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 22 

ABSTRACT 23 

Little is known about the public health risks associated with natural creek sediments that are 24 

affected by runoff and fecal pollution from agricultural and livestock practices. For instance, the 25 

persistence of foodborne pathogens originating from agricultural activities such as Shiga Toxin-26 

producing E. coli (STEC) in such sediments remains poorly quantified. Towards closing these 27 

knowledge gaps, the water-sediment interface of two creeks in the Salinas River Valley was 28 

sampled over a nine-month period using metagenomics and traditional culture-based tests for 29 

STEC. Our results revealed that these sediment communities are extremely diverse and 30 

comparable to the functional and taxonomic diversity observed in soils. With our sequencing 31 

effort (~4 Gbp per library), we were unable to detect any pathogenic Escherichia coli in the 32 

metagenomes of 11 samples that had tested positive using culture-based methods, apparently due 33 

to relatively low pathogen abundance. Further, no significant differences were detected in the 34 

abundance of human- or cow-specific gut microbiome sequences compared to upstream, more 35 

pristine (control) sites, indicating natural dilution of anthropogenic inputs. Notably, a high 36 

baseline level of metagenomic reads encoding antibiotic resistance genes (ARGs) was found in 37 

all samples and was significantly higher compared to ARG reads in metagenomes from other 38 

environments, suggesting that these communities may be natural reservoirs of ARGs. Overall, 39 

our metagenomic results revealed that creek sediments are not a major sink for anthropogenic 40 

runoff and the public health risk associated with these sediment microbial communities may be 41 

low. 42 

 43 
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 3 

IMPORTANCE 44 

Current agricultural and livestock practices contribute to fecal contamination in the environment 45 

and the spread of food and water-borne disease and antibiotic resistance genes (ARGs). 46 

Traditionally, the level of pollution and risk to public health is assessed by culture-based tests for 47 

the intestinal bacterium, E. coli. However, the accuracy of these traditional methods (e.g., low 48 

quantification, and false positive signal when PCR-based) and their suitability for sediments 49 

remains unclear. We collected sediments for a time series metagenomics study from one of the 50 

most highly productive agricultural regions in the U.S. in order to assess how agricultural runoff 51 

affects the native microbial communities and if the presence of STEC in sediment samples can 52 

be detected directly by sequencing. Our study provided important information on the potential 53 

for using metagenomics as a tool for assessment of public health risk in natural environments. 54 

 55 

INTRODUCTION 56 

Nearly half of the major produce-associated outbreaks in the U.S. between 1995-2006 57 

have been traced to spinach or lettuce grown in the Salinas Valley of California (1). 58 

Contamination of produce can be caused by exposure to contaminated irrigation or flood water, 59 

deposition of feces by wildlife or livestock, or during field application of manure as fertilizer (2, 60 

3). From a public health perspective, more information is needed on the risk of exposure to 61 

animal fecal contamination as recent studies suggest that exposure to water impacted by cow 62 

feces may present public health risks that are similar or equal to human fecal contamination. For 63 

example, cattle are a reservoir of the major foodborne pathogen, Shiga Toxin-producing E. coli 64 

(STEC) (4, 5). Environmental contamination by animal feces from farms is an emerging public 65 
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health issue not only as a source of pathogens but also as a source of antibiotic resistance genes 66 

(ARGs) (6). Antibiotics are regularly administered to livestock at prophylactic concentrations to 67 

prevent infection, and food animal production is responsible for a significant proportion of total 68 

antibiotic use (7). Such practices are known to contribute to the prevalence of ARGs in the 69 

environment (8–10), which can spread rapidly to other microbes via horizontal gene transfer, 70 

including to human pathogens of clinical importance (11, 12). Surprisingly, there is very little 71 

regulation of antibiotic use in the livestock industry, even though these operations can be major 72 

contributors to fecal pollution and the spread of ARGs in the environment (13, 14). 73 

Our previous culture- and PCR-based surveys of the Salinas watershed, and particularly 74 

Gabilan and Towne Creeks (heretofore called GABOSR and TOWOSR, respectively), indicated 75 

persistent presence of STEC in water and sediments (15, 16) and a potentially significant public 76 

health risk. Continued prevalence of STEC in both GABOSR and TOWOSR sites is 77 

hypothesized to be linked to the presence of cattle upstream. For instance, in several cases, STEC 78 

strains isolated from cattle fecal samples were identical to those found in water and sediment 79 

based on Multi-Locus Variable number tandem repeat Analysis (MLVA) typing. Indeed, the 80 

prevalence of STEC was strongly correlated with runoff due to rainfall (1, 16). However, 81 

hydrologic modeling and surveys indicated that pathogen levels in streams were not only due to 82 

overland flow, but also to contributions from sediment (17, 18). These observations were further 83 

supported by several examples of identical MLVA types isolated from both water and sediment 84 

at the same location or downstream during periods of drought (1, 15). Further, the levels of 85 

pathogen in the water column and sediment are difficult to measure and are generally 86 

underestimated due to the predominance of biofilms and viable but not culturable (VBNC) 87 

bacteria (19). Therefore, metagenomic characterization of the creek sediments should provide 88 
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independent quantitative insights into the effect of agricultural practices on the surrounding 89 

environment.   90 

River and creek sediments are among the most diverse communities sequenced to date and are 91 

largely under-sampled (20, 21). Moreover, the sediments studied to date are exclusively from 92 

highly and/or historically polluted environments with varying industrial or sewage inputs and 93 

thus, each sediment is characterized by its unique properties in terms of flow dynamics, chemical 94 

environment, climatic conditions and anthropogenic inputs (21–27). Accordingly, previous 95 

studies on the effect of anthropogenic inputs on sediments in lotic (free-flowing) aquatic systems 96 

have yielded mixed results on how surrounding land use practices impact sediment communities 97 

or were not directly relevant. Furthermore, in order to properly quantify the effect of 98 

anthropogenic antibiotic inputs, appropriate controls (e.g., pristine sampling sites) are needed to 99 

determine baseline levels of ARGs and other genes (13, 28).  100 

 101 

In this study, we examined the effect of agricultural runoff on microbial communities from creek 102 

sediments in the Salinas watershed and whether community structure correlated with 103 

precipitation or culture-based detection of STEC. We sampled nearby, upstream sites with 104 

reduced human and cattle presence as a baseline to compare the abundance of anthropogenic 105 

signals (i.e. human and cow gut microbiome and ARGs) observed in the downstream sites. 106 

Furthermore, we compared these sites to other publicly-available sediment, soil, and river water 107 

metagenomes from both highly pristine and polluted environments in order to validate our results 108 

and assess anthropogenic pollution levels relative to other similar habitats.  109 

 110 

RESULTS 111 
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Description of sampling sites 112 

Six sites from three creeks in the Salinas River valley in California were included in this study. 113 

Two of the sites (collectively referred to as the “downstream” samples/sites) are impacted by 114 

cattle ranching but vary in the level of agricultural activities in the directly surrounding area. The 115 

creeks are isolated at the sampling locations but converge further downstream before emptying 116 

into the Salinas River. Gabilan (GABOSR) is directly downstream of organic strawberry produce 117 

fields that use both green and poultry manure fertilizer and has cattle ranching upstream of the 118 

strawberry farm. The second site, Towne Creek (TOWOSR), is roughly 2 Km north of GABOSR 119 

but does not have any abutting agricultural fields directly upstream and only receives input from 120 

cattle ranches. Ten samples from each of the two downstream sites, GABOSR and TOWOSR, 121 

collected over a 9-month period from September 2013 through June 2014 were selected for 122 

metagenome sequencing based on precipitation levels and detection of pathogenic E. coli via 123 

enrichment culture (Table 1). An additional seven samples from four upstream sites (collectively 124 

referred to as the “upstream” samples/sites), were included to serve as upstream controls for 125 

metagenomic comparison (Table 1 and Figure 1). The samples from these locations included: 126 

three samples collected ~10 km upstream from Gabilan (“GABOSR Control”) on March 2016 127 

(GC1-3); two samples collected ~3 km upstream from Towne Creek (“TOWOSR Control”) on 128 

April 2017 (TC1 and TC2); and finally, one sample from each of two sites on the west side of the 129 

Salinas River (“West Salinas”), ~60 km and 110 km southeast from the downstream sites 130 

collected in May 2017 (WS1 and WS2, respectively). The latter two samples are not upstream of 131 

GABOSR or TOWOSR but were included because they are more pristine sites with no known 132 

history of cattle impact, as opposed to the GC and TC samples, which may have had minimal 133 

inputs from previous cattle grazing.  134 

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 16, 2019. ; https://doi.org/10.1101/737759doi: bioRxiv preprint 

https://doi.org/10.1101/737759
http://creativecommons.org/licenses/by-nd/4.0/


 
 

 7 

 135 

Description of metagenomes and sequence coverage of microbial community 136 

A total of 27 metagenomic samples, ranging in size from 8.7 to 20.1 million reads (2.5 to 5 Gbp) 137 

after trimming, were recovered from the six locations (Table S2). For all samples, less than 28% 138 

of the total community (average 18.6%) was covered by our sequencing efforts as determined by 139 

Nonpareil analysis (Figure S1). Consequently, the assembly of the metagenomes was limiting 140 

(Table S2), consistent with our previous analysis of soil and sediment communities (29) and 141 

those of a few other metagenomic studies of river sediments. Thus, an un-assembled short read-142 

based strategy was used for all subsequent analyses (paired-end, non-overlapping reads with an 143 

average length of 132-145 bp per dataset), unless noted otherwise. A total of 7.2x108 protein 144 

sequences were predicted from the short reads, with an average of 2.7x107 sequences per sample. 145 

The number of protein sequences that could be annotated to the Swiss-Prot database in each 146 

sample ranged between 10 and 16% (average 14.5%) of the total sequences. 147 

 148 

OTU characterization and alpha diversity assessment  149 

A total of 466,421 reads encoding fragments of the 16S or 18S rRNA gene were detected in all 150 

27 metagenomes with an average of 17,275 reads per sample. All datasets were dominated by 151 

bacteria, with only 0.6% and 3.0% of the total rRNA reads, on average, having archaeal or 152 

eukaryotic origin, respectively. Closed-reference OTU picking at 97% nucleotide identity 153 

threshold resulted in a total of 25,764 OTUs from 349,886 reads for all 27 samples and an 154 

average of 4,465 OTUs per sample. Since the coverage was similar for all datasets, the number 155 

of OTUs shared between all samples were compared without any further normalization. Only 156 
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138 OTUs (0.5%) were shared among all 27 samples, while 9,500 (36.9%)  of the OTUs were 157 

present in only one sample. The OTU rarefaction plot showed that diversity was not saturated 158 

(Figure S2A), which agreed with the low number of shared OTUs and the Nonpareil estimates on 159 

the shotgun data reported above (Figure S1).  160 

Alpha diversity observed in the California samples was compared to three publicly-available 161 

river sediment metagenomes from Montana that had similar land use inputs (i.e. agricultural or 162 

small towns) and were the most appropriate data for comparison among lotic sediment 163 

metagenomes currently available (20). Species richness and diversity in Montana samples were 164 

significantly less than California samples (P= 2.3x10-4 and 0.006, respectively; Figure S2). 165 

Within California sites, diversity and evenness were similar; however, average species richness 166 

in GABOSR was significantly lower than TOWOSR and the upstream samples (P= 0.034 and 167 

4.1x10-4, respectively). 168 

Taxonomic composition and functional diversity of water-sediment microbial communities 169 

OTUs were analyzed further to characterize the taxonomic profile of the communities sampled. 170 

Proteobacteria and Bacteroidetes were the most abundant phyla across most samples. However, 171 

some of the upstream samples had a higher abundance of Actinobacteria (Figure S3A). Class 172 

level taxonomic distributions were consistent over time for GABOSR samples and revealed the 173 

high abundance of Betaproteobacteria (>19-24% of total sequences). TOWOSR samples varied 174 

more over time; five samples (T130918,T131230, T140128, T140210, T140611) had a higher 175 

abundance of Deltaproteobacteria and Bacteroidia, and one sample (T140116) had a higher 176 

abundance of Cyanobacteria. The upstream samples also showed a similar community 177 

composition and had higher relative abundance of Alphaproteobacteria (11-17%) compared to 178 
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the downstream samples (Figure S3B). These results were consistent with the TrEMBL 179 

taxonomic classification of protein-coding metagenomic reads, which were dominated by 180 

Bacteria (~95.2% per sample; Figure S4).  181 

 182 

Microbial community structure and dynamics in Salinas River valley creeks  183 

Location was the strongest factor affecting clustering patterns observed in PCA ordinations of all 184 

distance matrices analyzed (Figure S5). ADONIS analysis in the R package vegan (using 185 

location as a categorical variable) yielded P<0.001 and R2= 0.44, 0.67, 0.41, and 0.56 for 186 

MASH, functional gene, OTUs Bray-Curtis (16S-BC) and OTUs weighted UniFrac (16S-WUF), 187 

respectively. This result was confirmed by correlation analysis of the NMDS ordinations to all 188 

metadata variables using the envfit function in vegan. After Bonferroni correction for multiple 189 

comparisons, location had the strongest correlation to all ordinations (MASH: P=0.001, 190 

R2=0.879; Functional gene: P=0.001, R2=0.845; 16S-BC: P=0.001, R2=0.0.787; 16S-WUF: 191 

P=0.001, R2=0.726), and was the only significant variable for MASH (Figure 2) and 16S rRNA 192 

gene-based measures of beta-diversity (Figures S6, panels B and C) among those parameters 193 

evaluated. The functional gene ordination was also correlated, albeit weakly, to total 5-day 194 

precipitation (P=0.028, R2=0.359; Figure S6A).  In order to control for spatial variance, a more 195 

rigorous db-RDA (30) was used on constrained NMDS ordinations, which allows the influence 196 

of a matrix of conditioning variables (i.e., location) to be “removed” prior to analysis. No 197 

significant associations (P>0.05) were found in the functional gene and OTU Bray-Curtis 198 

ordinations, however, the MASH and OTU weighted UniFrac distances were significantly 199 

associated with sampling time (ANOVA: F=1.274, P=0.031; F=2.174, P=0.04, respectively).  200 
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 201 

Culture-based detection of E. coli does not correlate with metagenome-based results  202 

The abundance of E. coli in the metagenomes was low for all samples (~0.002% of total reads). 203 

Samples with the highest relative abundance of metagenomic reads matching to E. coli were 204 

negative for all culture-based tests (Table S3), which indicated spurious in-silico results (e.g., 205 

reads from non-E. coli genomes matching to conserved genes such as the rRNA operon). In 206 

addition, when using imGLAD (31) to predict the probability that E. coli was present in the 207 

metagenomes, a tool developed by our team to deal with spurious matches, all samples yielded a 208 

P-value of 1 (i.e., 0 probability of presence), which suggested that any E. coli populations 209 

(including STEC) were below the estimated limit of detection for the datasets in hand (3% 210 

coverage of E. coli genome at a minimum of 0.12 sequencing depth). The absolute abundance of 211 

the STEC based on ddPCR was also low (~1 in 108 cells, assuming average molecular weight of 212 

a bp of DNA is 660g/mol, 5 Mb genome size, and 1 copy stx/genome) or absent in all samples, 213 

which supports our bioinformatic approaches (Table S3). 214 

 215 

Differentially abundant (DA) functions and taxa between locations  216 

Of the 1,105 SEED subsystems (pathways) and 1806 taxonomic groups identified, 911 and 408 217 

were significantly DA with Padj < 0.05 for subsystems and taxa, respectively.  Using pairwise 218 

comparisons between GABOSR, TOWOSR, and upstream sites, 184 SEED subsystems had Log2 219 

fold change (L2FC) > 1, while 273 taxa had L2FC > 2, which were grouped into 36 and 35 220 

broader functional and taxonomic categories, respectively (as described in the supplementary 221 

data). This analysis revealed several notable trends that were consistent between the SEED and 222 
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taxa results (Figures 3 and S7). More specifically, iron acquisition genes appeared to more 223 

abundant in the upstream samples, particularly in the samples collected upstream of TOWOSR 224 

(TC1 and TC2). Plant-associated and photosynthesis genes were more abundant in the more 225 

pristine samples (WS1 and WS2). Consistently, members of the phyla, Alphaproteobacteria (e.g. 226 

Rhizobiales; see Supplementary data file S2), were more abundant upstream. The upstream sites 227 

were also DA for taxa that are associated with soil and aquatic habitats (e.g. Gemmatimonadetes 228 

and Armatimonadetes), which indicated that these sites may indeed receive less anthropogenic 229 

inputs, as we hypothesized.  230 

Sample T140116 was enriched for both cyanobacteria based on OTU analysis (Figure S7) and 231 

photosynthesis genes (Figure 3). TOWOSR appeared to be DA in genes for anaerobic processes 232 

like anoxygenic photosynthesis and methanogenesis, along with genes related to archaeal DNA, 233 

RNA, and protein metabolism (all organisms known to carry out methanogenesis are Archaea). 234 

Consistently, the two TOWOSR samples (T140128 and T140210) that were most DA for 235 

archaeal and methanogenesis genes were also the most DA in Archaea and methanotrophs from 236 

the order Methylococcales, relative to the other sites. Other DA genes associated with anaerobic 237 

metabolisms, such as anoxygenic photosynthesis and sulfur metabolism genes (Figure 5), were 238 

congruent with taxonomic results that showed anoxygenic photosynthetic phyla Chlorobi (Green 239 

S bacteria), Chloroflexi (Green non-S), and the family Chromatiaceae, as well as known sulfur-240 

metabolizing and anaerobic groups (e.g. Thiobacillus and Clostridia) to be more prevalent in the 241 

TOWOSR samples (Figure S7). Additionally, the TOWOSR samples, in general, were more 242 

abundant in the gut-associated phyla, Firmicutes and Bacteroidetes. Sample T140210 from 243 

TOWOSR was particularly enriched in specific enteric taxa: Endomicrobia and Fibrobacteres, 244 

which are rumen bacteria associated with cellulous degradation. 245 
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Collectively, these results suggested that our annotation and grouping methods were robust and 246 

that TOWOSR samples are more anaerobic, which could potentially indicate greater runoff and 247 

eutrophication as a result of human activity at this location. Also, the upstream sites were all 248 

significantly DA in Actinobacteria (i.e., common soil microbes and antibiotic producers), which 249 

provides further evidence in support of this system being a natural (and substantial) source of 250 

ARGs (see below). 251 

 252 

Quantifying anthropogenic and agricultural inputs 253 

ARGs are more abundant in California samples compared to other similar environments. The 254 

abundance of ARGs in each dataset was determined by blastp search against the Comprehensive 255 

Antibiotic Resistance Gene Database (CARD; (32)). The most abundant ARGs detected are 256 

shown in Figure S8. A comparison of selected metagenomic datasets that included: 257 

metagenomes from agricultural sediments from Montana (MT) and soils from Illinois (Urb, 258 

Hav), more pristine/remote samples from the Kalamas River (Kal) and Alaskan permafrost (AK), 259 

as well as a highly polluted sample from the Ganges River (Agra), was performed in order to 260 

benchmark the level of anthropogenic signal observed in the Salinas Valley against other 261 

environments. The abundance of ARGs in the California samples were significantly greater 262 

compared to the other environmental metagenomes included here (Kruskal-Wallis c2 =19.44, P = 263 

0.0002; Figure 4A).  264 

Abundance of genes associated with antibiotics used in cattle. In order to better assess the impact 265 

(if any) of ARGs related to cattle ranching, we built ROCker models, a more accurate approach 266 

for finding metagenomic reads encoding a target gene of interest compared to simple homology 267 
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searches (33), targeting tetracycline resistance (tetM) and production gene (oxyT) since 268 

tetracyclines are among the most common antibiotics used in livestock (34). We also built a 269 

model targeting ketosynthase alpha subunit genes (KSα), which are involved in the synthesis of 270 

many antibiotics, including tetracyclines (35). In order to exclude the effect of potentially 271 

confounding variables, only the California samples were used for linear regression analysis of 272 

the abundances of antibiotic production and resistance genes. ROCker analysis showed high 273 

prevalence of tetM in all samples and an abnormally high abundance for tetM was observed in 274 

sample TC1 (Figure 5, left panel). TC1 was thus considered an outlier and excluded from the 275 

linear regression analysis. The high abundance in TC1 was attributed to the fact that tetM has the 276 

widest host range of all tetracycline resistance (tet) genes due to its association with highly 277 

mobile conjugative transposons that behave similarly to plasmids and have several antirestriction 278 

systems (36, 37). OxyT did not significantly correlate to tetM abundance (r2 =0.031); however, 279 

KSα showed a moderate correlation to tetM (r2=0.280) (Figure 5, right panel).  280 

Abundance of cow and human gut (HG) microbiomes. The signal from the Ganges River (Agra) 281 

sample greatly exceeded all other samples in both the absolute number (Table S4) and relative 282 

abundance expressed as genome equivalents (GE), i.e., the fraction of total genomes encoding 283 

human gut genes assuming a single-copy of each gene per genome (33.5 GE; 8-100x more 284 

abundant than all other samples; Figure 4B). There was a significant difference between the HG 285 

abundance averages observed in California metagenomes and the 8 metagenomes from 5 other 286 

habitats evaluated here (Kruskal-Wallis P=0.015). However, after correcting for multiple 287 

comparisons, none of the groups were significantly different (Wilcoxon Rank Sum P >0.1). 288 

Within California samples, there was no significant difference, overall, between abundances 289 

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 16, 2019. ; https://doi.org/10.1101/737759doi: bioRxiv preprint 

https://doi.org/10.1101/737759
http://creativecommons.org/licenses/by-nd/4.0/


 
 

 14 

observed in the downstream samples and the average abundances of the upstream control 290 

samples (Kruskal-Wallis P=0.169).   291 

The abundance of different cow gut genes had a similar trend to the human gut data (Table S4). 292 

However, two samples from TOWOSR (T140210 and T140611) showed an elevated signal for 293 

cow sequences (Figure 4C). Despite these two samples from TOWOSR with a higher level of 294 

cow gut signal, the average gene abundances were similar for California samples overall, and no 295 

significant difference was detected between the means compared to the other environmental 296 

metagenomes and the seven upstream control samples (Kruskal-Wallis P=0.090; Figure 4C).     297 

 298 

DISCUSSION 299 

Analyses of river planktonic communities over time and land use have shown that these 300 

communities vary by average genome size, location, amount of sunlight, and nutrient 301 

concentrations (38) as well as by sampling time more so than space (39). However, the results 302 

presented here suggested that community composition of Salinas Valley creek sediments are 303 

structured primarily by spatial separation, and the local weather parameters tested here did not 304 

have a significant effect (Figure 2). More detailed in-situ metadata than those obtained here such 305 

as nutrient concentrations (e.g. organic carbon and biological oxygen demand) are needed in 306 

order to discern the processes that are driving community diversity and structure within each 307 

Salinas Valley site. For example, anaerobic taxa and processes related to methane and sulfur 308 

metabolism and anoxygenic photosynthesis were significantly more abundant in TOWOSR 309 

(Figure 3 and supplemental material), which suggests higher eutrophication from agricultural 310 

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 16, 2019. ; https://doi.org/10.1101/737759doi: bioRxiv preprint 

https://doi.org/10.1101/737759
http://creativecommons.org/licenses/by-nd/4.0/


 
 

 15 

run-off or higher primary productivity by phototrophs, which was not reflected by the local 311 

weather parameters measured. 312 

We compared abundances of reads annotated as ARG, human or cow gut in order to assess levels 313 

of anthropogenic impacts on Salinas Valley creek sediment communities. No significant 314 

difference was detected between the downstream samples and the upstream controls for any of 315 

the three anthropogenic indicators (Figure 4), which suggested that the land use practices 316 

surrounding the creeks does not have a lasting impact on the natural community and the inputs 317 

are likely diluted or attenuated faster than the intervals sampled here. We then benchmarked 318 

abundances observed in the creek sediments from this study against metagenomes from other 319 

environments. These included agricultural sediments and soils, permafrost, and river water from 320 

both pristine and polluted habitats. GABOSR, TOWOSR, and the upstream samples all had 321 

significantly higher ARG abundances compared to the average of the other environments tested 322 

here (Figure 4A). This high background level of reads annotated as ARGs suggested that the 323 

Salinas Valley creek sediments are a natural reservoir for these genes. Furthermore, resistance 324 

genes to synthetic antibiotics such as florfenicol (fexA and floR) and ciprofloxacin (qnrS), one of 325 

the most widely used antibiotics in humans worldwide, were absent or detected in very low 326 

abundance (less than 10 reads matching) in our datasets. Spurious matches to conserved gene 327 

regions can occur when analyzing short reads like the ones here, but the signal was not large 328 

enough to warrant further investigation using precise and targeted methods (e.g. ROCker). 329 

Overall, the absence of resistance genes to more recently introduced, synthetic antibiotics 330 

provides further evidence that the ARG signal observed in the Salinas Valley is likely 331 

autochthonous in origin. Future studies could involve deeper sequencing (higher community 332 

coverage) in order to recover long contigs and thus, determine the genomic background of the 333 
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ARGs and if they are associated with mobile elements or plasmids for improved public health 334 

risk assessment. Still, these results highlight the importance of having a baseline or “pristine” 335 

sample to discern anthropogenic from naturally-occurring ARGs and have important 336 

implications for monitoring the spread of ARGs in the environment. For instance, without the 337 

upstream control samples, this study could have (speciously) concluded that GABOSR and 338 

TOWOSR are elevated in ARGs as a result of cattle ranching. However, the similar abundances 339 

found in the upstream samples indicated that the signal detected downstream could be inherent to 340 

this environment and that a more targeted analysis of specific ARGs was required to determine if 341 

the effect of cattle could be detected. 342 

Tetracycline resistance genes have been shown to increase with and correlate to anthropogenic 343 

inputs along a river estuary system (40), suggesting that they can be useful indicators of 344 

anthropogenic pollution. However, tetracycline resistance genes are also found in other pristine 345 

or natural environments (28, 41–43), and therefore can also be considered part of the 346 

autochthonous gene pool in some habitats. Here, we tested the hypothesis that if tetracycline 347 

resistance genes are naturally occurring, the production enzymes for tetracycline should also 348 

follow similar abundance patterns, as antibiotic resistance and biosynthesis genes are often 349 

encoded on the same operon to ensure antibiotic-producing species are resistant to the product 350 

they synthesize (44). Thus, we expected to see a correlation between abundances of the 351 

tetracycline resistance gene, tetM, and its associated production genes (oxyT, KSα) if this system 352 

is not under heavy selection pressure of human-introduced antibiotics. The abundance of tetM in 353 

the Salinas Valley creek sediments was not correlated to oxyT and only moderately correlated to 354 

KSα (Figure 5). OxyT had very low abundance (less than 8 reads matching per sample), which 355 

suggested that the lack of correlation to tetM could be due to database limitations. That is, only a 356 
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few reference oxyT genes are publicly available (13 sequences) and these likely do not capture 357 

the total diversity of this gene found in the environment. KSα, on the other hand, represents a 358 

broad class of synthesis genes for many different antibiotics with many more sequences in the 359 

reference databases and thus, a better estimate of antibiotic production potential was obtained 360 

based on these genes. Overall, these findings further supported that this ecosystem is a natural 361 

reservoir for ARGs, and the presence of tetracycline resistance is not likely to be caused by 362 

inputs from the cattle ranches. However, future investigations could involve additional antibiotic 363 

production gene references for more robust conclusions. 364 

When compared to the other pristine or rural environmental metagenomes such as agricultural 365 

sediments and soils, permafrost, and river water, the abundances of  reads annotated as human 366 

gut in the California sediments were not significantly different overall. However, the Ganges 367 

River (Agra) sample, collected from one of the most densely populated and highly polluted areas 368 

surrounding the river (Agra, Uttar Pradesh, India), was 1-2 orders of magnitude more abundant 369 

for human gut, compared to the rest of the samples used in our study (Figure 4B). Thus, a high 370 

human gut signal was expected for the Ganges River, consistent with previous results (45) and 371 

served as a reference to assess relative levels of human fecal contamination. The rest of the 372 

samples included in our comparisons were from rural/agricultural or more remote areas, with 373 

lower population density, and consistently had lower signals of human fecal contamination than 374 

the Agra sample. Therefore, the abundances of human gut sequences observed in Salinas Valley 375 

were consistent with the lower levels of human activity/density input relative to the other sites 376 

used for comparison here and indicated that our annotation and filtering methods were robust. 377 

Collectively, these results showed that metagenomics of river/creek sediments provide a reliable 378 
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means for assessing the magnitude of the human presence/activity, consistent with recent studies 379 

of other riverine ecosystems (39, 45).  380 

Contrary to the results for human gut, the abundances of cow gut signal in the California samples 381 

were not consistent with our expectations. The TOWOSR and GABOSR sites are directly 382 

downstream of  large cattle ranch operations and identical pathogen recovery from water and 383 

upstream cattle indicated the cattle ranches were the source of fecal contamination (1). As such, 384 

we expected to see a higher level of cow signal in the downstream metagenome samples, yet the 385 

abundance was not significantly different from the other environments or the upstream controls 386 

(Figure 4B&C). Notably, two of the samples from TOWOSR (T140210 and T140611) showed 387 

elevated signal for cow that was similar to the abundance observed in the highly polluted Ganges 388 

River reference metagenome (Figure 4C). These samples (especially T140210) had a higher 389 

abundance of the rumen enteric and cellulose degrading taxa (Endomicrobia and Fibrobacteres; 390 

Figure S7), which supports the conclusion that these samples contained run-off from cattle, 391 

however the signal might be patchy or muted in the sediment and require more frequent 392 

sampling and/or larger sampling volumes than those used here to detect these signals. 393 

Additionally, we were unable to detect any E. coli populations in any of the metagenomes, 394 

including samples that were positive for STEC via enrichment culture, indicating that it is not an 395 

abundant member of the sediment community (Table S3). This was consistent with imGLAD 396 

estimates that the sequencing effort applied to our metagenomes imposed a limit of detection for 397 

E. coli, and ddPCR results that showed abundance of STEC was low or absent in all samples. 398 

Overall, these results suggested that using shotgun metagenomics may not be sensitive (or 399 

economical) enough as a monitoring tool to detect a relatively low abundance microorganism in 400 

lotic sediments at the level of sequencing effort applied here, which was insufficient partly 401 
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because of the extremely high community diversity (Figure S1).  More than the 2.5 to 5 402 

Gbp/sample sequencing effort applied in this study would have been required to detect ~10 E. 403 

coli cells in a sample according to our estimates, which is not economical based on current 404 

standards and costs. More specifically, obtaining the imGLAD minimum threshold of 0.12x 405 

coverage for an STEC genome (5 Mbp) in our metagenome libraries (average 4 Gbp), would 406 

require 0.6 Mbp of STEC reads, or 0.015% of the total metagenome, which translates to a 407 

relatively large number of cells in situ. For example, assuming 108 total cells/g of sediment, it 408 

would require ~104 STEC cells/g of sediment to robustly detect in the metagenomes (or 100 409 

times more sequencing for detecting ~10 cells/g).  Thus, the limit of detection of metagenomics, 410 

as applied here, was not low enough  and should be combined with methods that offer lower 411 

detection limits and more precise counts (such as ddPCR).  412 

Rivers are highly dynamic ecosystems and therefore subject to higher random variation and 413 

sampling artifacts that likely affect the dilution of the exogenous (human) input. Further, our 414 

samples represent relatively small volumes of sediment (~10 g) and the resulting metagenomic 415 

datasets did not saturate the sequence diversity in the DNA extracted from these samples (Figure 416 

S1), which might introduce further experimental noise and stochasticity. Despite these technical 417 

limitations, our data consistently showed little evidence that agricultural or cattle ranching 418 

activities have a significant effect on the creek sediment microbial communities. The underlying 419 

reason for these results remains speculative but should be the subject of future research in order 420 

to better understand the impact of these activities on the environment. Additionally, the level of 421 

functional and taxonomic diversity, as well as the sample heterogeneity (especially in 422 

TOWOSR), suggested that shorter intervals between sampling as well as in situ geochemical 423 

data are needed to elucidate the fine scale processes driving the community composition within 424 
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each location. Although the continued presence of STEC in Salinas watershed sediments is a 425 

public health risk, we did not find evidence that runoff from human activities has a substantial 426 

effect on the sediment microbial community when compared to more pristine sites. An 427 

imperative objective for public health is to assess how and where current agricultural practices 428 

impact the environment in order to determine best practices. The work presented here should 429 

serve as guide for sampling volumes, amount of sequencing to apply, and what bioinformatics 430 

analyses to perform on the resulting data for future public health risk studies of river water and 431 

sediment habitats. Finally, the ROCker models developed here for tetracycline resistance and 432 

production genes should be useful for robustly examining the prevalence of these genes in other 433 

samples and habitats. 434 
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MATERIALS AND METHODS   443 

Sample collection and enrichment method for STEC   444 
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Sediment samples were collected from watersheds at public-access locations (Table S1). 445 

Weather information was downloaded from the California Irrigation Management Information 446 

System database (http://ipm.ucanr.edu/calludt.cgi) for the day of and five days prior to the 447 

sampling day from the closest monitoring station to the downstream sites (Table 1). Sediment 448 

was suspended into the water column using a telescoping pole and approximately 250 mL of 449 

sample (suspended sediment and water) was collected immediately in a sterile bottle. All 450 

samples were transported on ice and processed within 24 hours. DNA from 10 g of resuspended 451 

sediment/water mix was purified for sediment DNA using MoBio PowerSoil DNA extraction kit, 452 

following the manufacturer’s protocol. A separate 100 mL of the sample was used for 453 

enrichment and isolation of STEC as previously described (15). 454 

PCR-based quantification method for STEC 455 

Droplet digital PCR (ddPCR, BioRad) was performed on sediment DNA following the method 456 

of Cooley et al. (19). Each 20 µL reaction used 10 µL BioRad’s Supermix for Probes, 2 µL 457 

primer (0.3µM final concentration) and probe (0.2µM), up to 1 µg DNA, 1.2 µL MgCl2 458 

(1.5mM), and 0.2 µL HindIII (0.2 U/µL). Primer and probe sequences were as previously 459 

published for STEC (19). Droplets were created with Droplet Generation Oil for Probes in the 460 

QX-200 droplet generator (BioRad), and amplified for 5min at 95°C, 45 cycles at 95°C for 30 s 461 

and 60°C for 90 s, then 5min at 72°C and 5min at 98°C. Droplets were processed with the QX-462 

200 Droplet reader and template levels were predicted by QuantaSoft software version 1.7.4 463 

(BioRad). 464 

DNA sequencing and Bioinformatics sequence analysis 465 
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Metagenomic sequencing and community coverage estimates: Shotgun metagenomic sequencing 466 

libraries were prepared using the Illumina Nextera XT library prep kit and HiSEQ 2500 467 

instrument as described previously (46). Short reads were passed through quality filtering and 468 

trimming as described previously (47). Average community coverage and diversity were 469 

estimated using Nonpareil 3.0 (29) with kmer kernel and default parameters. Sequences were 470 

assembled with IDBA (48) using kmer values ranging from 20 to 80.  471 

Taxonomic analysis of rRNA gene-encoding sequences: Metagenomic reads encoding short 472 

subunit (SSU) rRNA genes were extracted with Parallel-Meta v.2.4.1 using default parameters 473 

(49). Closed reference OTU picking at 97% nucleotide identity with taxonomic assignment 474 

against the GreenGenes database (19) was performed using MacQiime v.1.9.1 (51) with the 475 

reverse strand matching parameter enabled and the uclust clustering algorithm (52). Alpha 476 

diversity was calculated as the true diversity of order one (equivalent to the exponential of the 477 

Shannon index) and corrected for unobserved species using the Chao-Shen correction (53) as 478 

implemented in the R package entropy (54). Richness was estimated using the Chao1 index (55), 479 

and evenness was calculated from the estimated values of diversity divided by richness. 480 

Significant differences in taxonomic diversity, evenness, and richness were assessed using two-481 

sided t-tests. Multiple rarefactions were performed on OTU tables as implemented in MacQiime 482 

v.1.9.1 (rarifying up to the minimum number of counts per sample: option -e 5,596). 483 

Determination of the total community bacterial fraction: In order to determine whether bacterial 484 

gene abundances need be corrected for relative bacterial fraction in the total metagenome 485 

libraries, the relative abundance of Bacteria, Archaea, and Eukarya was estimated in each 486 

dataset by searching a subset (~1x105 reads per sample) of randomly selected protein coding 487 

reads against the TrEMBL database ((56); downloaded May 2018) using DIAMOND blastx 488 
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v.0.9.22.123 (57) with the “--more sensitive” option and e-value cutoff of 1x10-5. The TrEMBL 489 

IDs for best hit matches were summarized at the domain level using custom scripts and the 490 

metadata files available at 491 

ftp://ftp.uniprot.org/pub/databases/uniprot/current_release/knowledgebase/taxonomic_divisions/ 492 

No significant difference in the relative abundance of Bacteria was found between the different 493 

samples, thus no correction for bacterial fraction was applied to gene abundance calculations. 494 

Functional and ARG annotation of metagenomic sequences: Protein prediction was performed 495 

using FragGeneScan adopting the Illumina 0.5% error model (58). Resulting amino acid 496 

sequences were searched against the Swiss-Prot (downloaded June 2017) (56) and 497 

Comprehensive Antibiotic Resistance gene (CARD, downloaded May 2017; 26) databases using 498 

blastp (59) for functional annotation. Best matches to the Swiss-Prot database with >80% query 499 

coverage, >40% identity and >35 amino acid alignment length were kept for further analyses. A 500 

more stringent cut off was used for best matches to the CARD (>40% identity over >90% of the 501 

read length) to minimize false positive matches.  502 

Detection of cow and human gut microbiome associated sequences: Searches for cow gut 503 

associated sequences were performed using our own collection of cow fecal metagenomes from 504 

six cow individuals collected in Georgia, USA. DNA extracted from cow fecal material 505 

underwent the same library prep, DNA sequencing and quality trimming and processing as 506 

described above. Short reads for both the cow gut and CA sediment metagenomes have been 507 

deposited to the SRA database (submission IDs: PRJNA545149 and PRJNA545542, 508 

respectively). Predicted genes (as nucleotides) from all six individual cows were pooled together 509 

and de-replicated at 95% identity using the CD-HIT algorithm (Options: -n 10, -d 0; (60)) 510 

resulting in 459,176 non-redundant cow gut metagenome “database” sequences. Human gut-511 
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associated sequences were assessed based on comparisons of short-reads against the Integrated 512 

Gene Catalog (IGC) of human gut microbiome genes (61), heretofore referred to as Human Gut 513 

Database (HG) for clarity. The abundance of cow and human gut signal in the short-read 514 

metagenomes was determined based on the number of reads from each dataset matching these 515 

reference sequences using blastn v2.2.29 with a filtering cut off of >95% identity and >90% 516 

query length coverage. 517 

Abundance of specific antibiotic resistance (ARG) and production genes using ROCker: 518 

Dynamic filtering cut-off models targeting a tetracycline resistance gene (tetM) and two 519 

antibiotic production genes (oxyT and KSα) were designed with ROCker v1.3.1, as previously 520 

described (33). Reference sequences for model building were manually selected from public 521 

databases and models were built for 150bp reads and default parameters. The reference 522 

sequences and ROCker models are available at http://enve-omics.ce.gatech.edu/rocker/models. 523 

Short reads were searched against the reference sequences used to build the model with blastx. 524 

The ROCker models were used to filter matches, which were subsequently divided by the 525 

median reference gene length in order to calculate sequencing coverage and were then 526 

normalized for genome equivalents as described below. Correlation between abundances of 527 

antibiotic production and resistance genes was determined using linear regression. 528 

Quantification of genome equivalents (GE): Average genome size and genome sequencing depth 529 

(i.e., the average sequencing depth of single copy genes) were determined for each sample using 530 

MicrobeCensus v1.0.6 with default parameters (62). The sequencing depth of reference genes 531 

with a given annotation was estimated for each dataset (in reads/bp), then divided by the 532 

corresponding average genome sequencing depth and summed to give the total GEs per sample. 533 
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Mash and multivariate analysis: MASH v1.0.2 (63) was used to assess overall whole-community 534 

similarity among metagenomes in a reference database-independent approach (Options: -s 535 

100000). Functional gene and 16S rRNA gene-based OTU count matrices were median-536 

normalized using the R package DESeq2 (v.1.16.1; (64)). Pairwise Bray-Curtis and weighted 537 

UniFrac (16S only) dissimilarity indexes of the normalized counts were used for principal 538 

component analysis (PCA) and non-metric multidimensional scaling (NMDS) analysis in order 539 

to assess whole-community gene functional and taxonomic (16S rRNA gene OTUs) similarity. 540 

The significance of metadata parameters on the NMDS ordinations was performed using the 541 

ecodist and envfit functions of the R package vegan v2.4.4 (indices included: location, sampling 542 

time, ddPCR counts for STEC, same day precipitation, 5-day precipitation, solar radiation, air 543 

temp, soil temp, and humidity). The two west Salinas samples (WS1 and WS2) were excluded 544 

from this analysis in order to minimize confounding variation of temporal and spatial 545 

differences. In order to control for spatial variance, a more rigorous distance-based redundancy 546 

analysis (db-RDA; (30)) was used to investigate the correlation to metadata using the capscale 547 

function in the R package vegan (included same indices as above, but with Condition(location) 548 

constraint on ordinations).   549 

In-silico detection of E.coli in sample metagenomes: The presence of any E. coli in the 550 

metagenomes was determined using a blastn search of short reads against an STEC reference 551 

genome (accession NC_002695) that had been filtered to remove non-diagnostic (i.e. highly 552 

conserved among phyla) regions with MyTaxa (65). Only matches with nucleotide identity  553 

>95% and alignment length >97% were used to calculate relative abundance of E. coli in the 554 

metagenomes. This level of sequence diversity (nucleotide identity >95%) encompasses well the 555 

diversity within the E. coli-Shigella spp. group; thus, any E. coli populations present in the 556 
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metagenomes at high enough abundance would be detected at this filtering cutoff. The best hit 557 

output from blastn was also analyzed with imGLAD (31), a tool that can estimate the probability 558 

of presence and limit of detection of a reference/target genome in a metagenome.  559 

Determination of differentially abundant (DA) taxa and gene functions: Functional annotations 560 

of the recovered protein sequences were summarized into several hierarchical ranks including 561 

metabolic pathways and individual protein families based on the SEED classification system 562 

(66). The 16S rRNA gene OTUs were placed into taxonomic groups based on the lowest rank of 563 

taxonomic classification (genus, family etc.) shared by 90% or more of the sequences within the 564 

OTU using MacQiime v.1.9.1 (51). DA functional annotation terms (subsystems) or OTUs were 565 

identified in samples grouped by location (e.g., pairwise comparison of all 10 TOWOSR vs. all 566 

10 GABOSR and vs. all 5 upstream “pristine control” sites) using the negative binomial test and 567 

false discovery rate (Padj <0.05) as implemented in DESeq2 v1.16.1 (64). Subsystems with Log2 568 

fold change (L2FC) >1 or taxa with L2FC >2 were manually grouped into broader categories 569 

based on known functional or taxonomic similarities, respectively (Figures 3 & S7), which were 570 

then normalized by library size (per million read library). A larger L2FC cutoff was used for taxa 571 

to account for the larger dataset size and allow for inspection of the taxa contributing most to 572 

differential abundance between the locations. The taxonomic assignment of these DA taxa were 573 

confirmed against the SILVA database (downloaded October 2018; (67)).  Each subsystem or 574 

taxonomic category was then divided by its average sequencing depth across all samples to 575 

provide unbiased counts for presentation purposes. 576 

Comparison of putative anthropogenic signals observed in California sediments to metagenomes 577 

from other environments: Publicly available metagenomes from other studies were used to 578 

compare abundances of reads annotated as ARG, HG, and cow gut with the results obtained for 579 
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the California sediment datasets reported here. These metagenomes included: three Montana 580 

River sediments (MT; (20)), two temperate agricultural soils from Illinois (Hav and Urb; (68)), 581 

an Alaskan tundra soil (AK; (69)), one sample from the Ganges River near Agra, Uttar Pradesh 582 

(Agra; (45)), and one from the Kalamas River in Greece (Kal; (39)). Short read metagenomes for 583 

MT samples were downloaded from MG-RAST ((70); MG-RAST IDs: 4481974.3, 4481983.3, 584 

4481956.3). The remaining datasets were obtained from the NCBI short read archive (SRA) 585 

database (Hav: ERR1939174, Urb: ERR1939274, AK: ERR1035437, Agra: SRR6337690, Kal: 586 

SRR3098772 ). Reads from these metagenomes were comparable to the ones from this study 587 

(100 – 150bp paired-end Illumina sequencing) and underwent the same trimming, annotation 588 

(against the CARD, HG, and cow gut databases only) and gene count normalization protocol as 589 

described above. The Kruskal-Wallis test in R was performed to determine significantly different 590 

mean abundances between groups . Alpha diversity and taxonomic comparisons were performed 591 

(for MT datasets only) based on metagenomic reads encoding fragments of the 16S rRNA gene, 592 

which were identified as described above.  593 
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Table 1: Culture-based detection of STEC and precipitation (Precip) data reported in inches 

Sample ID Date 
Collected STECa 

Copies 
stx2/ug 
DNAb 

Precip  5-day 
Precip 

Gabilan at Old Stage (GABOSR) 
G130904 9/4/13 - 8.1 0 0 
G140116 1/16/14 + 8 0 0.01 
G140128 1/28/14 + 0 0 0 
G140210 2/10/14 + 4.4 0.01 1.1 
G140224 2/24/14 + 1.8 0 0 
G140301 3/1/14 + 1.5 0.33 2.01 
G140319 3/19/14 - 0 0 0.01 
G140402 4/2/14 + 1.4 0.03 1.04 
G140415 4/15/14 - 0 0 0 
G140611 6/11/14 - 2.4 0 0 
Towne Creek at Old Stage (TOWOSR) 
T130904 9/4/13 - 14.2 0 0 
T130918 9/18/13 + 15.3 0 0 
T131023 10/23/13 - 0 0 0 
T131230 12/30/13 + 3.9 0 0 
T140116 1/16/14 - 0 0 0.01 
T140128 1/28/14 + 0 0 0 
T140210 2/10/14 - 1.7 0.01 1.1 
T140224 2/24/14 - 1.5 0 0 
T140319 3/19/14 - 0 0 0.01 
T140611 6/11/14 - 0 0 0 
Upstream GABOSR Control (GC) 
GC1 3/9/16 - 0 0 2.84 
GC2 3/9/16 + 0 0 2.84 
GC3 3/9/16 - 0 0 2.84 
Upstream TOWOSR Control (TC) 
TC1 4/19/17 + 0 0 0.45 
TC2 4/19/17 - 0 0 0.45 
West Salinas (WS) 
WS1 5/4/17 - 0 0 0 
WS2 5/4/17 - 0 0 0 

a Samples in which STEC was detected by PCR of enrichment cultures are listed as either 
positive (+) or negative (-). 

bCopy number of the shiga toxin gene (stx2) was determined via ddPCR. 
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Figure 1: Location of sampling sites in the Salinas Valley, California and sampling scheme 

for time-series metagenomics. Sampling site for Gabilan (GABOSR in red) and Towne Creek 

(TOWOSR in yellow). The upstream controls for Gabilan (GC) and Towne Creek (TC) are also 

indicated by the same colors. Orange pins mark the West Salinas sites (WS1 and WS2) included 

as less agriculturally-impacted controls. The North Salinas weather station (NS; green star) is 

approximately 11km SE of GABOSR and was the closest weather monitoring station to all 

samples shown in the subset map. GPS coordinates for all sampling locations are provided in 

supplementary Table S1. Inset: location of the Salinas Valley in the state of California. 
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Figure 2: The effect of environmental parameters on microbial community structure. The 

graph shows non-metric multidimensional scaling (NMDS) of the sequenced communities based 

on whole-community MASH distances. Each dot represents a metagenome sample and those that 

were more similar to each other are grouped together by connected lines. Arrow vectors indicate 

correlation to metadata parameters. 
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Figure 3: Functional profiles of creek sediment microbial communities. The heatmap shows 

SEED subsystems that were differentially abundant between locations (TOWOSR, GABOSR, 

and the upstream controls) with Padj < 0.05. Color scale indicates the abundance relative to the 

average of all samples (increasing from blue to red). 
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Figure 4: Abundance of ARG, human gut (HG), and cow gut sequences in the Salinas 

Valley metagenomes compared to other environmental metagenomes. The box and whisker 

plots show the interquartile range for the abundances with open dots indicating samples that 

exceeded 1.5x the interquartile range. The other environmental metagenomes (Other Env) 

included: 3 river sediments, 2 agricultural soils, 1 permafrost soil, and 2 river water samples 

from the Kalamas and Ganges Rivers.  
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Figure 5: Abundances of selected antibiotic resistance and production genes in the Salinas 

Valley metagenomes. (LEFT) Abundance (expressed as genome equivalents) of tetM, oxyT, 

and KSα genes for the 27 sites included in this study. (RIGHT) Linear regression of tetM versus 

oxyT or KSα gene abundances. TC1 was an outlier for tetM abundance and was removed from 

this analysis. 
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