour of 
Homer Simpson’s face (Figure 7A) was drawn on an interactive graphics tablet, tracing 
the original image shown on the screen, in a single movement, without lifting the pen 
from the screen. The raw data are smoothed before analysis (see Methods). The X and 
Y coordinates over time (Figure 7B) show constant movement with no breaks. 
Curvature and velocity look fairly correlated (Figure 7C), but do not exactly conform to 
a power law (Figure 7D). In fact, the log-log plot seems to indicate multiple segments 
with different power law exponents, perhaps related to different segments of the 
drawing. The geometry spectrum analysis shows multiple peaks at low frequencies, and 
we can see that this is not a pure frequency curve (Figure 7E).  

The plots in Figure 7F-H show a transformed trajectory: the geometry is the same (still 
Homer's face), but the empirical kinematics of drawing are transformed to strictly follow 
the 2/3 power law (Figure 7G). From the same trajectory we can extract the function 
q(t), and we can see it is near-identical in X and Y dimensions (Figure 7F) which, as we 
saw at the beginning of this article, is a hallmark of a 2/3 power law trajectory. Beyond 
ellipses, or the other three main curves systematically analyzed in this study, there are 
infinitely many ways to have a 2/3 power law trajectory (Homer's face included). As 
such, the magnitude of the cross product (the term D) is now near constant, unlike the 
empirical one, which is more variable (Figure 7H).  

Unfortunately for Homer, since its geometry is not pure (Figure 7E), its tracing cannot 
enjoy both kinematic scaling (Figure 7G) and dynamic optimality at the same time. In 
other words, drawing movements cannot be minimum jerk if speed scales with curvature 
unless their curvature spectrum is pure. However, in general, one could have minimum 
jerk using some unknown minimization procedure for any non-pure geometry, with non-
power law kinematics.  
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4. DISCUSSION 

Nearly forty years later (Lacquaniti et al., 1983), the two-thirds speed curvature power 
law of human movement is still puzzling. Moreover, evidence for the same scaling law 
with different exponents has recently been discovered empirically (Huh and Sejnowski, 
2015), and demonstrated to be derivable from normative principles that require the jerk 
(the time derivative of acceleration) accumulated along the trajectory to be minimal. 
Along those lines, it had been claimed that the 2/3 speed-curvature power law of 
movement is a consequence of minimizing mechanical power (Lebedev et al., 2001). If 
so, the power law could be seen as both an outcome of minimum jerk (Flash and 
Hogan, 1985) and "an outcome of least action" (Lebedev et al., 2001). That would be 
interesting if true. However, here we have demonstrated that this is not the case. We 
have discovered a flaw in the derivation of Lebedev and colleagues, which is due to a 
basic physics error in interpreting mechanical work. The connection the authors draw 
between the term D and mechanical work is inexistent. This invalidates the main claim of 
their paper. Drawing movements complying with the two-thirds power law do not 
minimize mechanical work. 

The origins of the speed-curvature power law remain debated to date. Therefore, we 
deemed it necessary that the so-far (and to the best of our knowledge) undetected 
mistake in (Lebedev et al., 2001) —and its corresponding unexpected link to equi-affine 
speed, in the line of the work by Flash and colleagues— does not continue unreported 
and uncorrected. 

However, two pieces of their mathematical treatment are still valuable when expanded 
upon. They provide more insights to further understand the 2/3 speed-curvature power 
law observed in humans while drawing. First, their mathematical treatment demonstrates 
that drawing movements complying with the 2/3 power law must obey a third-order 
linear ordinary differential equation that only depends on a time-dependent coefficient 
q(t). The authors explored only the family of x(t) and y(t) solutions when q(t) is constant, 
which comprises ellipses, hyperbolas and parabolas. Here we exploited some other non-
trivial curves of the myriad of geometries that can stem from time dependencies in q(t). 
Second, the variational principle they put forth demonstrates that D is minimal when it is 
constant. We tested it numerically, and reformulated it to show that equi-affine 
displacement is invariant upon different power-law and non-power-law kinematics. We 
also demonstrated that β=2/3 power laws with ν=2 beyond ellipses have minimum jerk. 

Our work has limitations. First, note that except the hand-drawn ellipse and Homer's 
face, the rest of our analysis is based on mathematics and numerically simulated curves. 
Further studies should mirror our findings to experiments inspired by them. Second, all 
our numerical estimates regarding minimization demonstrate local, but not global, 
minima. Although it is unlikely, we cannot numerically rule out that a very particular 
kinematics beats the 2/3 power law when it comes to optimizing the functional of D, 
VEA or Jerk. Third, a very interesting aspect remains fairly unexplored: while the equation 
that generates all possible 2/3 power law movement trajectories is a third-order 
differential equation, in physics virtually all equations of motion do not go beyond 
second-order. Fourth, while in most human traces and drawings one constantly switches 
from clockwise to counter-clockwise movement, all curves explored in this manuscript 
(except Homer's) where monotonic in curvature. Fifth, it is still a challenge to robustly 
estimate jerk from empirically measured trajectories because of sensitivity to filtering and 
to noise in the derivatives.  
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To end, let us emphasize that the discovery of non-trivial constraints in nature —like a 
power law— is always as puzzling as rewarding. Kepler established one for the motion of 
planets. Lacquaniti and colleagues found another one for the movement of hands. Both 
characterized by an exponent whose value is exactly 2/3. In 1981 Yoshio Koide 
uncovered a yet-unexplained relation between the masses of three elementary particles 
(the three charged leptons: the electron, the muon, and the tau): their sum divided by the 
square of the sums of their square roots is approximately equal to 2/3. If that wasn't 
enough, the same relation holds for the masses of the three heaviest quarks. It is 
tempting to dismiss such phenomenological discoveries as mere numerology or, at best, 
as simple descriptions awaiting for the hard-core science to take place. This is even more 
so in biology, where "mechanism" is king while "phenomenon" often enjoys negative 
connotations. Be it as it may, phenomena borrow from mechanisms that reasons by 
which they are explained, and restore them to mechanisms in the form of scientific 
questions which they have stamped with their own meaning. Or, put plainly, the depth 
that the answer provides very much depends on the quality of the question asked in the 
first place. Good science is, in a sense, like in good journalism. 

 

*** 

Supplementary material: code and data availability. All code and data used in this 
study are available. The Jupyter notebook at Google Colab contains numerical simulation 
code, as well as ALL the analysis and software to reproduce the plots of this manuscript: 
https://colab.research.google.com/drive/19PkOy4eSsPZIyNqv1o2zXs_BHOCk3HpY.	
The Github repository contains the copy of the same notebook, the python code for 
recording of image tracing, the raw data from a participant tracing a Homer drawing, the 
raw data of ellipse tracing, and video files of animations of changes in D and P in the 
ellipse and spiral trajectories: https://github.com/adam-matic/purity_scaling_optimality 

Contributions. Idea and conceptualization: AGM; analyses: AM & AGM; mathematical 
calculations: AGM; figures: AM & AGM; manuscript: AM & AGM. 
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