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ABSTRACT1

Allele frequencies vary across populations and loci, even in the presence of migration. While most differences may be due
to genetic drift, divergent selection will further increase differentiation at some loci. Identifying those is key in studying local
adaptation, but remains statistically challenging. A particularly elegant way to describe allele frequency differences among
populations connected by migration is the F-model, which measures differences in allele frequencies by population specific
FST coefficients. This model readily accounts for multiple evolutionary forces by partitioning FST coefficients into locus and
population specific components reflecting selection and drift, respectively. Here we present an extension of this model to linked
loci by means of a hidden Markov model (HMM) that characterizes the effect of selection on linked markers through correlations
in the locus specific component along the genome. Using extensive simulations we show that our method has up to two-fold the
statistical power of previous implementations that assume sites to be independent. We finally evidence selection in the human
genome by applying our method to data from the Human Genome Diversity Project (HGDP).
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1

Migration is a major evolutionary force homogenizing evo-2

lutionary trajectories of populations by promoting the3

exchange of genetic material. At some loci, however, the influx4

of new genetic material may be modulated by selection. In case5

of strong local adaptation, for instance, migrants may carry mal-6

adapted alleles that are selected against. Identifying loci that7

contribute to local adaptation is of major interests in evolution-8

ary biology because these loci are thought to constitute the first9

step towards ecological speciation (e.g. Wu 2001; Feder et al.10

2012) and allow us to understand the role of selection in shaping11

phenotypic differences between populations and species (e.g.12

Bonin et al. 2006; Fournier-Level et al. 2011).13

A simple yet flexible and useful approach to identify loci con-14

tributing to local adaptation is to scan the genome using statistics15

that quantify divergence between populations. One frequently16

used such statistics is FST that measures population differenti-17
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ation, and loci with much elevated FST have been reported for 18

many population comparisons (e.g. Jones et al. 2012; Andrew 19

and Rieseberg 2013; Stölting et al. 2013). While other statistics 20

measuring absolute divergence (Cruickshank and Hahn 2014) 21

or assessing incongruence between a population tree and the 22

genealogy at a locus (Durand et al. 2011; Peter 2016) may be 23

more suited in some situations, genome scans suffer from two 24

inherent limitations. First, multiple evolutionary scenarios may 25

explain the deviations in those statistics, making interpretation 26

difficult (Cruickshank and Hahn 2014; Eriksson and Manica 27

2012). Second, the definition of outliers is arbitrary, allowing 28

for the detection of candidate loci only. Indeed, loci also vary in 29

their divergence between populations that were never subjected 30

to selection, but outlier approaches would still be identifying 31

outliers. 32

Multiple methods have thus been developed that explicitly in- 33

corporate the stochastic effects of genetic drift. A first important 34

step to improve the reliability of outlier scans was the proposal 35

to compare observed values of such statistics against the distri- 36

bution expected under a null model. Among the first, Beaumont 37

and Nichols (1996) proposed to obtain the distribution of FST 38

through simulations performed under an island model. While 39

the idea to evidence selection by comparing FST to its expecta- 40
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tions is far from new (e.g. Lewontin and Krakauer 1973), the dif-1

ficulty to properly parameterize the null model was quickly real-2

ized Nei and Maruyama (e.g. 1975). The success of the method3

by Beaumont and Nichols (1996) relies on tailoring the param-4

eters of the underlying island model to match the observed5

heterozygousity at each locus, an approach that is also easily6

extended to structured island models (Excoffier et al. 2009).7

A more formal approach is given by means of the F-model8

(Falush et al. 2003; Gaggiotti and Foll 2010; Rannala and Hartigan9

1996), under which allele frequencies are measured by locus and10

population specific Fl j
ST coefficients that reflect the amount of11

drift that occurred in population j at locus l since its divergence12

from a common ancestral population. In the case of bi-allelic loci,13

the current frequencies p̃jl are then given by a beta distribution14

(Beaumont and Balding 2004)15

p̃jl ∼ Beta(θl j pl , θl j(1− pl)), (1)

where pl are the frequencies in the ancestral population and16

θl j is given by17

Fl j
ST =

1
1 + θl j

.

It is straightforward to extend this model to account for dif-18

ferent evolutionary forces that effect the degree of genetic differ-19

entiation. Beaumont and Balding (2004), for instance, proposed20

to partition the effects of genetic drift and selection into locus21

specific and a population specific components αl and β j, respec-22

tively:23

log

(
1

θl j

)
= αl + β j (2)

Loci with αl 6= 0 are interpreted to be targets of either bal-24

ancing (αl < 0) or divergent (αl > 0) selection (Beaumont and25

Balding 2004). Targets of selection may then be identified by26

contrasting models with αl = 0 or αl 6= 0 for each locus l, as is27

for instance done using reversible-jump MCMC in the popular28

software BayeScan (Foll and Gaggiotti 2008).29

A common problem of this and many other genome-scan30

methods is the assumption of independence among loci, which31

is easily violated when working with genomic data. By eval-32

uation information from multiple linked loci jointly, however,33

the statistical power to detect outlier regions is likely increased34

considerably. Indeed, even a weak signal of divergence may35

become detectable if it is shared among multiple loci. Similarly,36

false positivs may be avoided as their signals is unlikely shared37

with linked loci.38

Unfortunately, fully accounting for linkage is often statisti-39

cally challenging as well as computationally very costly. A much40

more feasible approach is to model linkage through the auto-41

correlation of hierarchical parameters along the genome. Boitard42

et al. (2009) and Kern and Haussler (2010), for instance, proposed43

a genome-scan method in which each locus was classified as44

selected or neutral, and then used a Hidden Markov Model45

(HMM) to account for the fact that linked loci likely belonged46

to the same class, while ignoring auto-correlation in the genetic47

data itself.48

Here we build on this idea to develop a genome-scan method49

based on the F-model. While an HMM implementation of the50

F-model was previously proposed to deal with linked sites when51

inferring admixture proportions (Falush et al. 2003), we use it52

here to characterize auto-correlations in the strength of selection53

αl among linked markers. As we show using both simulations 54

and an application to human data, aggregating information 55

across loci results in up to two-fold power at the same false- 56

discovery rate. 57

Methods 58

A Model for Genetic Differentiation and Observations 59

We assume the classic F-model in which J populations diverged 60

from a common ancestral population. Since divergence, each 61

population experienced genetic drift at a different rate. We quan- 62

tify this drift of population j = 1, . . . , J at locus l = 1, . . . , L by 63

θjl . We further assume each locus to be bi-allelic with ances- 64

tral frequencies pl , in which case the current frequencies p̃jl are 65

given by a beta distribution (Beaumont and Balding 2004), as 66

shown in (1). We thus have 67

P( p̃jl |pl , θjl) =
1

B(θjl pl , θjlql)
( p̃jl)

θjl pl−1(q̃jl)
θjl ql−1, (3)

where ql = 1− pl , q̃jl = 1− p̃jl , B(x, y) = Γ(x)Γ(y)/Γ(x + y) 68

and Γ(·) is the gamma function. 69

Let njl denote the allele counts in a sample of Njl haplotypes 70

from population j at locus l, which is given by a binomial distri- 71

bution 72

njl ∼ Bin( p̃jl , Njl)

and hence 73

P(njl | p̃jl) =

(
Njl
njl

)
( p̃jl)

njl (q̃jl)
Njl−njl . (4)

Equations (3) and (4) combine to a beta-binomial distribution 74

P(njl |θjl , pl) =

(
Njl
njl

)B(θjl pl + njl , θjlql + Njl − njl)

B(θjl pl , θjlql)
. (5)

Model of selection 75

In the absence of selection, all loci are assumed to experience the 76

same amount of population specific drift. Following Beaumont 77

and Balding (2004), we thus decompose θjl into a population- 78

specific component β j shared by all loci, and a locus-specific 79

component αl shared by all populations, as shown in (2). 80

To account for auto-correlation among the locus-specific 81

component, we propose to discretize αl = α(Sl), where 82

Sl = −smax,−smax + 1, . . . , smax are the states of a ladder-type 83

Markov model with m = 2smax + 1 states such that 84

α(Sl) =
s

smax αmax (6)

for some positive parameters αmax. The transition matrix of 85

this Markov model shall be a finite-state birth-and-death process 86

Q(dl) = eκdl Λ (7)

with elements [Q(dl)]ij denoting the probabilities to go from 87

state i at locus l − 1 to state j at locus l at known distance dl and 88

given the strength of auto-correlation measured by the positive 89

scaling parameter κ. Here, Λ is the m×m generating matrix 90
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Figure 1 (A) Proportion of neutral sites as a function of µ and ν. The dashed line indicates a fraction of 80%. (B and C) Example
trajectories of alphal along 1,000 loci simulated with smax = 10, αmax = 3.0, log(k) = −3.0, dl = 100, ν = 0.02 and µ = 0.91 (B) and
µ = 0.74 (C), respectively.

Λ =



−1 1 0 . . . 0 0

µ −1− µ 1 . . . 0 0

0 µ −1− µ . . . 0 0
...

...
...

. . .
...

...

0 0 0 . . . −1− µ µ

0 0 0 . . . 1 −1


where the middle row at position smax + 1 reflects neutrality1

and is given by the element2 (
0 . . . νµ −2νµ νµ . . . 0

)
.

As exemplified in Figure 1, the two parameters µ and ν con-3

trol the distribution of sites under selection in the genome with4

large ν affecting the number of selected regions and µ their ex-5

tent and selection strength, with higher values leading to more6

sites under selection. The stationary distribution of this Markov7

chain is given by8

Π = c ·
(

1 1
µ

1
µ2 . . . 1

µs−1
1

µsν
1

µs−1 . . . 1
)

,

with9

c−1 = 2
µs − 1

µs − µs−1 +
1

µsν
.

Note that as κ → ∞, our model approaches that of (Foll and10

Gaggiotti 2008) implemented in BayeScan but with discretized11

αl .12

Hierarchical Island Models13

Hierarchical island models, first introduced by Slatkin and14

Voelm (1991), address the fact the divergence might vary among15

groups of populations. They were previously used to infer diver-16

gent selection, both using a simulation approach (Excoffier et al.17

2009) as well as in the case of F-models (Foll et al. 2014). Here18

we describe how our model is readily extended to to additional19

hierarchies.20

Consider G groups each subdivided into Jg populations with21

population specific allele frequencies p̃gjl that derive from group-22

specific frequencies pgl as described above with group-specific23

parameters µg, νg and κg. Analogously, we now assume group- 24

specific frequencies to have diverged from a global ancestral 25

frequency Pl according to locus-specific and group-specific pa- 26

rameters Θgl . Specifically, 27

pgl ∼ B(Θgl Pl , Θgl(1− Pl))

such that 28

P(pgl |Pl , Θgl) =
1

B(Θgl Pl , ΘglQl)
(pgl)

Θgl Pl−1(qgl)
Θgl Ql−1, (8)

where Ql = 1− Pl and qgl = 1− pgl . The parameter Θgl is 29

given by 30

log Θgl = −A(Sl)− Bg. (9)

As above, Bg quantifies group specific drift, Sl = 31

−smax,−smax + 1, . . . , smax are the states of a Markov model with 32

m states and transition matrix Ql = eκdl Λ with parameters µ and 33

ν, a positive scaling parameter κ and A(Sl) and Amax defined 34

as in (6). Hence, we assume independent HMM models of the 35

exact same structure at all levels of the hierarchy, as outlined in 36

Figure 2. 37

Inference 38

We implemented a Bayesian inference scheme for the proposed 39

model using a Markov chain Monte Carlo (MCMC) approach 40

using Metropolis–Hastings updates, as detailed in the Supple- 41

mentary Material. As priors, we used 42

β j, Bg ∼ N (µb, σ2
b )

pl ∼ Beta(ap, bp)

log(ap), log(bp) ∼ N (0, 1)

log(κg), log(κ), log(µ), log(ν) ∼ U (−∞, 0).

Following Beaumont and Balding (2004), we used µb = 0 and 43

σ2
b = 1.8 throughout. We further set ap = bp = 1. 44

To identify candidate regions under selection, we used our 45

MCMC samples to determine the false-discovery rates 46

qd(l) = 1−P(αl > 0|n, N)

qb(l) = 1−P(αl < 0|n, N)

for divergent and balancing selection, respectively, where n = 47

{n11, . . . , nJL} and N = {N11, . . . , NJL} denote the full data. 48
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Figure 2 A directed acyclic graph (DAG) of the proposed hierarchical model with three groups (black, red and blue) of two popula-
tions each.

Figure 3 Boxplot of the parameters β1 (left), ν and µ (center) and log(κ) (right). The values are obtained from the mean of the pos-
terior distributions obtained using Flink on the 10 simulations run for each of the set of parameters reported in Table 1. The red
dotted lines show the true values of the respective parameters.

Implementation1

We implemented the proposed Bayesian inference scheme in the2

easy-to-use C++ program Flink.3

Given the heavy computational burden of the proposed
model, we introduce several approximations. Most impor-
tantly, we group the distances dl into E + 1 ensembles such
that el = dlog2 dle, el = 0, . . . , E and use the same transition ma-
trix Q(2e) for all loci in ensemble e. We then calculate Q(1) for
the first ensemble using the computationally cheap yet accurate
approximation

Q0 = eκd0Λ ≈
(
I + 1

2m κd0Λ
)2m

with m = log2(D/3)+ 10 where D = 2smax + 1 is the dimension-4

ality of the transition matrix (Ferrer-Admetlla et al. 2016). The5

transition matrices of all other ensembles can then be obtained 6

through the recursion Q(e) = Q(e− 1)2. (See Supplementary 7

Information for other details regarding the implementation). 8

Data availability 9

The authors affirm that all data necessary for confirming the con- 10

clusions of the article are present within the article or available 11

from repositories as indicated. The source-code of Flink is avail- 12

able through the git repository https://bitbucket.org/wegmannlab/ 13

flink, along with detailed information on its usage. 14

Simulation study 15

Simulation parameters 16

To quantify the benefits of accounting for auto-correlation in 17

the locus specific components αl among linked loci, we used 18
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simulations to compare the power to identify loci under selec-1

tion of our method implemented in Flink against the method2

implemented in BayeScan (Foll and Gaggiotti 2008). All simu-3

lations were conducted under the model laid out above for a4

single group using routines available in Flink and with param-5

eter settings similar to those used in (Foll and Gaggiotti 2008).6

Specifically, we focused on a reference simulation in which we7

sampled N = 50 haplotypes from J = 10 populations with β j8

chosen such that Fl j
ST = 0.15 in the neutral case αl = 0. We then9

varied the number of populations J, the sample size N, Fl j
ST or10

the strength of auto-correlation κ individually, while keeping all11

other parameters constant able 1). Following Foll and Gaggiotti12

(2008), we simulated all pl ∼ Beta(0.7, 0.7) and 20% of sites13

under selection by setting µ = 0.91 and ν = 0.02. We further14

set smax = 10 (resulting in m = 21 states) and αmax
g = 3 for all15

simulations. We simulated 103 loci for each of 10 chromosomes,16

with a distance of 100 between adjacent sites.17

To infer parameters with Flink, we set smax and αmax to the18

true values and ran the MCMC for 7 · 105 iterations, of which19

we discarded the first 2 · 105 as burnin. During the chain, we20

recorded all parameter values every 100 iterations as posterior21

samples. To infer parameters with Bayescan, we used version22

2.1 with default settings. We identified loci under selection at a23

False-Discovery-Rate (FDR) threshold of 5% for both methods.24

Power of inference25

We first evaluated the power of Flink in inferring the hierarchi-26

cal parameters β j, ν, µ and κ. As shown through the distributions27

of posterior means across all simulations, these estimates were28

very accurat and unbiased, regardless of the parameter values29

used in the simulations (Figure 3). This suggests that the power30

to identify selected loci is not limited by the number of loci used.31

We next studied the impact of the sample size and the32

strength of population differentiation on power. In line with33

findings reported by (Foll and Gaggiotti 2008), power gener-34

ally increased with Fj
ST , the number of sampled haplotypes and35

the number of sampled populations (Figure 4A-C). Importantly,36

Table 1 Parameters used in simulations
Name J FST N log(κ)
Reference 10 0.15 50 -3
Pop-2 2 0.15 50 -3
Pop-5 5 0.15 50 -3
Pop-20 20 0.15 50 -3
Pop-50 50 0.15 50 -3
FST-0.01 10 0.01 50 -3
FST-0.05 10 0.05 50 -3
FST-0.1 10 0.1 50 -3
FST-0.25 10 0.25 50 -3
Haplo-10 10 0.15 10 -3
Haplo-20 10 0.15 20 -3
Haplo-100 10 0.15 100 -3
Haplo-200 10 0.15 200 -3
log κ-1 10 0.15 50 -1
log κ-5 10 0.15 50 -5
log κ-7 10 0.15 50 -7
log κ-9 10 0.15 50 -9

larger sample sizes or stronger differentiation was particularly 37

relevant for detecting loci under balancing selection, for which 38

the power was generally lower and virtually zero at low differ- 39

entiation (Fj
ST = 0.01) or if only few populations were sampled 40

(J = 2). 41

We finally compared the power of Flink to that of BayeScan 42

on the same set of simulations. As shown in Figure 4, Flink had 43

a higher power at the same FDR across all simulations, and often 44

considerably so, unless the number of populations sampled was 45

large. If J = 10 populations were sampled, for instance, the 46

power of Flink was about 0.2 higher for loci under divergent 47

selection, and even up to 0.4 higher for those under balancing 48

selection (Figure 4A,B). 49

Importantly, this increase in power is fully explained by 50

Flink accounting for auto-correlation among the αl values. As 51

shown in Figure 4D, the power of both methods converges as 52

soon as the strength of auto-correlation vanishes (i.e. κ is large). 53

Exploiting information from linked sites to identify divergent or 54

balancing selection can thus strongly increase power, certainly if 55

linkage extends to many loci. This is maybe best illustrated by 56

the much higher power of Flink to identify loci under balancing 57

selection at low differentiation (Fj
ST ≤ 0.1, Figure 4A), in which 58

case even many neutral loci are expected to show virtually no 59

difference in allele frequency and only an aggregation of such 60

loci can be interpreted as a reliable signal for selection (Foll and 61

Gaggiotti 2008). 62

Runtime 63

Thanks to careful optimization, there is little to no overhead 64

of our implementation compared to that of BayeScan. On the 65

reference simulation of 104 loci from 10 populations, for instance, 66

Flink took on average 130 minutes on a modern computer if 67

calculations were spread over 4 CPU cores. On the same data, 68

BayeScan took 361 minutes. However, we note that comparing 69

the two implementations is difficult due to many settings that 70

strongly impact run times such as the number of iterations or the 71

use of pilot runs in BayeScan. Without pilot runs, the run time 72

of BayeScan reduced to 182 minutes on average for the default 73

number of iterations (105 including burnin). In the same time, 74

Flink runs for close to 106 iterations, but also requires more to 75

converge. 76

But since computation times scale linerly with the number 77

of loci, they remain prohibitively slow for whole genome appli- 78

cations in a single run. However, they computations are easily 79

spread across many computers by analyzing the genome in inde- 80

pendent chunks such as for each chromosome or chromosome 81

arm independently. This is justified because 1) linkage does 82

not persist across chromosome boundaries and is usually also 83

weak across the centromere and 2) because our simulations in- 84

dicate that 104 polymorphic loci were sufficient to estimate the 85

hierarchical parameters accurately. 86

Application to Humans 87

To illustrate the usefulness of Flink we applied it to SNP data of 88

46 populations analyzed as part of the Human Genome Diversity 89

Project (HGDP) (Rosenberg N.A. et al. 2002; Rosenberg et al. 2005) 90

and available at https://www.hagsc.org/hgdp/files.html. We then 91

used Plink v1.90 (Chang et al. 2015) to transpose the data into vcf 92

files and used the liftOver tool of the UCSC Genome Browser 93

(James Kent et al. 2002) to convert the coordinates to the human 94

reference GRCh38. 95
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Figure 4 The true positive rate in classifying loci as neutral (black) or under divergent (orange) or balancing selection (blue) as a
function of the Fst between populations (A), the number of haplotypes N (B), the number of populations J (C) and the strength of
auto-correlation κ (D). Lines indicate the mean and range of true positive rates obtained with Flink (solid) and BayeScan across 10
replicate simulations. Filled dots and the vertical gray line indicate the reference simulation shown in each plot.

Table 2 Population groups analyzed
Divergent Balancing

Group Populations SNPs (%) Regions Length a SNPs (%) Regions Length a

Africa Bantu N.E., Biaka Pygmies,
Mandenka, Mbuti Pygmies,

San, Yoruba

8,020 (1.42) 759 16.8 8,026 (1.42) 433 30.2

Middle East Mozabite, Palestinian, Druze,
Bedouin

14,324 (2.54) 1,137 20.6 18,432 (3.27) 848 41.2

Europe Adygei, French, French
Basque, North Italian,

Orcadian, Russian,
Sardinian, Tuscan

19,128 (3.39) 1,466 22.0 37,736 (6.7) 1,382 48.3

America Colombians, Karitiana,
Maya, Pima, Surui

33,062 (5.87) 1,889 29.8 34,499 (6.12) 1,735 39.4

Central Asia Balochi, Brahui, Burusho,
Hazara, Kalash, Makrani,

Pathan, Sindhi

16,663 (2.96) 1,290 22.6 25,473 (4.52) 1,132 44.5

East Asia Uygur, Dai, Daur, Han,
Hezhen, Lahu, Miaozu,

Mongola, Naxi, Oroqen, She,
Tu, Tujia, Xibo, Yizu

20,528 (3.64) 1,832 17.3 33,678 (5.98) 1,656 35.2

Higher hierarchy N/A 24,595 (4.36) 1,692 26.8 20,156 (3.58) 1,074 31.2
a Median length of the regions in kb.

We divided the 46 populations into 6 groups (Table 2) of be-1

tween 4 and 15 populations each according to genetic landscapes2

proposed by Peter et al. (2017). We then inferred divergent and3

balancing selection using the hierarchical version of Flink on all4

22 autosomes, but excluded 5 Mb on each side of the centromer5

and adjacent to the telomeres. The final data set consists in total6

of 563,589 SNPs. We analyzed each chromosome arm individ-7

ually with αmax = 4.0, smax = 10 and using an MCMC chain8

with 7 · 105 iterations, of which we discarded the first 2 · 105
9

as burnin. Estimates of hierarchical parameters are shown in10

Figure S2 and the locus-specific FDRs qd(l) and qb(l) are shown11

for all loci, all groups as well as the higher hierarchy in Sup-12

plementary Figures S4-S42. All regions identified as potential13

targets for selection are further detailed in Supplementary Files. 14

As summarized in Table 2, we discovered between 759 and 1,889 15

and between 433 and 1,735 candidate regions for divergent and 16

balancing selection, respectively, spanning together about 10% 17

of the genome. 18

Comparison to BayeScan 19

We first validated our results by running BayeScan on the same 20

data but for each group individually. We then identified diver- 21

gent regions as continuous sets of SNP markers that passed an 22

FDR threshold of 0.01 or 0.01 for each method and determined 23

the FDR threshold necessary to identify at least one locus within 24

these regions by the other method. As shown in Figure 5A 25
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Figure 5 (A) The fraction of regions identified as divergent among Europeans by Flink (green) and Bayescan (black) at a false
discovery rate (FDR) of 0.01 (solid) and 0.05 (dashed) also identified by the other method at different FDR. (B-D) Example of regions
found under divergent selection by Flink (B), BayeScan (C) or both (D). The dashed line represents the FDR threshold of 0.01.

Figure 6 Signal of selection around the LCT gene on Chromosome 2q. The orange and blue lines indicate the locus-specific FDR
for divergent (orange) and balancing (blue) selection, respectively. The black dashed line shows the 1% FDR threshold. A zoom of
the highlighted region is shown on the right indicating the position of several genes: R3HDM1 (R3), MIR128-1 (MI), UBXN4 (UB),
MCM6 (MC), DARS (DA) and DARS-AS1 (DA1). The entire Chromosome 2q is shown in Supplementary Figure S7.

for selected regions among Europeans, the majority of regions1

identified by BayeScan were replicated by Flink at small FDR2

thresholds. In contrast, most of the regions identified by Flink3

were not replicated by BayeScan, in line with a higher statistical4

power for the former. Visual inspection indeed revealed that5

for most regions identified by Flink but not BayeScan, the latter6

also showed a signal of selection at multiple markers, each of7

which not passing the FDR threshold individually (see Figure 5B8

for examples). In contrast, sites identified by BayeScan but not9

Flink usually consisted of a signal at a single site, suggesting10

many of those are likely false positives (Figure 5C).11

Results were similar for the other groups (Figure S3), but the12

correspondence between the methods was higher for African13

group and considerably lower for the American group, likely14

due to the different patterns of divergence among populations15

(Figure S2).16

Comparison with a recent scan for selective sweeps 17

Since positive selection might affect a subset of populations 18

only and hence lead to an increase in population differentiation 19

(Nielsen 2005), we compared our outlier regions also to those of a 20

recent scan for positive selection that combined multiple test for 21

selection using a machine learning approach (Sugden et al. 2018). 22

Among the 593 candidate loci reported for the CEU population 23

of the 1000 Genomes Project (1000 Genomes Project Consortium 24

et al. 2015) and overlapping the chromosomal segments studied 25

here, 293 loci (49.4%) fall within a region we identified as under 26

divergent selection either among European populations (154 27

loci), at the higher hierarchy (132 loci), or both (7 loci). 28

To test if this overlap exceeds random expectations, we gen- 29

erated 10,000 bootstrapped data sets by randomly sampling the 30

same amount of loci among all those found polymorphic in the 31

1000 Genome Project CEU samples and within the chromoso- 32

mal segments studied here. We then determined the overlap 33

Detecting selection from linked sites using an F-model 7

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 19, 2019. ; https://doi.org/10.1101/737916doi: bioRxiv preprint 

https://doi.org/10.1101/737916
http://creativecommons.org/licenses/by/4.0/


with our outlier regions for each data set. On average, 46.6 loci1

overlapped with our regions identified among European popula-2

tions or at the higher hierarchy. Importantly, the largest overlap3

observed among the bootstrapped data set (72 loci) was much4

smaller than that observed (293 loci, P < 10−4).5

Example: The LCT region6

As illustration, we show the FDRs qd(l) and qb(l) for 30 Mb7

around the LCT gene in Figure 6 for the higher hierarchy as well8

as the European, Middle Eastern and East Asian group. The LCT9

gene is a well studied target of positive selection which has acted10

to increase lactase persistence in several human populations,11

including Europeans (Nielsen et al. 2007). Lactase persistence12

varies among Europeans and decreases on a roughly north-south13

cline (Bersaglieri et al. 2004; Leonardi et al. 2012; Burger et al. 2007;14

Itan et al. 2009), consistent with the signal of divergent selection15

we detected among European populations (Figure 6). In line16

with previous findings (e.g. Grossman et al. 2013), we detected a17

signal of divergent selection among Europeans also in various18

genes around LCT, most notably in R3HDM1 but also MIR128-1,19

UBXN4 and DARS. In contrasts, we detected no such signal for20

the other groups.21

Discussion22

Genome scans are common methods to identifying loci that con-23

tribute to local adaptation among populations. Here we extend24

the particularly powerful method implemented in BayeScan Foll25

and Gaggiotti (2008) to linked sites.26

Accounting for linkage in population genetic methods, while27

desirable, is often computationally hard. We propose to alleviate28

this problem by modeling the dependence among linked sites29

through auto-correlation among hierarchical parameters, rather30

than the population allele frequencies or haplotypes themselves.31

In the context of genome scans, this has been previously suc-32

cessfully by classifying each locus as selected or neutral (Boitard33

et al. 2009; Kern and Haussler 2010). Here, we extend this idea34

by modeling auto-correlation among the strength of selection35

acting at individual loci. While ignoring auto-correlation at the36

genetic level certainly leads to a loss of information, the resulting37

method remains computationally tractable. And as we show38

with simulations and an application to human data, the resulting39

method features much improved statistical power compared to40

BayeScan, a similar method that ignores linkage completely.41

Accounting for partial linkage particularly improved the42

power to identify loci with more similar allele frequencies among43

populations than expected by the genome-wide divergence.44

These loci are generally interpreted as being under balancing se-45

lection Foll and Gaggiotti (2008); Beaumont and Balding (2004),46

but may also be the result of purifying selection restricting alleles47

from reaching high allele frequencies. Given the large number48

of loci we inferred in this class from the HGDP data (about 5%49

of the genome), we speculate that balancing selection in unlikely50

the main driver, and caution against over-interpreting these re-51

sults. But we note that the empirical false discovery rate for loci52

under balancing selection was extremely low in our simulations.53

An obvious draw-back of modeling the locus-specific selec-54

tion coefficients as a discrete Markov Chain is that for most55

candidate regions we detected, multiple loci showed a strong56

signal of selection, making it difficult to identify the causal vari-57

ant. However, once a region is identified, estimates of selections58

coefficients can be obtained for each locus individually to iden-59

tify the locus with the strongest signal, for which one might then60

also use complementary methods. 61

We finally note that the implementation provided through 62

Flink allows to group populations hierarchically. Accounting 63

for multiple hierarchies was previously shown to reduce the 64

number of false positives in FST based genome scans (Excoffier 65

et al. 2009) and also applied in an F-model setting (Foll et al. 66

2014). Aside from accounting for structure more accurately, a 67

hierarchical implementation also allows for genome-wide as- 68

sociation studies (GWAS) with population samples. In such a 69

setting, each sampling location would constitute a “group” of, 70

say, two “populations”, one for each phenotype (e.g. cases and 71

controls). The parameters at the higher hierarchy will then accu- 72

rately describe population structure and loci associated with the 73

phenotype will be identified as those highly divergent between 74

the two “populations”. A natural assumption would then be 75

that the locus-specific coefficients αl are be shared among all 76

groups, i.e. that they are governed by a single HMM. While 77

we have not made use of such a setting here, we note that it is 78

readily available as an option in Flink. 79
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