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Abstract 
 
Background. This study is aimed to establish a Least Absolute Shrinking and Selection Operator 

(LASSO) model based on tumor heterogeneity to predict the best features of LUSC in various 

cancer subtypes. 

Methods. The RNASeq data of 505 LUSC cancer samples were downloaded from the TCGA 

database. Subsequent to the identification of differentially expressed genes (DEGs), the samples 

were divided into two subtypes based on the consensus clustering method. The subtypes were 

estimated with the abundance of immune and non-immune stromal cell populations which 

infiltrated tissue.  LASSO model was established to predict each subtype's best genes. 

Enrichment pathway analysis was then carried out. Finally, the validity of the LUSC model for 

identifying features was established by the survival analysis. 

Results.  240 and 262 samples were clustered in Subtype-1 and Subtype-2 groups respectively. 

DEG analysis was performed on each subtype. A standard cutoff was applied and in total, 4586 

genes were upregulated and 1495 were downregulated in case of subtype-1 and 5016 genes were 

upregulated and 3224 were downregulated in case of subtype-2. LASSO model was established 

to predict the best features from each subtypes, 49 and 34 most relevant genes were selected in 

subtype-1 and subtype-2.  The abundance of tissue-infiltrates analysis distinguished the subtypes 

based on the expression pattern of immune infiltrates.  Survival analysis showed that this model 

could effectively predict the best and distinct features in cancer subtypes.  

Discussion. This study suggests that the unsupervised clustering and LASSO model-based 

feature selection can be effectively used to predict relevant genes which might play an important 

role in cancer diagnosis. 
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Introduction 
 
Lung cancer is among the most deadly cancers (Siegel, 2017). Its shows the worst survival rate 

when compared with colon, breast, and pancreatic cancers combined. Lung cancer is classified as 

non–small-cell lung cancer (NSCLC) and small-cell lung cancer (SCLC). NSCLCs are generally 

subcategorized into adenocarcinoma (LUAD), squamous cell carcinoma (LUSC), and large cell 

carcinoma. LUSC and LUAD account for 15% and 85% of all lung cancer, respectively 

(Inamura, 2017). Lung cancer is a highly heterogeneous disease and identification of cancer 

subtypes is pivotal for clinicians. Genetic mutations, cancer microenvironment, immune, and 

therapeutic selection pressures all dynamically contribute to tumor heterogeneity. Heterogeneity 

may lead to cells with a differential molecular signature within single tumor tissue and in some 

cases, it may contribute to therapy resistance (Beca F, 2016; Bolck et al., 2019). Therefore, 

deciphering LUSC cancer heterogeneity will have a major impact in designing precision 

medicine strategy. Heterogeneous data suffers from a large number of covariates, and 

identification of variable selection is necessary to obtain more accurate predictions with a large 

number of covariates. 

 

Over the past decades, many computer-aided diagnostic models have been used for predicting 

the risk of a variety of cancers, such as logistic regression, Cox proportional hazard model, 

Artificial neural networks, decision trees and Support vector machines (Bartfay, Mackillop & 

Pater, 2006; Ayer et al., 2010; Jiang & Ching, 2012; ZHU et al., 2013).Previous studies indicate 

standard stepwise selection approaches which are not best for regression models with a very 

large number of covariates (Houssami et al., 2004). Alternatively, least absolute shrinkage and 

selection operator (LASSO), has received much attention for identification and selection of best 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 16, 2019. ; https://doi.org/10.1101/737866doi: bioRxiv preprint 

https://doi.org/10.1101/737866
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 

variables. LASSO was first formulated by Robert Tibshirani in 1996 (Tibshirani, 1996). It is a 

powerful method that performs two main tasks: regularization and feature selection. LASSO 

estimates the regression coefficients by maximizing the log-likelihood function with the 

constraint that the sum of the absolute values of the regression coefficients, ∑j=1kβj, is less than 

or equal to a positive constant s. 

 

In this study, we downloaded the RNASeq data for LUSC cancer samples from The Cancer 

Genome Atlas (TCGA) database. We differentiated the samples based on clusters into two 

subtypes to study the tumor heterogeneity. Differentially expressed genes (DEGs) were 

identified between two subtypes and normal groups, followed by predicting relevant variables 

that are associated with the response variable using the LASSO model and validating the 

variables using survival analysis. We estimated the population abundance of tissue-infiltrating 

immune and stromal cell populations in each subtype to decipher the inflammatory, antigenic, 

and desmoplastic reactions occurring in cancer tissue. Our study provides new insight into tumor 

heterogeneity and its importance in sample classification for predicting of biomarkers of LUSC 

cancer. 

 

Materials & Methods 
 
Data source. The RNASeq data of Lung Squamous cell cancer, including 505 LUSC samples, 

and 49 normal samples were downloaded from the TCGA database 

(https://portal.gdc.cancer.gov/) in May 2019. All the raw, preprocessed data and supporting files 

can be accessed at https://bitbucket.org/lusc_data/supporting_data/src/master/ . 
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Data preprocessing and grouping. Based on the clinical data, the LUSC cancer samples 

downloaded from TCGA database were divided into two sets, the first set was divided into 114 

low-risk samples and 390 high-risk sample groups according to the AJCC Cancer Staging 

(https://cancerstaging.org/). The second set (set2) was divided into 505 Primary solid Tumor 

samples and 49 Solid Tissue Normal samples. We calculated a variance stabilizing 

transformation (VST) from the data and transformed the counts yielding a matrix of values 

approximately homoskedastic. 

 

Molecular subtyping analysis. Feature dimension reduction was needed to remove irrelevant 

features and to reduce noises, we used median absolute deviation (MAD) method and the 

features with MAD>0.5 were selected from set 2 groups. Consensus clustering (CC) (Monti et 

al., 2003) was used for the identification of subtypes on set 2 group. Silhouette width 

(Rousseeuw, 1987) was used to validate sample clustering to its identified subtype compared to 

other subtypes.  

 

Differential gene expression analysis. Differential gene expression was assessed by using the 

DESeq2 package (Love MI, Huber W, 2014) (Version 1.24.0, 

https://bioconductor.org/packages/release/bioc/html/DESeq2.html) on set1 (High-Risk samples 

Vs. Low-risk samples) and set2 (Subtype-1 vs. Normal and Subtype-2 vs. Normal). Log2 fold 

change > 2 and P-value <0.05 were used as the cut-off values to identify the DEGs. 

 

Construction of the LASSO Model. Glmnet Package (Friedman J, Hastie T, 2010)  (Version 

2.0-18, https://cran.r-project.org/web/packages/glmnet/index.html) was used to fit a generalized 
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linear model via penalized maximum likelihood, LASSO model was established (Least Absolute 

Shrinkage and Selection Operator) on the DEGs from individual Subtype-1 and Subtype-2 

cancer samples. We built a single pass (single fold) lasso-penalized model and performed 10-fold 

cross-validation to identify the best predictor. 

 

Survival Analysis. To find clinically or biologically meaningful biomarkers Kaplan-Meier 

survival curves (E. L. Kaplan & Paul Meier, 1958) were generated by selecting the best 

predictors from individual subtypes. Kaplan-Meier curves were generated using the TRGAted 

(Nicholas Borcherding , Nicholas L. Bormann, Andrew P. Voigt, 

2018)(https://github.com/ncborcherding/TRGAted) package implemented in R. 

 

Quantification of the absolute abundance of eight immune and two stromal cell 

populations. We estimated the abundance of tissue-infiltrating immune and non-immune 

stromal cell populations in Subtype-1 and Subtype-2 samples. MCP-counter (Etienne Becht, 

Nicolas A. Giraldo, Laetitia Lacroix, Bénédicte Buttard, Nabila Elarouci, Florent Petitprez, 

Janick Selves, Pierre Laurent-Puig, Catherine Sautès-Fridman, 2016) 

(https://github.com/ebecht/MCPcounter) Package was used to estimate the Microenvironment 

Cell Populations. VST normalized gene expression matrix was used for the estimation of an 

immune and stromal cell population. 

 

Gene classification and enrichment analyses. clusterProfiler (Yu G, Wang L, Han Y, 2012) 

(Version 3.12.0, http://bioconductor.org/packages/release/bioc/html/clusterProfiler.html) was 

used  to annotate the DEGs from Subtype-1 and Subtype-2 groups to biological processes, 
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molecular functions, and cellular components in a directed acyclic graph structure with a q-value 

cutoff of 0.2, Kyoto Encyclopedia of Genes and Genomes (KEGG) (Kanehisa M, Goto S, 

Furumichi M, Tanabe M, 2010) was utilized to annotate genes to pathways, and Disease 

Ontologies. 

 
Results 
Identification of DEGs in High-risk LUSC tumors. 

The genes with p-value cutoff < 0.05 and log2 fold change > 2 were considered to be 

differentially expressed. A total of 22 genes were differentially expressed between high risk and 

low-risk samples, which includes 4 downregulated and 18 upregulated genes. Figure 1 displays 

the heat map of the risk-related DEGs. Which is suggestive of similar gene expression pattern in 

both groups, which makes it difficult to classify the samples on the gene expression pattern. PC 

analysis shows the homogeneity of the data between the High and Low-risk group (Fig 2). 

 

Molecular cancer subtype identification in LUSC Tumor samples and validation of 

clusters. 

We used an unsupervised clustering method Consensus clustering (CC) (Monti et al., 2003). CC 

method is most widely used for subtype discovery in high dimensional datasets. We used settings 

of the agglomerative hierarchical clustering algorithm using Pearson correlation distance. Two 

distinct clusters were discovered in our datasets, 240 and 262 samples were clustered in Subtype-

1 and Subtype-2 groups respectively. (Table S1 and S2) We have validated consistency within 

clusters of data using Silhouette Plot (Rousseeuw, 1987). The Average Silhouette width for our 

generated clusters is 0.68 (Fig 3, 4 and 5). 
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Identification of DEGs in Subtype-1 and Subtype-2 LUSC Tumors. 

We compared the subtype-1 and subtype-2 with the normal samples and based on the p-value 

cutoff < 0.05 and log2 fold change > 2 we identified significant DEGs. 4586 genes were 

upregulated and 1495 were downregulated in case of subtype-1 (Fig 6) and 5016 genes were 

upregulated and 3224 were downregulated in case of subtype-2 (Fig 7) shows differential 

expression pattern in subtype-1 and subtype-2. The DEGs in both subtypes were used for 

building LASSO predictive model and for the identification of best predictor genes. 

 

LASSO model for identification of best predictive genes. 

LASSO (Least Absolute Shrinkage and Selection Operator) was first formulated by Robert 

Tibshirani in 1996 (Tibshirani, 1996). It is a powerful method that performs two main tasks: 

regularization and feature selection. RNASeq datasets are high dimensional datasets, with 

smaller sample size and a large number of features also called small-n-large-p datasets (p >> n). 

High dimensional data will be sparse and only a few features affect the response variable and 

LASSO is known to identify the best features that affect the response variable. We deal with a p 

>> n situation for feature selection in our Subtype-1 and Subtype-2 datasets, thus probably not 

all DEGs are relevant for the identification of features which affect the response variable. The 

purpose of our analysis is to identify the feature selection task and underline which genes are 

more relevant to predict and to classify them as biomarkers, to do so we have used the LASSO 

method. 

 

The result shows the trends of the 49 and 34 most relevant features selected by our model in 

subtype-1 and subtype-2 LUSC cancer respectively (Fig S1 and S2). The next step would be to 
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find the most appropriate values for λ for our LASSO model. We analyzed the λ value using the 

10 fold cross-validation (Fig S3 and S4), between λ min that gives minimum mean cross-

validated error or λ1se that gives a model within one standard error of the minimum. Using this 

analysis we obtained the most relevant genes which are unique to subtype-1 and subtype-2 in the 

detection of a LUSC cancer. A list of best-predicted genes available for each cancer subtypes is 

shown in Table 1 and Table 2. 

 

Analysis of the microenvironment of Subtype-1 and Subtype-2 LUSC cancer. 

The abundance of tissue-infiltrating immune and non-immune stromal cell populations is highly 

informative. It has been shown that the extent of infiltrating immune cells is associated with 

disease prognosis (Becht et al., 2016). T-cell infiltrates, endothelial cells and fibroblasts are 

associated with a favorable outcome and also poor prognosis in some cancer types (Pagès F, 

Berger A, Camus M, Sanchez-Cabo F, Costes A, Molidor R, Mlecnik B, Kirilovsky A, Nilsson 

M, Damotte D, Meatchi T, Bruneval P, Cugnenc P, Trajanoski Z, Fridman W, 2005; Galon J, 

Costes A, Sanchez-Cabo F, Kirilovsky A, Mlecnik B, Lagorce-Pagès C, Tosolini M, Camus M, 

Berger A, Wind P, Zinzindohoué F, Bruneval P, Cugnenc P, Trajanoski Z, Fridman W, 2006; 

Fridman WH, Pagès F, Sautès-Fridman C, 2012; Giraldo NA, Becht E, Pagès F, Skliris G, 

Verkarre V, Vano Y, Mejean A, Saint-Aubert N, Lacroix L, Natario I, Lupo A, Alifano M, 

Damotte D, Cazes A, Triebel F, Freeman GJ, Dieu-Nosjean M, Oudard S, Fridman WH, 2015). 

To understand the immunological microenvironment in our expression subset-1 and subset-2 we 

used MCP-counter method as described by Becht et al (Etienne Becht, Nicolas A. Giraldo, 

Laetitia Lacroix, Bénédicte Buttard, Nabila Elarouci, Florent Petitprez, Janick Selves, Pierre 

Laurent-Puig, Catherine Sautès-Fridman, 2016). The estimations consist of single sample scores 
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which are computed on each sample independently in two subtypes. The heatmap shown in 

Figure 8 clearly distinguish our subtype-1 and subtype-2 into two different categories based on 

tissue-infiltrating immune and non-immune stromal cell populations. Subtype-1 shows clear 

increase in CD8 T cells, Cytotoxic lymphocytes and Natural killer cells and Subtype-2 shows 

decreased levels of T-cells, macrophages, B cells, and natural killer (NK) cells, as well as 

endothelial cells and fibroblasts. Our study clearly distinguishes LUSC subtypes based on their 

inflammatory and stromal profiles and Subtype-1 LUSC samples show increased expression of 

immunological markers than Subtype 2 LUSC samples. 

 

Disease pathway analysis. 

KEGG pathway analysis for Subtype-1 and Subtype-2 revealed many significant cancer 

pathways, including genes involved in Focal adhesion, mTOR signaling pathway, Axon 

guidance pathway , Cellular senescence pathway, ErbB signaling pathway, Longevity regulating 

pathway, HIF-1 signaling pathway, AMPK signaling pathway, Pancreatic cancer, Chronic 

myeloid leukemia, Colorectal cancer, TGFbeta signaling pathway etc.  (Table 3 and Table 4). 

Genes such as EIF4EBP1, FOXA2, PECAM1, TGFBR2, TNNC1, ACSM2B and ABCA8 

picked up by our model plays a pivotal role in cancer regulatory pathways (Fig 9 and 10). Both 

Subtype-1 and Subtype-2 groups showed distinct biological processes and cellular components 

after GO Enrichment Analysis of the gene sets from Subtype-1 and Subtype-2 groups. (Fig. S5, 

S6, S7 and S8 and Table S3, S4, S5 and S6). 

 

Validation with survival analysis. 
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The LUSC Tumor samples were classified into two subtypes based on the consensus clustering 

method. Using the survival data of these samples, survival analysis for the most predictive genes 

identified by our model in Subtype-1 and Subtype-2 groups was conducted. The genes predicted 

by our LASSO model accurately predicted the outcome of a patient's survival using gene 

expression data. Genes such as GAL, TFAP2A, AFF3, TNNC1, TGBR2, HELT, and SFTA1P 

yielded accurate predictions for the risk of LUSC cancer and can be used in cancer prediction.  

Survival plots and its p-value is shown in (Fig 11 and 12, Supplemental Figure S9). 

 
Discussion 
 
In this study, we developed a LASSO based model for accurate feature selection in LUSC 

cancer. Our model removed variables that are redundant and removed features which do not add 

any valuable information in disease prediction. Analysis using the survival data for the predicted 

genes showed that the model could effectively predict genes responsible for disease prognosis in 

high dimensional datasets. Deciphering cancer heterogeneity is very critical in understanding 

cancer dynamics and also for the development of personalized cancer treatment (R. Rosenthal, 

N. McGranahan, J. Herrero, 2017; Dagogo-Jack & Shaw, 2018) We used Consensus clustering 

method to determine the number of clusters in our samples, and we clustered the samples into 

two groups which produced optimal silhouette width for the determined clusters. Differential 

gene expression analysis showed distinct expression patterns in Subtype-1 and Subtype-2. 

The number of differentially expressed genes were very high and in these situations, it is difficult 

to predict the relevant variables. LASSO model was built around 6081 and 8240 DE genes in 

Subtype-1 and Subtype-2 respectively. Not all the expressed genes were relevant, our model 

predicted the most relevant genes which were involved in disease progression. Decreased 

expression of AFF3, TNNC1, TGFBR2, FFAR4 and HELT in Subtype-1 and GGTLC3, 
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GUCA2A, HBM, SFTA1P and SYNE1 in Subtype-2 showed worse overall survival in LUSC 

cancer samples. Whereas increased expression of genes such as PPIAP45, CAGE1, TFAP2A, 

CENPF in Subtype-1 decreased overall survival in LUSC cancer samples. 

 

Long intervening noncoding RNAs (lncRNAs) are known to be key regulators of numerous 

biological processes, and substantial evidence supports that lncRNA expression plays a 

significant role in tumorigenesis and tumor progression (Ming-Chun Jiang,Jiao-Jiao Ni, Wen-Yu 

Cui,1 Bo-Ya Wang, 2019). Increased expression of LINC01977, LINC01572 in Subtype-1 

samples correlates with worse survival in LUSC cancer subtypes. Whereas, decreased expression 

of LINC02058 in Subtype-1 and LINC00670 in Subtype-2 showed worse survival in LUSC 

samples. The LASSO method predicts the most relevant and distinct genes from Subtype-1 and 

Subtype-2 samples which might be important factor in cancer diagnosis. 

 

The best predictors for subtype 1 and subtype 2 from the LASSO model were found to be 

involved in several regulatory pathways. The genes such as TGFBR2, EIF4EBP1, and ROR1 

which are predicted only in case of Subtype-1 are found to be involved in several cell cycle and 

growth regulatory pathways and thereby having a strong correlation with cancer. The gene gp9 

plays an important role in ECM-receptor interactions, which is critical in disease progression and 

malignant cell behavior (Walker, Mojares & Del Río Hernández, 2018). The neuroactive ligand-

receptor interaction signaling pathway is a collection of receptors and ligands on the plasma 

membrane that are associated with intracellular and extracellular signaling pathways. It is found 

to be associated with prostate cancer, bladder cancer, and renal cell carcinoma (He et al., 2018). 

In our study, the gene RXFP2 that is predicted only in Subtype-2 is found to be involved in 
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neuroactive ligand-receptor interaction. RXFP2 is also found to be involved in Relaxin signaling 

which induces cell invasion and is reported in several cancers (Fue et al., 2018).  The modulators 

of ABC transporters is reported to have the potential to augment the efficacy of anticancer drugs 

(Chen et al., 2012). ABCA8 is one such gene and it was predicted only in Subtype-2.  

Our model identified cancer/testis antigen gene CAGE-1 which is overexpressed in Subtype-1 

and might act as a plasma biomarker for lung cancer early detection. Previous studies showed 

that CAGE-1 provides an important addition to the armamentarium the clinician to aid early 

detection of lung cancer in high-risk individuals (Park et al., 2003; Kunze, Wendt & Schlott, 

2006; Parmigiani et al., 2006; Kunze & Schlott, 2007; Chapman et al., 2011; Kim et al., 2013). 

GUCA2A was down-regulated in Subtype-2 samples, many studies on GUCA2A indicates its 

role as a biomarker in diagnosing cancer. Aberrantly expressed GUCA2A can be a candidate 

marker of poor prognosis in patients with LUSC and Colorectal cancers, which may be a 

therapeutic target for precision medicine (Kulaksiz H, Rehberg E, Stremmel W, 2002; Chen YB, 

Zhu YP, Feng HY, Liu Y, Qian J, Fan YT, 2009; Hui Zhang,Yuanyuan Du, Zhuo Wang, Rui 

Lou, Jianzhong Wu, 2019) Under expression of TGFBR2 in Subtype-1 samples is associated 

with poor prognosis, and TGFBR2 is also associated with poor prognosis in cervical cancer 

(Yang et al., 2017; Yokouchi et al., 2017). CENP-F, a cell cycle-regulated centromere protein, 

has been shown to affect numerous tumorigenic processes, increased expression of CENP-F in 

subtype-1 correlates with poor survival. Previous studies demonstrate that CENP-F may serve as 

a valuable molecular marker for predicting the prognosis of esophageal squamous cell carcinoma 

patients and nasopharyngeal carcinoma progression(J.-Y. et al., 2010; Chen et al., 2011; Mi et 

al., 2013; Yang et al., 2017). Downregulation of SFTA1P in Subtype-2 correlates with poor 

survival, previous studies suggest SFTA1P regulates both oncogene and tumor suppressor genes 
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during the carcinogenesis of lung squamous cell carcinoma(Zhao, Luo & Jiao, 2014; Huang et 

al., 2017; Zhang et al., 2017; Ma et al., 2018) which can be used as a prognostic biomarker. 

Furthermore, Consensus clustering and LASSO helps us to choose a model with the most 

relevant features. Consistent with this finding, the clustered samples into two different subtypes 

showed distinct features, highlighting the better sample grouping and risk assessment. Moreover, 

the results of survival analysis validates that the survival time of the predicted genes correlates 

with gene expression pattern, which  is recognizably different in both the Subtypes, indicating 

that this model could effectively distinguish the samples with different expression pattern by 

overcoming the feature selection problem and was accurate for predicting the risk of LUSC 

cancer. 

 

Conclusions 
 
In conclusion, this study suggests that the unsupervised method such as Consensus clustering and 

LASSO model-based feature selection could be used to evaluate prediction and prognosis of 

LUSC cancer. With this model, we can identify the prognostic biomarkers of LUSC cancer, and 

the model-predicted genes would be helpful for clinicians in the management of cancer patients. 
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Figure 1 

 

 

Figure 1: Volcano plot of differentially expressed genes (DEGs) in High risk Vs. low risk samples 
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Figure 2 

 

 

Figure 2: Principal component analysis for High risk and Low risk samples  
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Figure 3 

 

 

 

Figure 3: Consensus clustering results for LUSC samples 
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Figure 4 

 

 

Figure 4: Silhouette width for Cancer subtype Validation 
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Figure 5 

 

 

Figure 5 : Principal component analysis for LUSC samples 
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Figure 6 

 

 

 

 

Figure 6: Differential gene expression in subtype 1 Vs. Normal samples 
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Figure 7 

 

 

 

Figure 7: Differential gene expression in subtype 2 Vs. Normal samples 
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Figure 8 

 

 

 

Figure 8: Estimating the population abundance of tissue-infiltrating immune and stromal cell 
populations using gene expression in Subtype-1 and Subtype-2 samples 
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Figure 9: cancer regulatory pathways in Subtype-1 samples 
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Figure 10
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Figure 10: cancer regulatory pathways in Subtype-2 samples 
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Figure 11: Survival analysis for LASSO predicted genes in Subtype-1 samples 
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Figure 12 
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Figure 12: Survival analysis for LASSO predicted genes in Subtype-2 samples 
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Table 1 

 

Table 1: Most relevant genes in established by LASSO model in Subtype-1 of LUSC 

Genes coefficients 
GAL 0.003457 
MYCT1 0.003006 
IMPDH1P8 0.001834 
TCF21 0.001811 
FOXA2 0.001753 
ROR1 0.001641 
NR3C2 0.001566 
GPD1 0.001236 
PPIAP45 0.001113 
LINC01977 0.000995 
GPR19 0.000891 
RTBDN 0.000838 
PGM5 0.000726 
AFF3 0.000712 
LINC01572 0.000662 
TMEM249 0.000385 
TNNC1 0.000216 
CAGE1 0.000165 
TFAP2A 2.63E-05 
PGM5 -2.29E-05 
HRCT1 -3.03E-05 
C1orf87 -8.42E-05 
DPYSL2 -0.00011 
NEK5 -0.00014 
NKAPL -0.00016 
RBMY1KP -0.00017 
TGFBR2 -0.00024 
EIF4EBP1 -0.00051 
CENPF -0.0006 
RPL31P40 -0.0006 
FFAR4 -0.00061 
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LINC01863 -0.0007 
GAS2L2 -0.0007 
KCNA4 -0.00079 
DUSP27 -0.00079 
LINC00670 -0.0009 
CAV3 -0.00101 
MIR4717 -0.00114 
PECAM1 -0.00139 
LINC00891 -0.00154 
HBM -0.00157 
GP9 -0.0016 
LINC02016 -0.00169 
HELT -0.0017 
OR6N1 -0.0021 
OR6K4P -0.00346 
CELF2 -0.0037 
LINC02058 -0.00486 
LINC00710 -0.00499 
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Table 2 

 

 

Table 2:  Most relevant genes in established by LASSO model in Subtype-2 of LUSC 

Genes Coefficient 

MIR3131 -0.01287 

LINC00844 -0.01122 

RXFP2 -0.00708 

PDZRN3.AS1 -0.00704 

GYPB -0.00534 

KHDRBS2.OT -0.00515 

DPPA3P2 -0.00496 

HBM -0.00425 

RPL31P40 -0.00424 

LINC00710 -0.00408 

SYNE1.AS1 -0.00382 

GP9 -0.00296 

PGM5.AS1 -0.00277 

MIR6071 -0.00207 

LINC01070 -0.00201 

LINC01985 -0.00184 

LINC02435 -0.00152 

KCNA10 -0.00119 

OR6K3 -0.00113 

MIR4717 -0.00094 

LINC02016 -0.00077 

LINC00670 -0.00066 

NCAPGP2 -0.00063 

GGTLC3 -0.00055 

GUCA2A -0.00038 

ART1 -0.0003 

ACSM2B -0.00021 

GPIHBP1 2.05E-05 

ATOH8 8.75E-05 

TCF21 0.000133 

ADGRD1 0.000279 

MAMDC2 0.000348 

ABCA8 0.000531 
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SFTA1P 0.001316 
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TABLE 3 

Table 3: KEGG pathway analysis for Subtype-1 group 

 

Genes KEGG ID Description 

CAV3 hsa05100,hsa04510,hsa05205 
Bacterial invasion of epithelial cells, Focal 
adhesion, Proteoglycans in cancer 

CAV3/PECAM1 hsa05418 Fluid shear stress and atherosclerosis 
DPYSL2 hsa04360 Axon guidance 

EIF4EBP1 hsa05221 

Acute myeloid leukemia, EGFR tyrosine 
kinase inhibitor resistance, ErbB signaling 
pathway, Longevity regulating pathway, 
Choline metabolism in cancer, HIF-1 signaling 
pathway 

EIF4EBP1 

hsa05221, hsa01521, 
hsa04012, hsa04211, 
hsa05231, hsa04066, 
hsa04152, hsa04910, 
hsa04150, hsa03013, 
hsa05163, hsa04151, 
hsa05168 

AMPK signaling pathway, Insulin signaling 
pathway, mTOR signaling pathway, RNA 
transport, Human cytomegalovirus infection, 
Human papillomavirus infection, PI3K-Akt 
signaling pathway, 

FOXA2 hsa04950, hsa04213 

Maturity onset diabetes of the young, 
Longevity regulating pathway - multiple 
species 

GAL hsa04080 Neuroactive ligand-receptor interaction 

GP9 
hsa04512, hsa04640, 
hsa04611 

ECM-receptor interaction, Hematopoietic cell 
lineage, Platelet activation 

GPD1 hsa00564 Glycerophospholipid metabolism 

KCNA4 hsa04927, hsa04934 
Cortisol synthesis and secretion, Cushing 
syndrome 

NR3C2 hsa04960 Aldosterone-regulated sodium reabsorption 
OR6N1 hsa04740 Olfactory transduction 

PECAM1 
hsa05144, 
hsa04670,hsa04514 

Malaria, Leukocyte transendothelial migration,  
Cell adhesion molecules (CAMs) 

ROR1 hsa04310 Wnt signaling pathway 
TGFBR2 hsa04520 Adherens junction 

TGFBR2 

hsa05212, hsa05220, 
hsa05210, hsa04350, 
hsa04933, hsa05142, 
hsa04659, hsa04380, 
hsa04926, hsa04068, 
hsa05226, hsa04390, 
hsa05161, hsa05225, 

Pancreatic cancer, Chronic myeloid leukemia, 
Colorectal cancer, TGF-beta signaling 
pathway, AGE-RAGE signaling pathway in 
diabetic complications, Chagas disease 
(American trypanosomiasis), Th17 cell 
differentiation, Osteoclast differentiation, 
Relaxin signaling pathway, FoxO signaling 
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hsa05202, hsa05166, 
hsa04060, hsa04010 

pathway, Gastric cancer, Hippo signaling 
pathway, Hepatitis B, Hepatocellular 
carcinoma, Transcriptional misregulation in 
cancer, Human T-cell leukemia virus 1 
infection, Cytokine-cytokine receptor 
interaction, MAPK signaling pathway 

TGFBR2/CAV3 hsa04144 Endocytosis 
TGFBR2/EIF4EBP1 hsa04218 Cellular senescence 

TNNC1 

hsa04260, hsa05410, 
hsa05414,  hsa04261, 
hsa04020 

Cardiac muscle contraction, Hypertrophic 
cardiomyopathy (HCM), Dilated 
cardiomyopathy (DCM), Adrenergic signaling 
in cardiomyocytes, Calcium signaling pathway 
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TABLE 4 

 

Table 4: KEGG pathway analysis for Subtype-2 group 

Genes ID Description pvalue p.adjust qvalue 
ACSM2B hsa00650 Butanoate metabolism 0.021127 0.110183 0.077321 
ABCA8 hsa02010 ABC transporters 0.033772 0.110183 0.077321 
GYPB hsa05144 Malaria 0.036728 0.110183 0.077321 
GP9 hsa04512 ECM-receptor interaction 0.06515 0.121208 0.085058 
GP9 hsa04640 Hematopoietic cell lineage 0.071609 0.121208 0.085058 
GP9 hsa04611 Platelet activation 0.090762 0.121208 0.085058 
RXFP2 hsa04926 Relaxin signaling pathway 0.094273 0.121208 0.085058 

RXFP2 hsa04080 
Neuroactive ligand-receptor 
interaction 0.231252 0.260158 0.182567 

OR6K3 hsa04740 Olfactory transduction 0.296107 0.296107 0.207794 
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