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Abstract 
Background: While the LRRK2 p.G2019S mutation has been demonstrated to be a strong risk 

factor for Parkinson’s Disease (PD), factors that contribute to penetrance among carriers, other 

than aging, have not been well identified.   

Objectives: To evaluate whether a cumulative genetic risk identified in the recent genome-wide 

study is associated with penetrance of PD among p.G2019S mutation carriers. 

Methods: We included p.G2019S heterozygote carriers with European ancestry in three genetic 

cohorts in which the mutation carriers with and without PD were selectively recruited. We also 

included the carriers from two datasets: one from a case-control setting without selection of 

mutation carriers, and the other from a population sampling. The associations between PRS 

constructed from 89 variants reported in Nalls et al. and PD were tested and meta-analyzed. We 

also explored the interaction of age and PRS. 

Results: After excluding 8 homozygotes, 833 p.G2019S heterozygote carriers (439 PD and 394 

unaffected) were analyzed. PRS was associated with a higher penetrance of PD (OR 1.34, 95% 

C.I. [1.09, 1.64] per +1 SD, P = 0.005). In addition, associations with PRS and penetrance were 

stronger in the younger participants (main effect: OR 1.28 [1.04, 1.58] per +1 SD, P = 0.022; 

interaction effect: OR 0.78 [0.64, 0.94] per +1 SD and +10 years of age, P = 0.008).  

Conclusions: Our results suggest that there is a genetic contribution for penetrance of PD among 

p.G2019S carriers. These results have important etiologic consequences and potential impact on 

the selection of subjects for clinical trials. 

 

 

Introduction 
Parkinson’s disease (PD) is a complex genetic disorder, where rare and highly damaging variants 

as well as common risk variants play a role in its etiology.1  The LRRK2 p.G2019S (rs34637584) 

mutation is one of the major known contributors to PD.2,3 The p.G2019S mutation has an estimated 

prevalence of approximately 1% in the PD population of European ancestry, with much higher 

frequencies being reported for North African Berber Arab populations and European 

subpopulations with high Ashkenazi Jewish ancestry.4–7 The p.G2019S mutation is not fully 

penetrant, with risk of PD for carriers increasing with age. At age 80 years, 25% to 42.5% of 

carriers will have PD.7,8 Critical question that remain centers on what the determinants of 
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p.G2019S penetrance are. Previously, it has been reported that a variant in DNM3, encoding the 

vesicular transport protein dynamin 3, is a potential LRRK2 p.G2019S age-at-onset modifier, 

lowering the age at onset by approximately 8 years.9 However, other reports have not replicated 

this finding and instead nominated variants in SNCA as modifiers of LRRK2 mutation penetrance.10 

The underlying pathogenic mechanism of LRRK2-linked PD is currently unknown, but a great deal 

of focus has been placed on the ability of the p.G2019S mutation to increase LRRK2 kinase 

activity, especially since loss-of-function mutations do not seem to be contributing to disease.11,12 

In the last several years, genome-wide association studies (GWAS) have identified an ever-

increasing number of risk loci for PD. Individually, each of these loci confers modest effects on 

risk for disease. Polygenic risk score (PRS) represents known cumulative genetic risk across these 

loci in each assayed individual. PRS reveals that, collectively, these risk variants confer 

considerable risk for disease, with those in the top decile of genetic risk being sixfold more likely 

to have PD than those in the lowest decile of genetic risk in the European population.1 PRS is also 

highly correlated with age at onset of PD,13,14 and is associated with penetrance of damaging GBA 

variants.15 Here, we investigate the influence of the latest PD PRS on age at onset and penetrance 

of PD in p.G2019S carriers using several large cohorts. 

 

Methods 
Whole genome sequencing  

Genetics and clinical data used in the preparation of this article were obtained from the Parkinson’s 

Progression Markers Initiative (PPMI) database (www.ppmi-info.org/data). (For up-to-date 

information on the PPMI study, visit www.ppmi-info.org.) In this study, we included three genetic 

cohorts: Parkinson's Progression Markers Initiative Genetic Cohort (PPMI_GC), Parkinson's 

Progression Markers Initiative Genetic Registry (PPMI_GR), and the LRRK2 Consortium Cohort 

(LCC), hereafter collectively named the Genetic Cohort Dataset. These cohorts selectively 

included people with specific high-risk genetic variants, such as carrying p.G2019S, for both cases 

and unaffected individuals. Whole genome sequencing (WGS) data was generated at the 

Laboratory of Neurogenetics (LNG) at the National Institutes of Health, and detailed methods are 

available from the study website. After downloading, subsequent genotypes were filtered to 

exclude minor allele frequency of less than 0.01, missing rate more than 5%, and the test for 

Hardy–Weinberg equilibrium threshold of 1.0E-4 in controls. Following quality control, 185 
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carriers of p.G2019S (PD/Non-PD = 88/97) in PPMI_GC, 75 (38/37) in PPMI_GR, and 175 

(107/68) in LCC were included in the analysis. Among them, 7 individuals (3 in PPMI_GC, 3 in 

PPMI_GR, and 1 in LCC, all cases) were homozygotes. 

 

Genotype data from the International Parkinson Disease Genomics Consortium 

Aggregated genotype data was obtained from the International Parkinson Disease Genomics 

Consortium (IPDGC), as previously described.1 In brief, genotypes were processed using standard 

pipelines and imputed using the HRC imputation panel r1.1 201616 via the Michigan imputation 

server under the default setting with phasing using the EAGLE option.17 Genotypes were filtered 

for imputation quality R2 > 0.8. Following quality control criteria similar to that applied to the 

Genetic Cohort Dataset, a total of 227 carriers were included in the analysis, of which 208 were 

PD cases and 19 were controls. Among them, one PD patient was homozygous. For composing 

PRS, we used a threshold of R2 > 0.3 to obtain dosages of more risk-associated alleles because 

only 64 variants were passed with the cutoff of 0.8 in R2.  

 

UK Biobank data 

The United Kingdom (UK) Biobank (UKBB) is a large, long-term biobank study in the UK that 

includes genetic data and a wide range of phenotypes of approximately 500,000 individuals.18 PD 

case-control status was based on multiple field codes, including 41202, 41204, 40002, and 20002. 

LRRK2 p.G2019S was directly genotyped in the UK Biobank cohort (rs34637584, n = 314), and 

the concordance rate in the whole-exome sequencing data19 was 100%. After applying the same 

quality control steps as above, 179 carriers were identified, of which 6 were reported to be PD 

cases; all were heterozygotes. 

 

Polygenic risk score calculation 

PRS was calculated incorporating the risk loci previously associated with PD.1 In the calculation 

of PRS, risk allele dosages were summed with weights as their published beta estimates, giving 

greater weight to alleles with higher estimates. Then, PRS were standardized to each cohort level. 

For the UKBB and IPDGC imputed genotype data, not all 89 variants were available due to lower 

imputation scores (R2 > 0.8 for UKBB and R2 > 0.3 for IPDGC); therefore, 88 variants in UKBB 

and a median of 89 variants (range: 82–89) in IPDGC were used.  
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Statistical analysis 

Our primary analysis was to test the association between PRS and PD odds using a fixed effect 

meta-analysis model among the mutation carriers. First, a logistic regression model was applied 

for the main effect of PRS for the Genetic Cohort Dataset (PPMI_GC/PPMI_GR/LRRK2), IPDGC 

dataset, and UKBB dataset separately. The data were adjusted for age, sex, cohort, and PCs 

representing population structure. Across all datasets, the linear age upon recruitment was used for 

carriers without PD and the age at diagnosis for carriers with PD, whereas the age at onset was 

used for the IPDGC dataset and the age at recruitment for the UKBB dataset. The age data were 

centered—the original value subtracted by the mean age at each cohort—to accommodate square 

age variable in the later step. To adjust for population structure, PC1–10 were used for the Genetic 

Cohort Dataset and IPDGC dataset, and PC1–5 were used for the UKBB dataset because of its 

size. 

In the secondary analysis, the interaction between age and PRS for PD odds was tested. In this 

analysis, we excluded the UKBB dataset because of the small number of PD cases. We meta-

analyzed the dataset level ORs for the main effect and the interaction effect between age and PRS 

as in the similar model above, but we further adjusted for square age in the Genetic Cohort Dataset 

and IPDGC dataset. Square age was significantly associated with the PD odds in these two 

datasets; as the UKBB dataset cannot accommodate the variable because of too few PD cases, we 

thus could not include square age in the primary analysis.  

Also, the association of PRS on age at diagnosis (Genetic Cohort Dataset) or age at onset (IPDGC 

dataset) for the carriers with PD was analyzed in an exploratory manner. Adjusted covariates 

included age, square age, sex, cohorts, and PC1–10.  

There were 8 homozygotes of p.G2019S mutation in the analysis set, and we excluded them from 

all analyses. Analyses were conducted by using R version 3.5.1(https://cran.r-project.org/), with a 

significance level of 0.05 (two-sided). With the sample size here, we had 90% power for the 

primary analysis and 35% power for the exploratory analysis on age at onset/diagnosis, assuming 

that the associations were the same as in the previous report conducted in a general case-control 

setting in the European population.1  

 

Patients Consent 

made available for use under a CC0 license. 
certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also 

The copyright holder for this preprint (which was notthis version posted August 16, 2019. ; https://doi.org/10.1101/738260doi: bioRxiv preprint 

https://doi.org/10.1101/738260


Participants’ information and genetic samples were obtained under appropriate written consent 

and with local institutional and ethical approvals for all cohorts and datasets in this study. 

 

Results 
Data overview 

Table 1 is a summary of participants with and without the LRRK2 p.G2019S mutation in the 

datasets under study. The IPDGC dataset consists of 14,225 cases and 16,543 controls with known 

LRRK2 p.G2019S status; only 1.4% of the cases had the LRRK2 p.G2019S mutation, and 0.11% 

of the controls carried the mutation. The prevalence of PD in carriers is consistent with results 

from a previous report of 1% of PD patients carrying the mutation.7 Among the 362,884 

participants passing filtering criteria in the UKBB, 0.049% were carriers of the LRRK2 p.G2019S 

mutation. While the overall prevalence of PD in this dataset was 0.33%, 3.36% of carriers had PD, 

indicating an approximately 10 times higher crude risk of PD associated with the mutation. This 

is consistent with the crude relative risk of 13 in UKBB. In total, of 3 datasets there were 8 

homozygotes reported as PD cases. They had a higher PRS and older age at diagnosis compared 

to heterozygous PD cases (Supplemental Table 1), although the differences were not statistically 

significant. Because of the small number of homozygotes, we excluded them from downstream 

analyses.  

 

 

Genetic risk score modifies penetrance of LRRK2 p.G2019S 

The unadjusted plots of PRS among cases and unaffected individuals in the Genetic Cohort Dataset 

showed that the mean of the PRS was higher in cases among carriers (Figure 1). The means of 

PRS in cases were also higher than those in controls among noncarriers in the IPDGC and UKBB 

datasets (Supplemental Figure 1). Meta-analysis results of the three datasets showed that a higher 

PRS was significantly associated with a higher odds ratio of PD (OR 1.34, 95% C.I. [1.09, 1.64] 

per + 1SD [per standard deviation of increase from the cohort mean, P = 0.005]; Figure 2A).  

 

Stronger association of genetic risk score for PD penetrance in younger carriers 

In the secondary analysis examining the interaction between PRS and age, the main effect of PRS 

as well as the interaction between PRS and age were significantly associated with the odds of PD, 
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but in the opposite direction (main effect: OR 1.28 [1.04, 1.58] per +1 SD, P = 0.022; interaction 

effect: OR 0.78 [0.64, 0.94] per +1 SD and +10 years of age, P = 0.008; Figure 2B). This suggests 

that in the studied cohorts, the magnitude of association between PRS and PD odds were stronger 

when the age of the participants was younger. We added post-hoc analyses stratified by age (<55 

years old, 55-65 years old and 65< years old) to illustrate the stronger association of PRS in 

younger age in carriers. (Figure 3). The analyses examining the main effect and interaction effect 

among nonmutation carriers in the IPDGC dataset showed that these effects were also significant 

in nonmutation carriers (the main term for +1 SD in PRS: OR 1.6, P = 2.5E-245; the interaction 

term of +1 SD in PRS and +10 years in age: 0.94, P = 1.4E-9). However, the magnitude of the 

interaction effect was smaller than that in LRRK2 p.G2019S carriers, and the magnitudes of 

associations were significantly different between carriers and non-carriers in the test of 

homogeneity (P = 0.044).  
 

 

Genetic risk score and age at onset/diagnosis in LRRK2 p.G2019S cases 

Previously, we have shown that PRS is inversely correlated with age at onset in PD cases.13 In the 

current study, there was insufficient evidence that PRS was significantly associated with age at 

onset/diagnosis of PD in LRRK2 p.G2019S carriers. The directionality was the same as in the 

general population previously studied ( –0.801 [–0.959, –0.643] per +1 SD in PRS), but the 

association did not reach significance level (Supplemental Figure 2). As mentioned in the power 

calculation analyses in Methods, this is an underpowered study, and therefore additional data is 

needed to confirm these results. 

 

Exploratory analysis for the individual Parkinson’s disease-associated variants 

While the power of the study is not sufficient, the motivation for this analysis was to qualitatively 

assess whether any of the risk variants could be strong penetrance modifiers. The Q-Q plot for the 

observed and expected P in -log10 scale showed an upper deviation from the expected line (lambda 

value of 1.34), indicating the contribution of these variants for the PD risk in p.G2019 LRRK2 

heterozygous carriers. However, no single association stood out as a possible penetrance modifier 

after adjusting for multiple tests (Supplemental Figure 3). Furthermore, when the estimates for the 

associations of carriers and noncarriers of individual variants were compared, there were 10 
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variants whose tests of homogeneity were rejected at a significance level of 0.05 (Supplemental 

Figure 4, Supplemental Table 2). Additionally, GBA mutations in LRRK2 p.G2019S carriers 

(Supplemental Table 3) were analyzed, but there was no clear enrichment of GBA mutations in 

cases versus controls or for younger age at onset among cases. 

 

Discussion 
The aggregated genetic risks in the form of PRS that were constructed from the recent case-control 

GWAS of European population was significantly associated with the risk of PD among 

heterozygous LRRK2 p.G2019S mutation carriers in our study. Furthermore, the magnitude of the 

association was larger in the younger population, and this interaction between age and PRS was 

significantly larger than in noncarriers. Conversely, the age at onset or the age at diagnosis among 

carriers with PD was not significantly associated with PRS, likely due to the small study size rather 

than a truly null association. Additionally, although age at onset and age at diagnosis is highly 

correlated, clinical site variation and differences in assessing this could affect the analysis. 

Therefore, more data are required to conclusively determine this point.  

When we investigated specific variants of interest for PD, such as GBA coding variants and PD 

GWAS variants, no significant differences were identified, although relatively small numbers of 

GBA coding variants did not seem to affect LRRK2 penetrance, which is in line with previous 

results.20 The effect size of 10 PD GWAS variants were heterogeneous between p.G2019S carriers 

and noncarriers at an unadjusted significance level of 0.05. We need more data to formally assess 

these different associations for PD between carriers and noncarriers, but genes in these loci are 

good candidates as potential interactors. Interestingly, rs823118 has a larger effect size and is a 

locus that harbors an RAB7L1, which is a LRRK2 interactor.21 Alsp the effect size of rs1293298 

(CTSB locus) is opposite compared to general PD, where the rs1293298 locus was recently shown 

to be a potential genetic modifier of GBA-associated PD.15 

The primary limitation of this study is the size, despite including several large cohorts. LRRK2 

p.G2019S is rare in the general population, and therefore actively recruiting carriers would be a 

good strategy to increase power for studies such as ours. To investigate the penetrance of carriers, 

recruitment only focusing on carriers are very effective, as shown in Table 1. More initiatives and 

future collaboration with clinical trials only targeting LRRK2 p.G2019S mutations are warranted. 

Currently, there are at least three clinical trials targeting LRRK2-linked PD: two use kinase 

made available for use under a CC0 license. 
certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also 

The copyright holder for this preprint (which was notthis version posted August 16, 2019. ; https://doi.org/10.1101/738260doi: bioRxiv preprint 

https://doi.org/10.1101/738260


inhibition, and the third focuses on reducing the protein load. As these trials move forward, 

important considerations are whether the disease mechanisms that cause LRRK2-linked PD are 

generalizable to typical PD, and whether it is possible to identify which LRRK2 mutation carriers 

will or will not express disease. Previously, we have shown that active randomization on genetic 

components of PD is important for successful clinical trials because unbalanced genetic risk may 

lead to the heterogeneity of intervention arms and lower the power of that trial.22 Our results 

suggest that actively balancing PRS is similarly important for a disease modifying/preventing trial 

targeting p.G2019S carriers. 

Taken together, we show that penetrance and likely age at onset of LRRK2 is modified by PD PRS, 

implying a clear genetic influence.  
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Figures 
Figure 1: PRS of cases and controls in genetic cohorts 

Legend: The means of PRS in cases were higher than unaffected among LRRK2 p.G2019S 

mutation carriers. LCC, LRRK2 Consortium Cohort; PPMI_GC, Parkinson's Progression 

Markers Initiative Genetic Cohort; PPMI_GR, Parkinson's Progression Markers Initiative 

Genetic Registry. 

 
 

Figure 2: Meta-analysis for PRS, and its interaction with age on penetrance 

Legend:  

A. Primary analysis of testing the association between PRS and PD showed that PRS was 

significantly associated with the PD odds.  

B. Secondary analysis model with PRS and the interaction between PRS and age showed 

that the main effect of PRS as well as the interaction between PRS and age were 

significantly associated with the odds of PD, but in the opposite direction. Compared to 
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the interaction effect among non-carriers in IPDGC, the magnitude of the interaction 

among the mutation carriers was large. 

OR, Odds ratio; I_sq, I square (%); Q-test, P-value for the test of Heterogeneity; IPDGC, 

International Parkinson Disease Genomics Consortium. Odds ratio were adjusted for study, age, 

square age, sex and PC1-10 
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Figure 3: Age stratified associations of PRS on penetrance in Genetics Cohorts Dataset 

Legend: Age stratified analysis showed that PRS was significantly associated with the younger 

age. OR, Odds ratio; I_sq, I square (%); Q-test, P-value for the test of Heterogeneity. Odds ratio 

were adjusted for study, age, square age, sex and PC1-10 
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Tables 

Table1: Overview of data.  

 

 

p.G2019S carriers 
(N of Homozygotes) 

 p.G2019S noncarriers  

 

Datasets and Cohorts Unaffected PD   Control PD  TOTAL 

Genetic Cohort Dataset (WGS)       

    PPMI Genetic Cohort (PPMI_GC) 97 (0) 88 (3)  - -  185 

    PPMI Genetic Registry (PPMI_GR) 37 (0) 38 (3)  - - 75 

    LRRK2 Consortium Cohort (LCC) 68 (0) 107 (1)  - - 175 

General Case/Control cohort (genotyped)       

    IPDGC (11 cohorts) 19 (0) 208 (1)  16,524 14,217 30,968 

General population cohort (genotyped)       

    UK Biobank 173 (0) 6 (0)  361,531 1,174 362,884 

TOTAL 394 (0) 447 (8)  378,055 15,391 394,287 

IPDGC, International Parkinson Disease Genomics Consortium 
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