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Abstract

Biological experiments often involve hypothesis testing at the scale of thousands to
millions of tests. Alleviating the multiple testing burden has been a goal of many
methods designed to boost test power by focusing tests on the alternative hypotheses
most likely to be true. Very often, these methods either explicitly or implicitly make use
of prior probabilities that bias significance for favored sets thought to be enriched for
significant finding. Nevertheless, most genomics experiments, and in particular
genome-wide association studies (GWAS), still use traditional univariate tests rather
than more sophisticated approaches. Here we use GWAS to demonstrate why unbiased
tests remain in favor. We calculate test power assuming perfect knowledge of a prior
distribution and then derive the population size increase required to provided the same
boost without a prior. We show that population size is exponentially more important
than prior, providing a rigorous explanation for the observed avoidance of prior-based
methods.

Author summary

Biological experiments often test thousands to millions of hypotheses. Gene-based tests
for human RNA-Seq data, for example, involve approximately 20,000; genome-wide
association studies (GWAS) involve about 1 million effective tests. The conventional
approach is to perform individual tests and then apply a Bonferroni correction to
account for multiple testing. This approach implies a single-test p-value of 2.5× 10−6

for RNA-Seq experiments, and a p-value of 5× 10−8 for GWAS, to control the
false-positive rate at a conventional value of 0.05. Many methods have been proposed to
alleviate the multiple-testing burden by incorporating a prior probability that boosts
the significance for a subset of candidate genes or variants. At the extreme limit, only
the candidate set is tested, corresponding to a decreased multiple testing burden.
Despite decades of methods development, prior-based tests have not been generally used.
Here we compare the power increase possible with a prior with the increase possible
with a much simpler strategy of increasing a study size. We show that increasing the
population size is exponentially more valuable than increasing the strength of prior, even
when the true prior is known exactly. These results provide a rigorous explanation for
the continued use of simple, robust methods rather than more sophisticated approaches.
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Introduction 1

Genomics experiments involve testing thousands to millions of hypotheses. In functional 2

genomics and proteomics, each gene or protein usually corresponds to a single test, with 3

20,000 or more tests required for an RNA-Seq or proteomics experiment. In human 4

genetics, the number of independent tests accounting for linkage disequilibrium in a 5

single ethnicity is usually assumed to be about 1 million. To maintain a family-wise 6

error rate (FWER) controlled at 0.05, a long-standing approach has been to apply a 7

Bonferroni correction, requiring a single-test p-value of 0.05 divided by the number of 8

hypotheses tested. This multiple-testing correction from this stringent approach is seen 9

as a burden for identifying genome-wide significant findings. 10

A current direction of GWAS is to incorporate prior knowledge about functional 11

effects of SNPs, in order to increase the power to detect SNPs with true associations or 12

to identify which SNP in an linkage disequilibrium (LD) region is most likely to be the 13

causal variant [1–4]. A representative approach incorporated 450 different annotations 14

into GWAS analysis of 18 human traits; the number of loci with high-confidence 15

associations was increased by around 5% [5]. Despite the intuitive value of 16

incorporating pre-existing biological knowledge, it remains unclear whether this roughly 17

5% increase in genome-wide significant findings is the best that could be obtained, and 18

additionally whether the increase comes at the cost of false negatives for true positives 19

that lack similar annotations. 20

Other groups, including our own, have developed methods that incorporate priors 21

based on patterns learned from the data [6–8]. These patterns may include multiple 22

independent effects found within a single genes, or patterns of pleiotropic variants that 23

contribute to a shared subset of traits in a multi-phenotype data set. While these 24

methods have value in providing a clearer view of genetic architecture than available 25

through univariate tests, the number of new significant findings has been small [4, 9]. 26

Still other methods introduce prior distributions for model parameters, or 27

equivalently regularizations, which implicitly define a prior favoring candidate variants 28

with the largest observed effects. These methods have usually not been used in practice 29

for GWAS because the computational expense has not been justified by improved 30

results. 31

In this paper, we use theoretical models and derivations to investigate into the 32

dependency of power on population size and incorporating priors. We consider two 33

types of priors: hard prior, which is an idealized prior that only a fraction of total 34

hypotheses are tested; soft prior, for which all hypotheses are divided into two classes, 35

and a higher prior value is given to the favored class which is believed to be enriched 36

with true associations. For hard prior, we proved analytically that the dependence of 37

power on population size is linear, whereas the dependence on prior strength is 38

logarithmic, which indicates the importance of having larger population size over bigger 39

prior strength when doing association tests. For soft prior, we provide numerically exact 40

results showing that the power gains for the favored class are large only for limited 41

circumstances; the gains for the favored class imply power loss for the non-favored class, 42

and the average power gain considering both classes is only 5-10%. These gains require 43

exact knowledge of the true priors; in practice, gains with estimated priors should be 44

smaller. 45
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Methods 46

Hypothesis testing 47

We consider tests of association between a feature of the data, x, and an observed 48

phenotype or response variable, y, assumed to be scalars for simplicity. For a population 49

of size N , these are aggregated into vectors x and y. An association test compares a 50

null model M0, to an alternative, M1, which for a linear model takes the form 51

M0 : y ∼ Norm(µ0, σ
2
0);

M1 : y ∼ Norm(µ1 + βx, σ2
1).

One such M1 exists for each possible feature to be tested. With A total possible 52

alternatives to be tested, these could be denoted {Ma}, a ∈ {1, 2, . . . , A}. We consider 53

one such alternative at a time and for simplicity denote it M1. Model parameters are 54

Θ0 = {µ0, σ
2
0} for the null model and Θ1 = {µ1, σ

2
1 , β} for the alternative model. These 55

models correspond to a null hypothesis H0 and alternative hypothesis H1, 56

H0 : β = 0;

H1 : β 6= 0.

For nested models, the hypothesis test is usually performed by a likelihood ratio test 57

or its equivalent. Denote the maximum likelihood parameters as Θ̂0 and Θ̂1, and 58

assume independence of the model and data. A test statistic τ is defined as 59

τ = 2 ln
Pr(y|x, Θ̂1) Pr(M1)

Pr(y|x, Θ̂0) Pr(M0)

= q2 + 2 ln[Pr(M1)/Pr(M0)]. (1)

According to Wilks’ Theorem, under the null hypothesis, q2 is a random variable 60

distributed as χ2
1, or more generally as a χ2

d random variable where the null model is 61

nested inside an alternative model with d additional parameters [10]. Under the 62

alternative hypothesis, q2 is distributed as a non-central χ2 with non-centrality 63

parameter q21 , 64

q21 = NR2/(1−R2), (2)

where R2 is the fraction of variance explained by the alternative hypothesis, and 1−R2
65

is the residual fraction of variance. 66

For a conventional test, the prior Pr(M) is identical for the null and each alternative; 67

it does not contribute to the test statistic. To control the type I error (false-positive 68

rate) at family-wise error rate FWER α, the Bonferroni method requires a single-test 69

p-value of α/A for A total tests. Define the quantile of the uniform normal distribution 70

corresponding to a two-tailed test at this stringency zI . More formally, if Φ(z) is the 71

cumulative lower tail probability distribution for standard normal random variable z, 72

then Φ(−zI) = α/2A. For true effect q1, the power is Φ(|q1| − zI), or equivalently 73

(zI − zII)2 =
NR2

1−R2
. (3)

This key expression relates the type I error (false-positive rate), the type II error 74

(false-negative rate or complement of power), the population size N , and the effect size 75

R2. 76
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Hard prior 77

A hard prior is an idealized prior in which only hypotheses corresponding to a faction 78

1/S of the total are tested. Larger S corresponds to a stronger prior. For 20,000 79

gene-based tests, testing 10% of the total corresponds to S = 10, and testing 20 genes 80

corresponds to S = 1000. Realistically, priors stronger than S = 100, corresponding to 81

200 genes tested, are unlikely. 82

The effect of a hard prior is to reduce the multiple-testing burden. To maintain 83

FWER α, each two-tailed test is performed at stringency Sα/2A rather than α/2A. 84

This reduces the quantile zI required for significance and increases the power to detect 85

an association with a smaller effect R2. Equivalently, Eq. 3 can be solved for R2 to 86

calculate the critical effect size to achieve desired power at stated type I error, 87

R2 =
(zI − zII)2

N + (zI − zII)2
. (4)

The effect of a hard prior on zI may also be estimated analytically. A steepest 88

descents approximation relates the quantile z > 0 to its upper-tail area ε, 89

ε = (2π)−1/2
∫ ∞
z

due−u
2/2

= (2π)−1/2e−z
2/2

∫ ∞
z

due−(u+z)(u−z)/2

≈ (2π)−1/2e−z
2/2

∫ ∞
z

due−z(u−z)

=
1√
2πz

e−z
2/2.

Equivalently,
z2 ≈ −2 ln[

√
2πzε].

In terms of the quantile zI for prior strength S and a two-tailed test, we have 90

approximately 91

z2I ≈ −2 ln[
√

2πzISα/A]. (5)

Define ζ as the value of zI for no prior, S = 1, with Φ(−ζ) = α/2A and 92

ζ2 ≈ −2 ln(
√

2πζα/A). (6)

For GWAS with a p-value threshold of 5× 10−8, ζ = 5.45 and ζ2 = 29.7. Because the
dependence of Eq. 5 on ln z is weak, we replace ln z with ln ζ,

z2I ≈ −2 ln[
√

2πζSα/A] ≈ ζ2 − 2 lnS = ζ2(1− 2ζ−2 lnS).

Keeping terms of order 1/ζ, 93

zI ≈ ζ(1− ζ−2 lnS)

zI − zII ≈ ζ − zII − ζ−1 lnS

(zI − zII)2 ≈ (ζ − zII)2 −
2(ζ − zII)

ζ
lnS

= (ζ − zII)2
[
1− 2

ζ(ζ − zII)
lnS

]
.

According to Eq. 3, the critical effect size depends only on the ratio (zI − zII)2/N .
Consider two scenarios with equal critical effect size, one with population size N1 and
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prior strength S1, and the second with population size N2 and prior strength S2. For
these to have equal critical effect size,

(ζ − zII)2
[
1− 2

ζ(ζ − zII)
lnS1

]
/N1 ≈ (ζ − zII)2

[
1− 2

ζ(ζ − zII)
lnS2

]
/N2.

Cancelling constant terms ζ − zII and noting that 2ζ−1(ζ − zII) lnS is small, 94

N1

N2
≈

[
1− 2

ζ(ζ − zII)
lnS1

]
/

[
1− 2

ζ(ζ − zII)
lnS2

]
≈

[
1− 2

ζ(ζ − zII)
lnS1

]
×
[
1 +

2

ζ(ζ − zII)
lnS2

]
≈ 1 +

2

ζ(ζ − zII)
ln
S2

S1
.

The dependence on population size is linear, whereas the dependence on prior strength 95

is logarithmic. Equivalently, population size is exponentially more important that prior 96

strength. Again for GWAS with zII selected for 80% power, ζ(ζ − zII)/2 = 17.15, and 97

only a small fractional population increase is required to obtain the equivalent power 98

increase for a strong prior. An extremely strong prior with S2 = 1000, with effectively 99

only 20 genes selected for testing, can be matched by a population increase of about 100

40%. 101

Contours of N and S with equal critical effect size can be estimated by returning to
the approximate result

NR2/(1−R2) ≈ (ζ − zII)2[1− 2

ζ(ζ − zII)
lnS].

Noting that for small ε, 1 + ε lnS ≈ Sε, contours are given by 102

NS2/ζ(ζ−zII) ≈ (ζ − zII)2R2/(1−R2). (7)

On a log-log plot of logS versus logN , these contours would have steep negative slope 103

equal to −ζ(ζ − zII)/2. 104

Soft prior 105

Soft priors are incorporated into association analysis such that sequence variants like 106

loss-of-function and missense variants, which are more likely to affect protein function 107

and therefore more likely to be causative, are given higher prior belief to have true 108

signals before data was analyzed. For simulation, this is done by first dividing all 109

possible associations into two classes, a favored class F and a non-favored class NF , 110

and assuming true associations are enriched in the favored class and depleted in the 111

non-favored class. For Eq. 1, if we normalize Pr(M0) = 1, the expression could be 112

simplified into the following form: 113

τ = q2 + 2 ln [Pr(M1)] (8)

Denote the model for variants in the favored class as MF and in the non-favored 114

class as MNF , if priors for the two classes Pr(MF ) and Pr(MNF ) are known exactly, 115

the probability distribution for the test statistic will now depend on the classes, with 116

their individual test statistics being: 117

τF = q2 + 2 log [Pr(MF )]
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118

τNF = q2 + 2 log [Pr(MNF )]

Based on assumptions given above, we are able to simulate the change of power in 119

detecting real effects after incorporating the two classes. For simulation, we first fixed 120

the association effective size corresponding to 50% power to detect a true association in 121

a GWAS study at genome-wide significance (p = 5× 10−8) assuming 1 million effective 122

tests. Using the same notation as above, this is equivalent to solving for first the critical 123

value τc such that 124

Φ(−τc) = 5× 10−8/2 = 2.5× 10−8

then solve for true effect qc such that Φ(|qc| − τc) = 0.5, which gives us |qc| = τc. To 125

avoid calculation on both tails of the standard normal distribution, the expression could 126

be simplified by introducing Ψ(z2; q2) to denote Pr(t > z2) where t follows a 1df 127

non-central χ2 distribution with non-centrality parameter q2. The relationship between 128

Φ and Ψ thus satisfies 129

2× Φ(z − |q|) = Ψ(z2; q2)

for z < |q| and 130

2× Φ(|q| − z) = Ψ(z2; q2)

for z ≥ |q|. 131

Power to detect SNPs with true associations for two classes combined could then be 132

calculated as a function of two variables: 133

1. S, power strength, which is defined as inverse of the fraction of variants in the 134

favored class; 135

2. [Pr(MF )/Pr(MNF )] the relative priors of the two classes. 136

The exact steps of simulation are as following: 137

1. For a pair of values for fraction of variants in the favored class 1/S and prior 138

enrichment fold-enrichment [Pr(MF )/Pr(MNF )], the critical threshold for 139

genome-wide significance τ ′c could be solved using the following equation: 140

(1− 1/S) Pr(q2 > τ ′c) + (1/S) Pr(q2 + 2 ln

[
Pr(MF )

Pr(MNF )

]
> τ ′c) = 5× 10−8

With q2 following an 1df χ2 distribution, with the denotations defined above, this 141

equation simplifies to: 142

(1− 1/S)Ψ(τ ′c; 0) + (1/S)Ψ(τ ′c − 2 ln

[
Pr(MF )

Pr(MNF )

]
; 0) = 5× 10−8 (9)

2. Now with the critical threshold τ ′c and the non-centrality parameter qc calculated 143

above, power for the favored class could be calculated as: 144

power(MF ) = Ψ(τ ′c − 2 ln

[
Pr(MF )

Pr(MNF )

]
; q2c ) (10)

And the power for the non-favored class could calculated as: 145

power(MNF ) = Ψ(τ ′c; q
2
c ) (11)

3. The average power for true associations could be calculated as: 146

power(Avg) = Pr(MF )
Pr(MF )+(S−1) Pr(MNF ) × power(MF ) (12)

+ (S−1) Pr(MNF )
Pr(MF )+(S−1) Pr(MNF ) × power(MNF )
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4. Population size fraction increase to achieve the same average power could then be 147

calculated as N1/N2 = q′c/qc, where q′c correspond to the same average prior 148

without using any prior. Here N2 = population size to achieve the specific power 149

and 0.05 FWER using a prior, and N1=population size to achieve the same power 150

and 0.05 FWER without a prior. This is similar to the exploration between S and 151

N in the hard prior case. 152

Results 153

Hard prior 154

Fig. 1 shows contours for critical R2 for p = 5× 10−8 at power = 0.8 as a function of 155

prior strength and population size. As could be observed, the color corresponding to 156

critical R2 changes rapidly as population size changes, and doesn’t change much as a 157

function of prior strength. This indicates that power is much more sensitive to 158

population size compared to using a hard prior, namely restricting tests to a subset of 159

variants. On the log-log scale, given a fixed value of R2, the prior strength and 160

population size exhibits a clear linear pattern, which leads to the derivation on the Hard 161

prior part in the Methods section, and yielding a slope of 17.15 at 80% power. Fig. 2 162

shows the analytical solution of the relationship between population size and prior 163

strength. The left panel denotes the population increase ratio versus prior strength 164

increase to achieve the same increase in power. If we have a prior strength of 100 for 165

example, which correspond to testing 1/100 of all variants, we could get the same power 166

increase by increasing the population from N to fN where f is the factor increase. 167

Reading from the figure, this would be a factor about 1.35, which correspond to a 33% 168

increase in the cohort size. At the very extreme, a prior strength of 1000, which 169

corresponds to testing SNPs in only 20 genes, will only do as well as increasing the 170

cohort size by 70%. Panel on the right shows the linear relationship between population 171

size exponent and prior strength for a fixed effect size, which quantifies the linear 172

relationship as described in Eq. 7. Both figures provide numerically exact result of the 173

relationship between population size and prior strength, with the conclusion that 174

population size is a much more important factor to gain power than incorporating priors. 175

Soft prior 176

Power for the two classes 177

Fig. 3 shows power for the two classes at different fold-enrichment for favored class 178

versus prior strength. For power of the favored class, when prior strength is small, 179

corresponding to a large fraction of favored class, power is not sensitive to fold 180

enrichment. For example, when S = 2, corresponding to the favored class consisting 181

50% of the total variants, power boost for the favored class is at around 2% to 4% 182

regardless of fold enrichment. This is because, a large favored class fraction is essentially 183

equivalent to a less well-defined subset of variants, which usually fails to provide much 184

valuable information regarding prior beliefs. Therefore, giving the big favored class a 185

higher prior value only results in the decreased power for the non-favored class, as is 186

shown in the right panel of Fig. 3. 187

As S increases, which corresponds to decreasing the fraction of favored class, power 188

becomes more sensitive to fold enrichment, and assigning it with a bigger prior enhances 189

its power. Specifically, a prior 2 to 5 folds as big as the non-favored class prior gives a 190

5% to 10% power boost. This power increases even more as the fold-enrichment 191

enhances, as long as the fraction is fixed at the same level. This is because, as the 192

favored class gets smaller, the subset of variants becomes more informative, thus giving 193
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Fig 1. Contour plot for critical R2 for p = 5× 10−8 at power = 0.8 as a
function of prior strength and population size. The color corresponding to
critical value R2 changes rapidly as population size changes, and doesn’t change much
as a function of prior strength, indicating that power is much more sensitive to
population size compared to restricting tests to a subset of variants. Relationship
between prior strength and population size appears to follow a linear relationship on the
log-log scale, and the slope of the linear relationship given a fixed value of R2 indicates
the relative importance of the two factors.
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the class higher prior greatly boosts its power. From the calculation perspective, as S 194

becomes bigger, τ ′c term in Eq. 9 is mostly determined by the non-favored class and 195

remains mostly unchanged; thus little change to the fold enrichment would result in big 196

difference of the power of favored class. 197

Also note that, since the overall power is fixed at 50%, gain in power for the favored 198

class implies a loss of power for the non-favored class, which corresponds to the 199

“no-free-lunch theorem”. Power for the non-favored class remains around 50% when 200

fraction of favored class is low or fold enrichment is low, as in these two situations the 201

impact of the favored class is small; its power decreases, yielding more power for the 202

favored class, when both fold enrichment is high and fraction of favored class is high. 203

Average power for combining both classes 204

Average power for combining both classes is shown in Fig. 4. For same fold-enrichment 205

and class fraction, the average power is relatively smaller than power for the favored 206

class alone, and higher than the non-favored class alone. This is because gain for power 207

of the favored class leads to loss for the non-favored class, as discussed above, thus a 208

combination of the two will result a value of power in the middle. 209

Shape of the contour is determined by weights of the two classes: for small prior 210

strength and large fold enrichment, shape of contour is more similar to the favored class 211

in Fig. 3; for large prior strength and small fold enrichment, shape is similar to the 212

non-favored class. This explains the curve which tilts up towards large prior strength, as 213

when fraction for favored class is small, the power is mostly determined by the 214

un-favored class. Fig. 5 shows the population size fraction increase in order to achieve 215

the same power increase. As could be observed, the maximum population increase is 216

1.3 fold to obtain the maximum power gain fulfilled through incorporating a prior, 217

further strengthening the conclusion from the hard prior part that, population size is of 218

a more crucial factor compared to prior incorporation as for association involving large 219

number of hypothesis testings. 220

Discussion and Conclusion 221

Despite the efforts on developing methods that incorporate priors into association 222

hypothesis tests, traditional unbiased univariate tests combined with Bonferroni 223

correction to control for FWER remains the rule of thumb method to test for 224

associations. In this paper, we exploited the relationship of power to detect true 225

associations on increasing study size and incorporating priors. Two scenarios were 226

considered in this study: hard prior, for which only a fraction of all variants are tested 227

to lower the burden coming from multiple testing; soft prior, for which a fraction of 228

variants are given a higher belief a prior to doing the association analysis. For hard 229

prior, the dependence of heritability on population size and prior strength was 230

analytically derived, and it was proved that the dependence on population size is linear, 231

whereas the dependence on prior strength is logarithmic. Soft prior was able to boost 232

power with very specific requirement on class fraction and fold-enrichment, and even so, 233

its maximum boost of power could be achieved by increasing population size by 234

approximately 30%. For both scenarios, it was concluded that increasing population size 235

is a better strategy to boost power compared to incorporating priors. With recent 236

developments in high throughput biology, immense amount of data is being generated, 237

making improving power through increasing population size possible; in the meantime, a 238

lack of prior-based methods with extraordinary performance on association tests has 239

been observed, which further strengthen the favor of population size from an practical 240

perspective. These results give valuable insights into what strategy should be taken 241
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towards future directions for establishing associations between biological variants and 242

traits. 243

The usefulness of having larger sample size is not restricted to association tests in 244

the biological field. Huge success has been achieved in the application of machine 245

learning and deep learning into image analysis, nature language processing fields and 246

etc. While big credit has been given to the design and implementation of sophisticated 247

learning structures like convolution neural networks, recurrent neural networks and etc., 248

from results in this project, the role that the tremendous amount of data for training 249

these networks might have been well under-estimated. 250
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Fig 2. Population size and prior strength to achieve same power. X-axis
denotes the prior strength S; y-axis of the left panel denotes population fraction
increase; y-axis of the right panel denotes population size exponent for a fixed effect
value. The left panel shows the population size and prior strength to achieve the same
power; a prior strength at 1000 will have equivalent power if the cohort size increases by
70%. The right panel shows the relation between population size exponent and prior
strength given a fixed effect size. Both figures shows numerically the linear relationship
between population size and logarithmic of prior strength.
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Fig 3. Contour plot of power for the favored class and non-favored class at
p = 5× 10−8 threshold for 50% power. The left panel shows power for the favored
class, and the right panel shows power for the non-favored class. X-axis denotes prior
strength S, which is equal to inverse of fraction of SNPs in the favored class; larger S
value denotes smaller group of favored class and a more focused subset of variants with
higher prior. Y-axis denotes fold enrichment of the favored class Pr(MF )/Pr(MNF ).
For power for the favored class, it could be observed that when prior strength is small,
the power is insensitive to prior fold enrichment; this is because large fraction for the
favored class is essentially equivalent to a less well-defined subset of variants, thus effect
of prior enrichment becomes less obvious. When the favored class is more well-defined,
corresponding to larges S values and smaller fractions of favored class, the effect of
incorporating prior becomes more obvious; this is reflected by the power gain at large S
values, and the power increases with higher fold-enrichment. Power of the non-favored
class remains at around 50% when fraction of favored class is small or fold-enrichment is
small, because small fold enrichment or small fraction of favored subset is unlikely to
make big impact to the non-favored class; when the favored class is given a large prior
and consists of large proportion of the total variants, the non-favored class begins to
loose power.
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Fig 4. Average power for both classes combined at p = 5× 10−8 threshold
for 50% power. Axes are defined in the same way as for Fig.3. Average power is
smaller than power for the favored class and larger than power for the non-favored class
given the same prior strength and fold enrichment, as a balance between gain of power
for the favored class and loss of power for the non-favored class. Shape of the contour is
determined by weights of the two different classes: for small prior strength and large
fold enrichment, shape of contour is more similar to the favored class in Fig. 3; for large
prior strength and small fold enrichment, shape is similar to the non-favored class.
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Fig 5. Population size fraction increase to achieve the same average power
for at 5× 10−8. Axes are defined in the same way as for Fig. 3. Values are N1/N2

where N1 is the population size without prior, and N2 is population size to achieve the
same power using prior. The maximum population size fraction increase is 1.3 fold to
obtain the maximum power gain fulfilled through incorporating a prior, further prove
the point that population size is of a more crucial factor for association testing.
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