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Formate is a precursor for the de novo synthesis of purine and deoxythymidine nucleotides. Formate also interacts with 
energy metabolism by promoting the synthesis of adenine nucleotides. Here we use theoretical modelling together with 
metabolomics analysis to investigate the link between formate, nucleotide and energy metabolism. We uncover that 
endogenous or exogenous formate induces a metabolic switch from low to high adenine nucleotide levels, increasing the 
rate of glycolysis and repressing the AMPK activity. Formate also induces an increase in the pyrimidine precursor 
orotate and the urea cycle intermediate argininosuccinate, in agreement with the ATP dependent activities of 
carbamoyl-phosphate and argininosuccinate synthetase.  In vivo data for mouse and human cancers confirms the 
association between increased formate production, nucleotide and energy metabolism. Finally, the in vitro observations 
are recapitulated in mice following intraperitoneal injection of formate. We conclude that formate is a potent regulator 
of purine, pyrimidine and energy metabolism. 
 
Introduction 
Formate is a precursor for the de novo synthesis of purine 
and deoxythymidine nucleotides (Ducker and 
Rabinowitz, 2017; Tibbetts and Appling, 2010). We 
theoretically predicted (Vazquez et al., 2011) and 
experimentally verified (Meiser et al., 2016) that 
proliferating mammalian cells can exhibit rates of formate 
production that exceed the biosynthetic demand of one-
carbon units. The excess formate is released from cells, a 
phenomenon that we refer to as formate overflow. In 
mammalian cells endogenous formate can be produced 
from the oxidation of the third carbon of serine using 
either a cytosolic or mitochondrial pathway (Ducker and 
Rabinowitz, 2017; Tibbetts and Appling, 2010). Both 
pathways can sustain the one-carbon demands of cell 
proliferation, but the mitochondrial pathway is essential 
for the manifestation of formate overflow (Bao et al., 
2016; Ducker et al., 2016; Meiser et al., 2016). We have 
also shown that the catabolism of serine to formate is 
increased in tumours of genetically engineered mouse 
models of cancer resulting in an increase of serum formate 
levels (Meiser et al., 2018). Yet, it remains an open 
question what the role is of excess formate production by 
mitochondrial serine catabolism. 
Mitochondrial serine hydromethyltransferase (SHMT2) 
provides methyl groups for the synthesis of 
taurinomethyluridine, which in turn is required for 
efficient mitochondrial protein synthesis (Morscher et al., 
2018). Mitochondrial formate production also contributes 
to maintain low levels of cytosolic tetrahydrofolate 
(Zheng et al., 2018). Tetrahydrofolate is prone to 
oxidative damage and breakdown leading to the 
formation of toxic products (Burgos-Barragan et al., 
2017; Zheng et al., 2018). In contrast other folate species 
such as 10-formyl-tetrahydrofolate are more stable. 
Synthesis of 10-formyl-tetrahydrofolate from 
tetrahydofolate and formate protects the cytosolic 

tetrahydrofolate pool from oxidative damage. However, 
there is no evidence that taurinomethyluridine synthesis 
or the protection of the tetrahydofolate pool imply a one-
carbon units demand comparable to the rate of 
mitochondrial serine catabolism to formate. 
We hypothesize that formate overflow is associated with 
the highest metabolic demand of one-carbon units: purine 
synthesis. This hypothesis is counterintuitive because 
formate overflow is itself defined by excess formate 
production beyond the biosynthetic demand. However, 
the linear relationship implied by mass conservation (one-
carbon produced = one-carbon consumed), needs to be 
put in the context of the non-linear kinetic relationships 
between metabolic rates and metabolite concentrations. 
In other words, we also hypothesize that formate overflow 
is rooted in a non-linear effect of enzyme kinetics. Here 
we provide evidence in support of this hypothesis. 
We show that formate induces a metabolic switch to a 
cellular state with high purine and pyrimidine nucleotide 
levels, increased rate of glycolysis and reduced AMP 
activated kinase (AMPK) activity. Using a theoretical 
model we predict that a gradual increase in formate 
availability induces a switch-like increase in the 
concentration of free adenine nucleotides (AMP, ADP, 
ATP), together with a gradual increase of glycolysis, 
oxidative phosphorylation and cell proliferation. These 
predictions are validated using in vitro cell culture models 
where formate production is tuned by genetic inactivation 
of genes in one-carbon metabolism, by formate 
supplementation or by inhibition of serine catabolism to 
formate. The in vitro model also reveals that excess 
formate production by mitochondrial serine catabolism 
causes a reduction of endogenous AICAR levels, 
switching cells to a metabolic state with low AMPK 
activity. Surprisingly, excess formate also induces an 
increase in the pyrimidine precursor orotate and the urea 
cycle intermediate argininosuccinate. These changes can 
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be explained by the ATP dependent activity of 
carbamoyl-phosphate and argininosuccinate synthetase. 
Finally, we provide support for our observations with in 
vivo data from mouse models and human cancers. 
Results 
Mathematical model of formate, purine and energy 
metabolism 
To investigate the link between formate and energy 
metabolism we first analysed a simplified mathematical 
model (Fig. 1A, Supplementary Methods). In this model 
formate is produced at a constant rate or consumed from 
the extracellular media. The produced formate is either 
released from cells or incorporated into RNA, DNA or 
free adenines. The free pools of the adenine nucleotides 
(AMP, ADP and ATP) are established by the adenylate 
kinase equilibrium, the pathways of ADP 
phosphorylation and the ATPases enabling cell 
proliferation. To provide a mathematical description of 
this model, we first conducted numerical simulations of 
kinetic models of glycolysis and oxidative phosphorylation 
(Supplementary Text). These simulations indicate that 
the rates of ADP substrate phosphorylation by glycolysis 
and the rate of ADP oxidative phosphorylation by 
mitochondria follow effective Michaelis-Menten 

relationships with respect to the concentration of ADP 
(Fig. 1B,C).  
Next we conducted numerical simulations of the model 
linking formate and energy metabolism. We used as input 
the effective Michaelis-Menten laws for glycolysis and 
oxidative phosphorylation.  We further assumed that the 
rate of purine synthesis and the rate of proliferation follow 
effective Michaelis-Menten relationships with respect to 
the concentration of formate and ATP, respectively. 
Model parameters were set to the typical nucleotide 
(RNA/DNA) composition of mammalian cells, a 
maximum proliferation rate of 1 doubling per day, a 
maximum purine synthesis rate given by the purine 
synthesis demand at the maximum proliferation rate, a 
maximum energy generation given by 2 times the energy 
demand at the maximum proliferation rate, 75% and 25% 
maximum energy generation by glycolysis and oxidative 
phosphorylation and a maximum ATPase rate matching 
the maximum energy generation rate. 
The numerical simulations predict that, with increasing 
the rate of endogenous formate production, there is an 
increase in the intracellular formate concentration, the 
AMP, ADP and ATP concentration, the rates of 
glycolysis and mitochondrial ATP production and the 
proliferation rate (Fig. 1D-J, black line). The raise in the 

 
Figure 1. Theoretical model. A) Graphical model linking formate and energy metabolism. B,C) Scatter plots of the 
simulated ADP phsophorylation rate by glycolysis and oxidative phosphorylation as a function of the ADP 
concentration. Each point represents a set of values for the different cofactors (AMP, ADP, ATP, NAD+, NADH). 
The line represents a fit to the Michaelis-Menten equation. D-K) Model predictions with increasing the rate of 
formate production, under 0.02 mM (black) and 1 mM (red) extracellular formate. The grey background highlights 
the formate overflow state. 
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intracellular formate concentration takes place when the 
rate of serine catabolism to formate reaches and over 
exceeds the rate of purine synthesis (indicated as 100% in 
the X-axis of Fig. 1). The model also predicts that cells 
should start releasing formate when the rate of serine 
catabolism to formate reaches the threshold rate defined 
by the purine synthesis rate (Fig. 1K, black line). In fact, 
the cellular state characterized by high energy metabolism 
can be defined by the onset of formate overflow (Fig. 1, 
grey background). Finally, the effect of adding exogenous 
formate is to displace the prediction lines to the left (Fig. 
1D-K, red line). 
From the mathematical point of view we understand why 
the predicted switch is characterized by a sharp increase in 
the intracellular formate concentration. The rate of 
formate incorporation into purines starts with the 
formation of 10-formyltetrahydrofolate from formate and 
tetrahydrofolate, catalysed by 10-formytetrahydrofolate 
synthetase. A key feature of enzyme kinetics is that when 
the reaction is getting close to saturation (nearly all the 
enzyme active sites are occupied by the substrate), it takes 
a large increase in the substrate concentration to achieve a 
significant increase in the reaction rate. Consequently, 
when the rate of formate production increases and 
approaches the maximum rate of 10-
formytetrahydrofolate synthetase, the concentration of 
formate increases dramatically to achieve a formate 
turnover that is comparable to its production rate. When 
the rate of formate production exceeds the maximum rate 
of 10-formytetrahydrofolate synthetase, the rate of 
incorporation of formate into purines cannot further catch 
up with the rate of formate production and formate 
overflow occurs. The magnitude and steepness of the 
switch is determined by the ratio h/(H kF), where h is the 
maximum rate of 10-formytetrahydrofolate synthetase, H 
the corresponding half-saturation constant for formate 
and kF the first order kinetic constant of formate 
transport. To observe a metabolic switch from low to high 
formate h needs to be much greater than (H kF). Finally, 
within our mathematical model, the changes in the 
adenine nucleotide pools are simply a consequence of the 
metabolic switch in the intracellular formate levels, the 
changes in glycolysis and oxidative phosphorylation are a 
consequence of the changes in ADP and the changes in 
proliferation rate are a consequence of the changes in 
ATP.  
In vitro genetic model 
To investigate the validity of these theoretical predictions, 
we selected a panel of haploid HAP1 cell lines engineered 
for single or double knockout of one-carbon metabolism 
genes (Burgos-Barragan et al., 2017) (Fig. 2A). This 
panel includes cells with single or double knockout of the 
cytosolic serine hydroxymethyl transferase (SHMT1), the 
mitochondrial serine hydroxymethyltransferase (SHMT2) 
and the mitochondrial folate transporter (MFT, also 
known as SLC25A32). In increasing order of their ability 
to generate one-carbon units from serine, we have the 
double knockout cell line MFT-SHMT1, the single 
knockout cell lines MFT and SHMT2 and the 

parental/WT cells. The double knockout MFT-SHMT1 
cell line lacks the ability to generate one-carbon units 
from serine and does not release formate (Burgos-
Barragan et al., 2017). The single knockout cell lines 
MFT and SHMT2 lack excess formate production from 
mitochondrial one-carbon metabolism, but generate one-
carbon units from serine using the cytosolic pathway 
(Burgos-Barragan et al., 2017). Finally, the WT cell line 
produces formate in excess resulting in formate overflow 
to the extracellular media. In addition those cell lines 
were analysed when supplemented with 1mM Formate 
(+F). The one-carbon units availability was quantified by 
the index 0 (MFT-SHMT1), 1 (MFT and SHMT2) and 
2 (MFT+1mM Formate, SHMT2+1mM Formate and 
WT), as highlighted in Fig. 2B. 
We first characterized the proteome of these cell lines 
using mass spectrometry. To identify protein level 
changes associated with the availability of one-carbon 
units we calculated the slope between the protein levels 
and the one-carbon availability index. Next we performed 
a gene set enrichment analysis of protein levels changes 
with increasing the availability of one-carbon units. 
Focusing on cell compartment annotations from gene 
ontology, we observed a significant increase in the levels 
of proteins belonging to the minichromosome 
maintenance protein complex (MCM) and of ribosomal 
proteins, which have an essential role in DNA replication 
and protein synthesis, respectively. The increase in 
ribosomal proteins results in a gradual increase of the total 
ribosomal protein mass (Fig. 2C). In contrast, we 
observed just a trend towards decrease in the levels of 
mitochondrial and vacuole proteins. The total proteome 
mass associated with proteins with annotated 
mitochondrial localization (Calvo et al., 2016) is 
approximately constant across the different cell lines (Fig. 
2D). Focusing on KEGG annotations of metabolic 
pathways, we did not observe any significant enrichment 
of genes associated with metabolic pathways, except for a 
trend of reduced levels of glycolysis and TCA proteins. 
The total proteome mass associated with proteins in the 
KEGG glycolysis pathway is approximately constant 
across the different cell lines (Fig. 2E). Overall the 
proteomic data indicate that, aside from the noted effects 
on ribosomal and MCM proteins, there are no significant 
changes in the proteome of this panel of HAP1 cells. 
Next we performed a metabolic characterization. We 
quantified metabolites in cell extracts and the cell culture 
media using high-resolution liquid chromatography 
followed by mass spectrometry (LC-MS). We quantified 
the ATP linked oxygen consumption rate using the 
Seahorse bio-analyser. As predicted by the model, the 
levels of intracellular AMP, ADP and ATP increase in a 
switch like manner, from the knockout cell lines to the 
WT cell lines and when the knockout cell lines are 
supplemented with formate (Fig. 2F-H). In agreement 
with the behaviour suggested by the computational model 
of glycolysis (Fig. 1B), the rate of lactate release (a 
surrogate of glycolysis) approximately follows a 
Michaelis-Menten dependency with the intracellular 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted August 16, 2019. ; https://doi.org/10.1101/738302doi: bioRxiv preprint 

https://doi.org/10.1101/738302
http://creativecommons.org/licenses/by-nc-nd/4.0/


 4 

ADP levels (Fig. 2I). The shape of the Michaelis-Menten 
law supports a counterintuitive behaviour whereby the 
small changes in ADP levels from the MFT-SHMT1 to 
the MFT or SHMT2 cell lines are associated with a large 
change in the rate of glycolysis. In contrast, the large 
changes in ADP levels from the MFT or SHMT2 to the 
WT cell line are associated with small changes in the rate 
of lactate release. In the case of oxidative phosphorylation 
the data deviates from a Michaelis-Menten law suggested 
by the computer simulations of mitochondrial oxidative 
phosphorylation (Fig. 2J). Finally, as assumed in the 
mathematical model, the proliferation rate approximately 
follows a Michaelis-Menten relationship with the 
intracellular ATP levels (Fig. 2K). 
The HAP1 panel of cell lines recapitulates the metabolic 
switch in adenine nucleotide levels as suggested by the 

mathematical model. The experimental data is also 
consistent with the suggested effective Michaelis-Menten 
relationships between the rate of glycolysis and the ADP 
levels and between the proliferation rate and the ATP 
levels. To test the metabolic switch beyond the HAP1 
background, we have generated a panel of SHMT2 
deficient cell lines starting from the parental colorectal 
cancer cell line HCT116 and breast cancer cell lines 
MDA-MB-231, SKB3, T47D and MDA-MB-468. All 
the parental cell lines exhibit formate overflow and the 
phenotype is lost upon genetic inactivation of SHMT2 
(Fig. S1A). In the HCT116 and MDA-MB-231 
background the SHMT2 deficiency causes a reduction in 
the adenine nucleotide levels (Fig. S1B-D), in agreement 
with our theoretical and HAP1 genetic models. However, 
this is not the case in the SKB3, T47D and MDA-MB-
468 cell lines. Therefore, there are additional factors that 

 
 
Figure 2. In vitro genetic model. A) One-carbon metabolism pathway highlighting genes that were genetically 
inactivated (ovals). B) Ranking of cell lines according to their one-carbon metabolism status. C-E) Total protein 
mass associated with the indicated pathways. F-H) Intracellular adenine metabolite levels (peak area/picolitre of 
cells). I-K) Scatter plots of metabolic rates as a function of intracellular adenine nucleotide levels. The line represents 
a fit to a Michaelis-Menten equation. Notations: +F indicates 1mM formate supplementation. Symbols represent 
independent experiments. Error bars represent the standard deviation. 
 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted August 16, 2019. ; https://doi.org/10.1101/738302doi: bioRxiv preprint 

https://doi.org/10.1101/738302
http://creativecommons.org/licenses/by-nc-nd/4.0/


 5 

modulate the control of the adenine nucleotide pools by 
mitochondrial formate production, which we are currently 
investigating. 
Formate increases AICAR and reduces AMPK activity  

To uncover other metabolic changes not anticipated by 
the mathematical model, we extended the correlation 
analysis between the intracellular metabolites quantified 
by LC-MS and the one-carbon availability index (Fig. 
3A-F). The most significant changes (p<10-5) included 

 
 
Figure 3. Formate incresses AICAR and suppresses the AMPK activity. A-H) Metabolic changes associated with 
increasing the availability of one-carbon units. Only metabolites relevant for the discussion are reported. I) 
Immunoblots of AMPK, phospho-AMPK, ACC and phospho-ACC (1 representative experiment from 3). J,K) 
Quantification of immunoblots at the 24 hours time point. Notations: +F denote 1mM formate supplementation. 
Symbols represent independent experiments. Error bars represent the standard deviation. Solid bars indicate 
significant change (p<0.05) and dashed bars trend (p<0.1) relative to untreated cells of the same genetic background 
(two-sided, unequal variance, T test).  
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increased adenine nucleotide levels and increased 
intracellular lactate, which are consistent with the data 
described in the previous section. We also noted a 
significant negative association between the one-carbon 
availability index and the levels of purine precursors 
glycinamide ribonucleotide (GAR, p=10-6) and 5-
Aminoimidazole-4-carboxamide ribonucleotide (AICAR, 
p=5.4×10-4). These purine precursors exhibit a seesaw 
pattern relative to the levels of AMP (Fig. 2F vs Fig. 
3A,B). The elevation of AICAR in cells deficient of 
mitochondrial one-carbon metabolism has been observed 
in other cell lines (Ducker et al., 2016; Nishimura et al., 
2019). We also observe an elevation of AICAR in our 
panel of SHMT2 deficient cell lines (Fig. S1E). The 
effect being more pronounced in those cell lines where 
the SHMT2 deficiency is associated with a depletion of 
adenine nucleotides (Fig. S1B-D). 
Given that both AICAR and AMP are AMPK activators 
(Hardie et al., 2012), the formate dependent decrease of 
AICAR while increasing AMP results in conflicting 
signals to AMPK. To determine which signal dominates, 
we quantified the level of AMPK phosphorylation using 
phosphoantibodies specific for pAMPK-Thr172, a 
canonical AMPK site that is phosphorylated under energy 
stress (Hardie et al., 2012). We observed higher levels of 
pAMPK-Thr172/AMPK in SHMT2 deficient cells 
relative to WT cells (Fig. 3I,J). The noted changes in 
SHMT2 deficient cells are more pronounced than what 
was observed when treating WT cells with the AMPK 
activators acadesine (1 mM) or A769662 (10 µM). 
Finally, supplementation with 1 mM formate reduces 
pAMPK-Thr172 /AMPK in SHMT2 deficient cells to 
levels between untreated SHMT2 deficient cells and WT 
cells, without much of an effect on WT cells. 
Activated AMPK phosphorylates multiple proteins, 
including acetyl-CoA carboxylase (ACC) at serine 79 
(Ser79) (Hardie et al., 2012). The changes of pACC-
Ser79/ACC in SHMT2 deficient cells are quite similar to 
those observed for pAMPK-Thr172 /AMPK (Fig. 3J,K, 
T2 genetic background), indicating that in SHMT2 
deficient cells the level of ACC phosphorylation is either 
regulated by AMPK or by an upstream kinase targeting 
both AMPK and ACC. In contrast, the pattern of ACC 
phosphorylation in WT cells is different from that of 
AMPK phosphorylation. A clear example is the formate 
dependent reduction of ACC phosphorylation in WT 
cells with no significant changes in AMPK 
phosphorylation, suggesting an AMPK independent 
mechanism (Fig. 3J,K, WT genetic background). 
Taken together these data indicate that AMPK activity is 
repressed by formate, either produced endogenously by 
mitochondrial one-carbon metabolism or supplemented 
exogenously. One possible explanation is that the changes 
in AICAR levels are more pronounced than those of 
AMP and consequently AMPK is activated in formate 
deficient cells. An alternative explanation is that formate 
increases ATP, an endogenous allosteric inhibitor of 
AMPK (Hardie et al., 2012), and consequently the 
AMPK is inhibited in WT cells. Most likely it is a 

combination of both effects, but here we do not provide 
data to discriminate between these two different 
mechanisms.  
Formate increases pyrimidine nucleotide levels 
The correlation analysis between the intracellular 
metabolites and the one-carbon availability index also 
revealed a switch like increase in the levels of the 
pyrimidine precursors dihydroorotate and orotate and a 
gradual increase in UMP and deoxythymidine 
triphosphate (dTTP) (Fig. 3E-H). The increase of dTTP 
is stepwise. dTTP increases from MFT-SHMT1 to 
MFT or SHMT2 deficient cells and increases again from 
the latter to WT cells (Fig. 3H). These data indicates that 
both, the cytosolic and mitochondrial pathways of one-
carbon metabolism, contribute to the synthesis of dTTP. 
In contrast, the noted changes in dihydro-orotate, orotate 
and UMP were surprising. With the exception of dTTP, 
formate is not a precursor of pyrimidine synthesis. 
Glutamine and aspartate, two precursors of pyrimidine 
synthesis, were rather depleted with increasing the 
availability of one-carbon units (Fig. 3B,C). The latter 
changes are consistent with the increased demand of 
glutamine and aspartate for both purine and pyrimidine 
synthesis, but can be excluded as the cause of the 
increased levels of dihydroorotate and orotate. 
It has been reported that acadesine, which is converted to 
intracellular AICAR after uptake and phosphorylation, 
can induce an increase in orotate levels (Bardeleben et al., 
2013). To follow this lead we performed purine 
nucleotides supplementation experiments and quantified 
intracellular metabolites using LC-MS. The comparison 
between the changes in endogenous AICAR and orotate 
levels across these supplementation experiments revealed a 
very poor association (Fig. 4A,B). The supplementation 
of SHMT2 deficient cells with acadesine leads to the 
highest intracellular levels of AICAR, but no significant 
changes in orotate levels. The levels of orotate are instead 
highest upon supplementation of acadesine to WT cells, a 
condition where intracellular AICAR levels are low. In 
WT cells AICAR is turned over in a formate dependent 
manner towards the synthesis of purines. This evidence 
suggests that the increase in purine levels mediates the 
formate dependent induction of orotate. Since the first 
step of pyrimidine synthesis is catalysed by the ATP 
dependent activity of carbamoyl-phosphate synthetase, we 
hypothesized that the observed changes in orotate levels 
are determined by changes in ATP levels. Indeed, there is 
a better association between the intracellular levels of 
orotate and ATP, than between orotate and AICAR 
(Fig. 4A-C). This association is more evident in a scatter 
plot of orotate versus ATP levels (Fig. 4D). 
To achieve a theoretical understanding of the association 
between orotate and ATP levels, we analysed a simplified 
model of orotate metabolism (Fig. 4E). We assumed that 
cells are under steady state of orotate production and 
consumption. We also assumed that the first step in 
pyrimidine synthesis, catalysed by carbamoyl-phosphate 
synthetase, is the rate-limiting step of ororate production. 
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Carbamoyl-phosphate exhibits cooperativity with respect 
to ATP and its rate satisfy a Hill equation with Hill 
exponent 2 (Hewagama et al., 1999). The orotate 
turnover was instead modelled by an effective Michaelis-
Menten equation, where by effective we mean that the 
kinetic constants may change depending on the 
concentration of co-factors not accounted for (e.g., 
phosphoribosyl pyrophosphate, PRPP, Fig. 3, pathway 
diagram). The theoretical model leads to two possible 
solutions depending on the maximum activities of the 
orotate producing (V1) and turning-over reactions (V2). 
When the maximum activity of turnover exceeds that of 
production (V1<V2), the model predicts a saturation of the 

orotate levels with increasing ATP. This behaviour is in 
disagreement with the experimental data. In contrast, 
when the maximum activity of production exceeds that of 
turnover (V1>V2), the model predicts a steep increase in 
orotate levels as the levels of ATP approach a limiting 
value. The latter prediction provides a very good fit to the 
experimental data (Fig. 4F). 
The changes in dihydroorotate and orotate levels are 
recapitulated in the panel of SHMT2 deficient cell lines 
(Fig. S1F,G). In the HCT116, MDA-MB-231 and 
SKB3 backgrounds the SHMT2 deficiency causes a drop 
in ATP levels that is accompanied by a drop in 

 
 
Figure 4. Evidence for an ATP dependent increase in orotate. A-C) Changes in AICAR, orotate and ATP 
following supplementation of purine metabolites to SHMT2 (T2) deficient and WT cells.  D) Scatter plot of orotate 
versus ATP. E) Schematic model of orotate flux balance. F) Fit of the theoretical model (line) to the scatter plot of 
orotate versus ATP. Notations: Symbols represent independent experiments. Error bars represent the standard 
deviation. Solid bars indicate significant change relative to untreated cells of the same genetic background (p<0.05, 
two-sided, unequal variance, T test).  
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dihydroorotate and orotate levels. In contrast, in the 
MDA-MB-468 and T47D cell lines, where the SHMT2 
deficiency does not decrease the ATP levels, there are no 
appreciable changes in the dihydroorotate and orotate 
levels. 
Purines supress AICAR levels 
The accumulation of AICAR in SHMT2 deficient cells is 
reduced down to undetectable levels upon 
supplementation of the purines adenosine and guanosine 
(Fig. 4A). That is also the case upon supplementation of 
ATPγS, a slowly hydrolysable ATP analogue, suggesting 
a regulatory rather than a metabolic mechanism. Purines 
inhibit the activity of phosphoribosylpyrophosphate 
amidotransferase (PPAT), generating GAR from PRPP 
(Wyngaarden and Ashton, 1959) (Fig. 3, pathway inset). 
These data suggest that formate can control the levels of 
AICAR in two ways. First by enhancing the rate of 
AICAR turnover by 5-aminoimidazole-4-carboxamide 
ribonucleotide formyltransferase. Second by increasing 
the levels of purines that in turn inhibit the PPAT activity 
and hence decreasing the synthesis of AICAR. 
Formate supplementation recapitulates the metabolic switch 
To provide additional evidence in support of the formate 
dependent metabolic switch, we have titrated the amount 
of formate supplemented to the MFT-SHMT1 deficient 
cell line and conducted a LC-MS analysis of intracellular 
metabolites. These experiments corroborate our 
observations using the in vitro genetic model, while 
providing a fine-grain picture (Fig. 5A-J). The 
supplemented formate induced a dramatic difference in 
metabolite conentrations at a formate  concentration of 
about 100 µM. Below this concentration the adenine 
nucleotide levels are low and approximately constant (Fig. 
5A-C), increasing by two fold or higher at formate 
concentrations of 500 µM or 1 mM. These experiments 
also make evident that AICAR exhibits a different 
behaviour in the presence of low and high formate 
concentrations (Fig. 5D). At low supplemented formate 
concentration (below 100 µM), AICAR increases with 
increasing the concentration of supplemented formate, 
then drops down to undetectable levels at the formate 
concentrations of 500 µM or 1 mM. The latter behaviour 
matches the reduction of AICAR upon supplementation 
of purines (discussed above), adding further support to 
the hypothesis that the drop in AICAR is caused by the 
increase in purine levels. Dihydroorotate and orotate also 
exhibit a sharp increase above a supplemented formate 
concentration of 100 µM (Fig. 5E,F). Finally, there is a 
gradual decrease of the intracellular glucose concentration 
with increased concentration of supplemented formate 
(Fig. 5G). In contrast, the intracellular lactate levels 
exhibit a switch like behaviour, with a sharp increase 
above a supplemented formate concentration of 100 µM 
(Fig. 5H). The switch like increase in lactate levels can be 
explained by the association between the rate of glycolysis 
and the ADP levels and the switch like increase of ADP 
levels induced by formate (Fig. 5B). 

To search for additional metabolites that could be 
modulated by ATP levels we calculated the spearman 
correlation coefficient between ATP and intracellular 
metabolite levels. As anticipated by the results described 
above, the top associations included a positive correlation 
with purines and pyrimidines and a negative association 
with the purine synthesis intermediate metabolites (GAR, 
SAICAR, AICAR). We also noted a positive correlation 
between ATP levels and the levels of argininosuccinate 
(Fig. 5I). Argininosuccinate synthetase is an ATP driven 
enzyme that, as carbamoyl-phosphate synthetase, exhibits 
cooperativity for ATP (Hilger et al., 1979). A kinetic 
study of yeast argininosuccinate synthetase indicates that 
the enzyme kinetics is characterized by a sigmoidal 
dependency with respect to the concentration of ATP, 
with a Hill coefficient of 2. Therefore, similarly to 
orotate, the formate dependent increase of 
argininosuccinate can be explained by the formate 
dependent increase of ATP and the ATP dependent 
activity of arginonosuccinate synthetase. We also noted 
that malate is increased following formate 
supplementation (Fig. 5J). These changes are consistent 
with the fact that fumarate is a by-product of both, 
argininosuccinate turnover and purine synthesis, and that 
fumarate is converted to malate by fumarate hydratase. 
The formate dependent induction of argininosuccinate 
and malate is not recapitulated when comparing the panel 
of SHMT2 deficient cell lines with their parental cell 
lines (Fig. S1H,I). As discussed above for orotate and in 
the Supplementary Text, the increase of ATP is not 
sufficient to increase the levels of argininosuccinate. 
There is at least one additional requirement, that the 
maximum activity of synthesis is comparable or greater 
than the maximum activity of turnover. 
Inhibition of serine catabolism to formate recapitulates the 
metabolic switch 
Going in the opposite direction, we tested the formate 
dependent metabolic switch in the context of gradual 
inhibition of serine hydroxymethyltransfarase activity. To 
this end we treated HAP1 WT cells with the serine 
hydroxymethyltransfarece inhibitor SHIN1 (Ducker et 
al., 2017) and performed LC-MS analysis of intracellular 
metabolites. The data is an almost specular image of what 
is observed in the formate supplementation experiments 
(Fig. S2A-J). From this data we can conclude that 
inhibition of serine hydroxymethyltransfarase activity 
causes a systemic inhibition of cell metabolism that is 
mediated by the formate dependent metabolic switch 
uncovered here. 

In vivo validation in mouse models of cancer 
To provide an in vivo validation of the theoretical and in 
vitro observations we re-analysed reported metabolomic 
and gene expression data for mouse and human tumours 
and the normal tissues from the same organs (Fig. 6A). 
We have previously performed a metabolic 
characterization of tissues from the APCmin/+ mouse 
model of colorectal adenomas and the MMTV-PyMT 
model of breast adenocarcinoma (Meiser et al., 2018). To 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted August 16, 2019. ; https://doi.org/10.1101/738302doi: bioRxiv preprint 

https://doi.org/10.1101/738302
http://creativecommons.org/licenses/by-nc-nd/4.0/


 9 

this end we utilized a combination of 13C-Methanol 
tracing, quantification of metabolites by LC-MS and 
metabolic flux analysis. We showed that the relative rate 
of serine catabolism to formate was increased in the 
transformed tissues relative to the  normal tissues (Meiser 
et al., 2018) (Fig. 6B). We also showed that the 
transformed tissues have a high NAD+/(NAD++NADH) 
ratio that is either similar than the  normal tissue (Meiser 
et al., 2018) (Fig. 6C). The latter suggests that these 
transformed tissues have a similar redox status than the  

normal tissue. We have re-analysed the LC-MS data to 
extract the quantifications of relevant metabolites. The 
fraction of de novo synthesized purines, a surrogate of the 
purine synthesis rate, is significantly higher in the tumour 
tissues than in the  normal tissues (Fig. 6D). The levels of 
ADP are increased in the transformed tissues relative to 
the  normal tissues (Fig. 6E, trend in the APCmin/+ model 
and significant in the MMTV-PyMT model). 
Furthermore, the levels of lactate are increased in the 
transformed tissues relative to the  normal tissues (Fig. 

 
 
Figure 5. In vitro model of formate supplementation. A-J) Metabolic changes associated with formate 
supplementation to the MFT-SHMT1 cell line, using 2 fold dilutions: 1 mM (0), 0.5 mM (-1), 0.25 mM (-2), 0.125 
mM (-3), 0.0625 mM (-4), 0.031255) mM (-5), 0.015625 mM (-6), 0.0078125 mM (-7) and 0.00390625 mM (-8). 
Notations: Symbols represent independent experiments. Error bars represent the standard deviation. 
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6F, trend in the APCmin/+ and significant in MMTV-

PyMT models). Although these associations are not 
causal proof, they are consistent with our mechanistic 
model of increased formate production purine synthesis, 
ADP levels and lactate levels. In agreement with the in 
vitro models, there is also a significant increase in the 
levels of orotate in the tumour tissue relative to the  
normal tissue (Fig. 6G). 
The AICAR levels are increased in the tumour tissue 
relative to the normal tissue (Fig. 6H). Based on our in 
vitro data this change would be the expectation if the 
transition happens from low to intermediate formate 
availability. In the genetic in vitro model, AICAR 
increases from the MFT-SHMT1 deficient to the 
SHMT2 or MFT deficient cell lines, then dropping in 
the WT cells (Fig. 3B). In the in vitro model of formate 
supplementation, AICAR increases when the MFT-
SHMT1 deficient cells are supplemented with formate up 

to a concentration 100 µM, then dropping at 1 mM 
supplemented formate (Fig. 5D). We note that aspartate 
and glutamine, which are required as co-factors both 
upstream and downstream of AICAR, exhibit 
significantly higher levels in the tumour tissue relative to 
the normal tissue, while glycine is not significantly 
different (Fig. S3A-C). This increase in aspartate and 
glutamine levels in the tumour tissue may also contribute 
to the increased AICAR levels.  
Finally, the levels of argininosuccinate and malate are 
significantly increased in tumour tissue of the PyMT 
model, but not in the APCmin/+ model (Fig. 6I,J). A 
similar discrepancy was observed in our in vitro models. 
The HAP1 cells manifest a SHMT2 dependent elevation 
of the intracellular argininosuccinate levels, but this is not 
the case for the other cell lines tested. As discussed above 
and in the Supplementary Text, this discrepancy is 

 
 
Figure 6. In vivo validation in cancer models. A) Schematic representation of the normal and tumour tissue 
comparison, where normal tissue refers to non-tumour tissue from the corresponding organ. B-J) Metabolic features 
of transformed (T) and  normal (N) tissues of the APCmin/+ and MMTV-PyMT mouse models of colorectal 
adenomas and breast adenocarcinomas. Notations: Each symbol represents a different mouse. Error bars indicate 
standard deviation. K-O) Gene signature enrichment scores (K) and metabolic features (L-O) of human colorectal 
tumours and  normal tissue. Notations: The error bars indicate 90% confidence intervals, the boxes 50% confidence 
intervals and horizontal line the median. Symbols outside the boxes represent individual samples. Green solid or 
dashed bars indicate significance increase (p<0.05) or trend (p<0.1) in transformed tissue relative to normal (two-
sided, unequal variance, T test). 
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anticipated by our theoretical analysis and it is dependent 
on the relative maximum activity of argininosuccinate 
synthesis and turnover. In turn, the lack of significant 
changes of malate in the APCmin/+ model could be the 
consequence of lack of changes in argininosuccinate, 
which will turnover to fumarate and subsequently to 
malate (Fig. 5, pathway inset). 
In vivo validation in human colorectal cancer 
MYC induces a global metabolic reprogramming in 
colorectal cancers (Satoh et al., 2017) and the 
transcriptional programme induced by MYC includes 
increased expression of the mitochondrial one-carbon 
metabolism genes (Nikiforov et al., 2002; Vazquez et al., 
2011). Based on this evidence we hypothesized that the 
formate dependent induction of glycolysis should be 
reflected in the MYC driven metabolic reprogramming. 
To test this hypothesis we first performed a gene 
signature analysis using the reported gene expression array 
data for 41 colorectal tumour samples and 39 normal 
colorectal samples (Satoh et al., 2017). Using gene set 
enrichment analysis (Subramanian et al., 2005) we 
quantified the enrichment of relevant gene signatures in 
the different samples (gene signature enrichment score). 
There are no significant differences in the enrichment 
scores for gene signatures of oxidative phosphorylation, 
HIF1α targets and glycolysis (Fig. 6K). In contrast, there 

is a significant increase of the mitochondrial one-carbon 
metabolism enrichment score signature in the tumour 
relative to the normal samples (Fig. 6K). The latter is also 
consistent with an increase of the enrichment score of a 
MYC targets signature in the tumour relative to the 
normal colorectal samples (Fig. 6K). Next, we analysed 
reported metabolomics data from 275 normal and 275 
tumour samples (Satoh et al., 2017). Here again we used 
the NAD+/(NAD++NADH) ratio as a surrogate of the 
tissue redox status. The tumour tissues exhibit a high 
NAD+/(NAD++NADH) ratio that is not significantly 
different from that of the normal tissues (Fig. 6L). Taken 
together the oxidative phosphorylation signature and the 
NAD+/(NAD++NADH) data suggest that the colorectal 
tumours are of oxidative nature and that their oxidative 
status is not significantly different from that of normal 
tissues. In contrast, there is a significant increase in the 
levels of ADP, lactate and malate in the tumour samples 
relative to the normal tissues (Fig. 6M-O), while the 
argininosuccinate levels were not reported. Here again we 
conclude that, although these associations are not causal 
proof, they are consistent with our theoretical and in vitro 
observations. 
In vivo validation following a formate bolus 
To provide a direct in vivo validation of the metabolic 
switch induced by formate we intraperitoneally 

 
 
Figure 7. In vivo formate bolus. A) Experiment design. A bolus of 13C-formate (For) or vehicle (Ctrl) was injected 
intraperitoneally to C57BL/6J mice. B-L) Plasma metabolite levels after administration of the formate bolus or 
vehicle. Samples were collected from different mice at the indicated time intervals after the bolus injection. Notation: 
Each symbol represents a different mouse. Error bars indicate standard deviation.  Solid bars indicate significant 
change or trend relative to control (p<0.05 and p<0.1, two-sided, unequal variance, T test). 
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administered a bolus of formate or vehicle to C57BL/6J 
mice fasted overnight (Fig. 7A). Different mice were used 
to collect plasma samples at 1, 2 and 4 hours after the 
bolus injection. Plasma formate was quantified using a 
derivatization protocol followed by GC-MS (Meiser et 
al., 2016) and other relevant metabolites were quantified 
using LC-MS. Plasma formate reached between 500µM 
to 1mM levels 1 hour after the bolus injection, going 
down to µM levels 2 hours after the bolus injection (Fig. 
7B). At 1 hour there is a significant depletion of plasma 
glycine (Fig. 7C) and a significant increase of plasma 
serine (Fig. 7D), which are consistent with the reverse 
activity of liver serine hydroxymethyltransferase and the 
fact that we have administered an excess amount of 
formate. 
At 1 hour, when the observed formate concentration was 
highest, there is a significant depletion of plasma glucose 
(Fig. 7E) and a non-significant trend towards increased 
plasma lactate (Fig. 7F). These changes are consistent 
with the formate dependent induction of glycolysis 
predicted by the theoretical and in vitro models. The lack 
of significant changes in plasma lactate could be due to 
lactate oxidation at the tissues where glucose metabolism 
is increased. 
As observed in our in vitro models, the formate bolus 
induces a significant increase of plasma orotate and 
malate levels at the 1 hour time point (Fig. 7G,H). In the 
case of orotate the significant increase persists 4 hours 
after bolus injection. Since all other significant changes 
are absent at the 2 and 4 hour time points, the simplest 
explanation is that the orotate turnover is slow, taking a 
long time to come back to control levels. In contrast, the 
levels of argininosuccinate does not change significantly at 
any time point (Fig. 7I). Finally, there are no significant 
changes in the levels of other amino acids implicated in 
purine, pyrimidine and argininosuccinate metabolism 
(aspartate, arginine and glutamine, Fig. 7 J-L). 
Therefore, a bolus of formate causes changes at the level 
of whole-body metabolism that are similar to what 
observed in our in vitro models. 
 
Discussion 
Our mathematical modelling, in vitro data and in vivo 
data indicate that formate induces a metabolic switch in 
purine, pyrimidine and energy metabolism. The increase 
in purine nucleotides was expected given that formate is a 
precursor of de novo purine synthesis (Ducker and 
Rabinowitz, 2017; Tibbetts and Appling, 2010). The fact 
that this change follows a switch like behaviour, where a 
gradual change in the availability of formate leads to a 
jump in the purine nucleotide levels, is a novel prediction 
of our theoretical model validated by our in vitro data. 
The formate dependent induction of the increase in the 
pyrimidine precursor orotate can be explained, at 
theoretical level, by the ATP dependent activity of 
carbamoyl-phosphate synthetase. Finally, provided that 
the levels of glycolytic enzyme remains constant, the 

formate-dependent increase in ADP levels is associated 
with an increase in the rate of glycolysis and intracellular 
lactate levels. 
In contrast, formate deficiency causes a dramatic increase 
in AICAR levels and induces AMPK activity. We noted 
that the lack of formate for AICAR turnover is not 
enough to trigger this effect. There is an additional 
requirement for a reduction in purine levels to reduce the 
negative feedback inhibition of purine synthesis by 
purines. The activation of AMPK in formate deficient 
cells is likely mediated by the dramatic increase in 
AICAR levels, the reduction in purine levels, or a 
combination of both. A similar phenotype is achieved 
with purine synthesis inhibitors. This has been shown for 
antifolates such as pemetrexed and methotrexate (Beckers 
et al., 2006; Racanelli et al., 2009; Rothbart et al., 2010; 
Tedeschi et al., 2013) and for a dimerization inhibitor of 
AICAR formyltransferase as well (Asby et al., 2015). 
The genetic in vitro model indicates that the cytosolic 
pathway of serine one-carbon metabolism is sufficient to 
sustain the basal one-carbon demand of cell proliferation. 
Yet, based on the differences between SHMT2 proficient 
and deficient cells, we conclude that the mitochondrial 
pathway of serine catabolism to formate provides the extra 
kick that is required to trigger the formate dependent 
metabolic switch. From these data we hypothesize that 
the formate dependent metabolic switch is the selective 
advantage of mitochondrial one-carbon metabolism. 
Further work is required to determine the relevance of the 
formate dependent metabolic switch in the context of 
embryonic development, cancer and immune system 
metabolism. Homozygous deletion of MTHFD1L, whose 
gene product contributes to the mitochondria formate 
production, is embryonic lethal and can be rescued by 
formate supplementation (Momb et al., 2013). The 
significant induction of glycolysis, oxidative 
phosphorylation and proliferation by mitochondrial 
formate production or exogenous formate could explain 
the requirement of mitochondrial one-carbon metabolism 
during embryonic development and its rescue by formate. 
There is also evidence for a partial dependency on 
mitochondrial one-carbon metabolism for cancer growth. 
Deprivation of serine in the diet delays tumour growth in 
genetic mouse models of cancer (Maddocks et al., 2017). 
Suppression of mitochondrial one-carbon metabolism 
genes reduces growth in xenograft models of cancer 
(Ducker et al., 2016; Pikman et al., 2016). Further work 
is required to investigate whether the reduction in cancer 
growth is determined by a reduction in nucleotide 
synthesis, energy metabolism or a contribution of both. 
Mitochondrial serine catabolism to formate is also 
essential for T-cell expansion (Allen and Moskowitz, 
1978; Ma et al., 2017). Defective respiration and 
mitochondrial one-carbon metabolism contribute to a 
reduction in T-cell activation during aging of mice (Ron-
Harel et al., 2018). This evidence together with the long 
known role of aerobic glycolysis in T-cell activation 
(Chang et al., 2013; Wang et al., 1976) suggests a role for 
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the proposed formate link between respiration and 
glycolysis during T-cells activation. 
The observation that formate metabolism stimulates 
glycolysis also needs further investigation. Our theoretical 
analysis indicates that glycolysis is modulated by 
intracellular level of ADP and the latter is modulated by 
formate. The data from the in vitro models, the in vivo 
models and colorectal cancers are consistent with the 
predicted relationship between glycolysis (or the levels of 
its end product lactate) and ADP levels, but are not proof 
of causality. The administration of a formate bolus to 
mice induces a drop in circulating glucose levels, 
providing a causal link between formate and glycolysis in 
vivo. In contrast, the fate of the glycolysis end products 
pyruvate/lactate is beyond the control of formate. The 
fate of pyruvate/lactate will depend on the expression of 
pyruvate/lactate carriers mediating their release from cells 
or their metabolism in the mitochondria. In other words, 
the predicted control of glycolysis by formate is 
independent of whether glucose catabolism is coupled to 
lactate release or to pyruvate/lactate mitochondrial 
metabolism. 
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Methods 
Cell lines and cultures 
HAP1 cells were obtained from KJ Patel’s laboratory in 
the University of Cambridge. Cells were cultured in 
IMDM medium supplemented with 10% FBS and kept 
at 37ºC with 5% CO2. Cell counts and volumes were 
assessed using the Casy Technology (Innovatis). For 
Seahorse experiments, cells were mixed with Trypan Blue 
(50/50) and counted using the Countess optics and image 
automated cell counter (Life Technologies). 
A lentiviral plasmid encoding SHMT2 CRISPR guide 
RNA was generated by cloning primers containing a 
SHMT2 guide RNA sequence (Ducker et al., 2016) into 
the lentiviral vector lentiCRISPR v2, a gift from Feng 
Zhang (Addgene plasmid # 52961 
;  http://n2t.net/addgene:52961     ; RRID:Addgene_52961) 
(Sanjana et al., 2014). HEK293T cells were transfected 
with above lentiCRISPR SHMT2 plasmid or control V2 
plasmid together with helper plasmids pPAX2 and 
UVSVG (Addgene #8454 and #12260) using 
Lipofectamine 2000 (Life Technologies). Viral 
supernatant was harvested, filtered and incubated for 24h 
on recipient cells lines (HCT116, MDA-MB-231, 
SKB3, T47D and MDA-MB-468) two consecutive times 
in the presence of 6 µg/µl polybrene (Sigma-Aldrich). 
Cells were selected for 10 days with 2 µg/µl puromycin 
(Sigma-Aldrich) to obtain a stable polyclonal population 
and knockout of SHMT2 expression was verified by 
western blot using a SHMT2 antibody (#12762) (Cell 
Signalling Technologies). All cells were cultured in in 
DMEM supplemented with 10% FBS and glutamine. 
SHMT2 deficient cells were cultured in the presence of 
HT supplement (Life Technologies). Mice 
In vivo experiments were carried out in dedicated 
barriered facilities proactive in environmental enrichment 
under the EU Directive 2010 and Animal (Scientific 
Procedures) Act (HO licence numbers: 70/8645, 
70/8468) with ethical review approval (University of 
Glasgow). Animals were cared for by trained and licensed 
individuals and humanely sacrificed using Schedule 1 
methods. MMTV-PyMT (females) and APCmin (males 
& females) mice as previously described (Meiser et al, 
2018). Wild-type female C57BL/6J mice (8 weeks) were 
purchased from Charles River. 
Chemicals 
All cell culture material was obtained from Life 
Technologies and all the chemicals used were from 
Sigma-Aldrich unless stated otherwise. 
Metabolite quantification 
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Metabolite extraction and analysis was performed as 
previously described (Mackay et al., 2015). Briefly, cells 
were washed with PBS once and extracted with ice-cold 
extraction solvent (Acetonitrile/MeOH/ H2O (30/50/ 
20)), shaken for 5 min at 4 °C, transferred into Eppendorf 
tubes and centrifuged for 5 min at 18k G. The 
supernatant was transferred to LC-MS glass vials and 
kept at −80 °C until measurement. LC-MS analysis was 
performed as described previously using pHILIC 
chromatography and a Q-Exactive mass spectrometer 
(Thermo Fisher Scientific). Raw data analysis was 
performed using TraceFinder (Thermo Fisher Scientific) 
software. Peak areas were normalized to cell volume. 
Estimation of exchange rates and proliferation rates was 
done as described previously (Meiser et al., 2016). 
Protein, sample preparation 
Cells were harvested by trypsinization, the pellet was 
washed twice in cold PBS then lyzed in 6M Guanidinium 
HCL heated solution. Samples were boiled at 99ºC for 
10min then sonicated. Protein quantification was made 
using Bradford solution. Proteins were reduced with 10 
mM DTT, for 30 minutes at 54 °C, and subsequently 
alkylated with 55 mM Iodoacetamide for one hour at 
room temperature. Alkylated proteins were then 
submitted to a two-step digestion. First using 
Endoproteinase Lys-C (Alpha Laboratories) for 1 hour at 
35 °C, after which partial digests were further digested, 
with trypsin (Promega) overnight at 35 °C. 
In vivo work 
In the formate bolus experiment, 8 week old C57Bl6/J 
(Charles River, UK) female mice were randomized in 
individual groups (different time points and treatment 
arms). Mice were humanely sacrificed at respective time 
points after intraperiteoneal injected bolus of sodium 
formate (500mg/kg) or saline solution (vehicle) following 
a 15 hour fast. Blood was immediately taken by cardiac 
puncture, transferred into Eppendorf tubes and 
centrifuged at 4 °C for 10 minutes at 13k G. The 
supernatant was transferred into new Eppendorf tubes 
and flash frozen in liquid nitrogen. Tissues were harvested 
in Eppendorf tubes and flash frozen in liquid nitrogen. 
Flash frozen tissue samples were blinded with random 
IDs and processed by a different person for metabolite 
extraction and analysis. After final data analysis IDs were 
uncovered. All tissues were processed frozen on dry ice. 
From each tissue 5 - 20 mg were balanced and transferred 
into Precellys CK14 tubes (Bertin Technologies, 
Montigny-le-Bretonnex, France). Tissues were dissolved 
in 20 mg/ml extraction solvent (Acetonitrile/MeOH/ 
H2O (30/50/20)) and homogenized in a cooled Precellys 
24 (Bertin Technologies, Montigny-le-Bretonnex, 
France) with 3 x 20 seconds at 7200 rpm and a 20 second 
break. Lysed tissue samples were transferred into 
Eppendorf tubes and centrifuged for 10 minutes at 4 °C. 
Supernatant was transferred into LC-MS vials for mass 
spec analysis. 
Protein, MS analysis 

Digested peptides were desalted using StageTip 
(Rappsilber et al., 2007) and separated on a nanoscale 
C18 reverse-phase liquid chromatography performed on 
an EASY-nLC 1200 (Thermo Scientific) coupled to an 
Orbitrap Q-Exactive HF mass spectrometer (Thermo 
Scientific). Elution was carried out using a binary gradient 
with buffer A: water and B: 80% acetonitrile in water, 
both containing 0.1% formic acid.  Peptide mixtures were 
separated at 300 nl/min flow rate, using a 50 cm fused 
silica emitter (New Objective) packed in house with 
ReproSil-Pur C18-AQ, 1.9 µm resin (Dr Maisch GmbH). 
Packed emitter was kept at 50°C by means of a column 
oven integrated into the nanoelectrospray ion source 
(Sonation). The gradient used started at 2% of buffer B (5 
minutes), then increased to 16% over 185 minutes and 
then to 28% over 30 minutes. The eluting peptide 
solutions were electrosprayed into the mass spectrometer 
via a nanoelectrospray ion source (Sonation). An Active 
Background Ion Reduction Device (ABIRD) was used to 
decrease ambient contaminant signal level. Eluted 
peptides were analysed in the Orbitrap Q-Exactive HF. A 
full scan (FT-MS) was acquired at a target value of 3e6 
ions with resolution R = 60,000 over mass range of 375-
1500 amu. The top fifteen most intense ions were 
selected for fragmentation using a maximum injection 
time of 50 ms or a target value of 5e4 ions.  
Protein, MS data analysis 
The MS Raw files were processed with MaxQuant 
software (Cox and Mann, 2008) version 1.5.5.1 and 
searched with Andromeda search engine (Cox et al., 
2011), querying UniProt (UniProt, 2010) Homo sapiens 
(09/07/2016; 92,939 entries). The database was searched 
requiring specificity for trypsin cleavage and allowing 
maximum two missed cleavages. Methionine oxidation 
and N-terminal acetylation were specified as variable 
modifications, and Cysteine carbamidomethylation as 
fixed modification. The peptide, protein and site false 
discovery rate (FDR) was set to 1 %. Protein were 
quantified according to the label-free quantification 
algorithm available in MaxQuant (Cox et al., 2014). 
MaxQuant output was further processed using Perseus 
software version 1.5.5.3 (Tyanova et al., 2016). The 
common reverse and contaminant hits (as defined in 
MaxQuant output) were removed. Only protein groups 
identified with at least one unique peptide were used for 
the analysis. 
Mitochondrial and glycolytic stress assays: 
Cells were plated at 35 000 cells per well in a 96-well XF 
cell culture microplate (Seahorse Bioscience). Cells were 
equilibrated for 1 h at 37 °C in bicarbonate-free IMDM 
media (pH 7.3) with according treatments before any 
measurement. OCR and ECAR were measured 3 times 
every 9 minutes using a XFe96 Analyzer (Seahorse 
Bioscience) at a baseline and after addition of each drug. 
To assess the mitochondrial respiratory ability, 
oligomycin (1 µM), CCCP (1 µM), rotenone (1 µM) and 
antimycin A (1 µM) were injected subsequently. To assess 
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glycolysis, oligomycin (1µM) and 2-Deoxyglucose 
(50mM) were added subsequently. 
Western blotting 
HAP1 WT or SHMT2 KO cells were seeded in 60mm 
dishes and stimulated with 1mM formate (Sigma-
Aldrich), 10uM A769662 (Cayman Chemicals) or 1uM 
AICAR (Sigma-Aldrich) as indicated. Cells were washed 
twice in ice-cold PBS and lysed in RIPA buffer 
(ThermoScientific) containing cOmplete phosphatase 
and protease inhibitors (Sigma-Aldrich). Equal amount 
of proteins were separated by electrophoresis on 3–8% 
1.0 mm Tris-Acetate NuPage gels (ThermoScientific) 
and transferred to nitrocellulose using an Invitrogen 
XCell II Blot Module. Membranes were incubated 
overnight at 4 °C using the following primary antibodies: 
ACC phospho-Ser79 (#3661), total ACC (#3676), 
AMPK phospho-T172 (#2531), total AMPK (#2532) 
(Cell Signalling Technologies). Secondary antibodies 
were donkey anti-mouse 800CW and goat anti-rabbit 
IgG (H+L) Alexa Fluor 680 (Li-COR Biosciences and 
Thermofisher, respectively). Immunoblots were analysed 
and protein densities quantified using an Odyssey CLx 
imager and Image Studio Lite software (Li-COR 
Biosciences). 
Analysis of in vitro data 
Presented data are derived from three or more 
independent experiments, each with three technical 
replicates, unless specified. The average values for each 
independent experiment are indicated by the scatter 
symbols in the figures. The exceptions are the protein 
quantifications by mass spectrometry and the 
metabolomics data of the SHMT2 panel of deficient cell 
lines, were technical replicates were used. For two-groups 
comparisons the statistical significance was calculated 
with a Welch’s t-test with two tails and unequal variance. 
The availability of one-carbon units was quantified by the 
index 0 (MFT-SHMT1), 1 (MFT, SHMT2), 2 
(MFT+1mM Formate, SHMT2+1mM Formate, WT). 
The protein changes were quantified by the slope of the 
log2 LFQ intensity vs the one-carbon availability index. 
The statistical significance of the slopes was estimated 
from 1 million permutations of the log2 LFQ intensities 
across the different cell lines/conditions. The enrichment 
of pathways for up and down regulated proteins was 
quantified by the gene set enrichment test (Subramanian 
et al., 2005), using as input the slopes and the pathway 
annotations from The Molecular Signatures Database 
(MSigDB) (Liberzon et al., 2015). The association of the 
remaining variables with the availability of one-carbon 
units was determined using the Spearman rank 
correlation coefficient (S) between the variable and the 
one-carbon availability index. The statistical significance 
of S was estimated from 1 million permutations of the 
variable values across the different conditions. 
Analysis of in vivo cancer models data 

Raw metabolomics files from (Meiser et al., 2018) were 
re-analyzed with the Tracefinder software to obtain a 
quantification of metabolites levels. 
Analysis of human colorectal tumours data 
Normalized log2 expression values were downloaded from 
Gene Expression Omnibus dataset GSE89076. Gene 
signature scores were calculated using Gene Set 
Enrichment analysis (Subramanian et al., 2005). 
Metabolite abundances were downloaded from the web 
site provided by the authors of Ref. (Satoh et al., 2017). 
Supplementary Text 
Mathematical model and calculations. 
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Figure S1. 
Metabolic changes in a panel of SHMT2 deficient cell lines. The data corresponds to a single experiment with 3 
samples per cell line. 
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Figure S2. 
In vitro model of pharmacological formate deprivation. A-J) Metabolic changes associated with treatment of WT 
HAP1 cells with the serine hydroxymethyltransferase inhibitor SHIN1, using 2 fold dilutions: 10 µM (0), 5 µM (-1), 
2.5 µM (-2), 1.25 µM (-3), 0.625 µM (-4), 0.31255 µM (-5), 0.15625 µM (-6), 0.078125 µM (-7) and 0.0390625 µM 
(-8). Notations: Symbols represent independent experiments. Error bars represent the standard deviation. 
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Figure S3. 
In vivo validation in cancer models (expanding from Fig. 6). Levels of purine precursors in transformed (T) and  
normal (N) tissues of the APCmin/+ and PyMT mouse models of colorectal adenomas and breast adenocarcinomas. 
Notations: Symbols represent different mice. Error bars represent the standard deviation. Solid bars indicate significant 
change (p<0.05) relative to untreated cells of the same genetic background. 
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1 Mathematical model of formate, purines and energy metabolism
In the mathematical model we write down the equations characterizing the biochemical transformations
indicated in Fig. 1A of the main text.

1.1 Formate balance
We assume that formate is produced from the endogenous catabolism of serine to formate and formate
uptake

fF = fSCF + kF [Forx] (1)

where fSCF is the rate of serine catabolism to formate, kF is the rate of formate uptake per unit of
formate and [Forx] is the concentration of extracellular formate. We assume that the rate of 10-formyl-
tetrahydrofolate (CHO-THF) formation follows a Michaelis-Menten model with respect to the intracel-
lular concentration of formate

fCHO�THF = h
[For]

H + [For]
(2)

where h is the maximum rate of 10-formyl-tetrahydrofolate synthetase (FTHFS), H is the half-saturation
constant of FTHFS for formate and [For] is the intracellular formate concentration. We assume that the
rates of formate production is balanced by the rate of FTHFS and formate release

fF = fCHO�THF + kF [For] (3)

We solve the equation above for [For] obtaining

[For]± =
1

2

0

@fF � h

kF
�H ±

s✓
fF � h

kF
�H

◆2

+ 4
fF
kF

H

1

A (4)

1

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted August 16, 2019. ; https://doi.org/10.1101/738302doi: bioRxiv preprint 

https://doi.org/10.1101/738302
http://creativecommons.org/licenses/by-nc-nd/4.0/


Since [For]� < 0 the only biologically relevant solution is

[For] =
1

2

0

@fF � h

kF
�H +

s✓
fF � h

kF
�H

◆2

+ 4
fF
kF

H

1

A (5)

While the latter equation is convenient for the calculation of formate it does not provide an insight of
the possible scenarios. Instead we can solve equation (3) for the extreme cases of fF . When fF ! 0 we
expect [For] ! 0, fCHO�THF ⇠ h[For]/H and the solution to (3) can be approximated by

[For]0 ⇠
fF

h
H + kF

(6)

In contrast, when fF ! 1 we expect [For] ! 1, fCHO�THF ⇠ h and the solution to (3) can be
approximated by

[For]1 ⇠ fF
kF

(7)

In both limiting cases the formate concentration is proportional to fF but with different slopes. The ratio

✓ =
[For]1
[For]0

=
h

HkF
+ 1 (8)

quantifies the differences between the two limiting cases and quantifies the expected magnitude of
the metabolic switch in intracellular formate levels. In mammals the 10-formyltetrahydrofolate syn-
thetase activity is carried on by the tri-functional enzyme MTHFD1. The maximum activity of 10-
formyltetrahydrofolaye synthetase (h) will be determined by the levels of MTHFD1, which can change
across different cell lines and tissues.

1.2 Adenine nucleotides balance
We assume that the rates of ADP phosphorylation (energy production) and ATP dephosphorylation
(energy consumption) are balanced

eg
[ADP ]

Eg + [ADP ]
+ eo

[ADP ]

Eo + [ADP ]
= a

[ATP ]

A+ [ATP ]
(9)

where eg and eo are the maximum rates of ATP production by glycolysis and oxidative phosphorylation,
Eg and Eo are the effective half-saturation constants of glycolysis and oxidative phosphorylation, a is
the maximum ATPase rate and A its half-saturation constant. The adenine nucleotides are also linked
via the adenylate kinase (ADK) equilibrium

[AMP ][ATP ] = K[ADP ]2 (10)

where K is the ADK equilibrium constant.

1.3 Purines balance
The interaction between formate and energy metabolism takes place through purine synthesis. We as-
sume that the rate of CHO-THF production by FTHFS is balanced by the biosynthetic demand of one-
carbon units for purine synthesis

fCHO�THF = µ

✓
2[AMP ] + 2[ADP ] + 2[ATP ] + [RNA] +

5

4
[DNA]

◆
(11)

2
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where µ is the proliferation rate and we have assumed a requirement of 2 formate molecules per purine
(A and G) and 1 formate molecule per thymidylate (T). We further assume that the proliferation rate
is given by the overall rate of growth dependent ATPases, which follow an effective Michaelis-Menten
model with respect to the concentration of ATP

µ =
1

✏

✓
a

[ATP ]

A+ [ATP ]
�m

◆
(12)

where ✏ is the energy required to duplicate the cell content and m is the growth independent energy
demand of cell maintenance.

1.4 Working model
Putting together the equations above we obtain our working model linking formate and energy metabolism

fF = fSCF + kF [Forx] (13)

[For] =
1

2

0

@fF � h

kF
�H +

s✓
fF � h

kF
�H

◆2

+ 4
fF
kF

H

1

A (14)

fCHO�THF = h
[For]

H + [For]
(15)

fCHO�THF = µ

✓
2[AMP ] + 2[ADP ] + 2[ATP ] + [RNA] +

5

4
[DNA]

◆
(16)

eg
[ADP ]

Eg + [ADP ]
+ eo

[ADP ]

Eo + [ADP ]
= a

[ATP ]

A+ [ATP ]
(17)

[AMP ][ATP ] = K[ADP ]2 (18)

µ =
1

✏

✓
a

[ATP ]

A+ [ATP ]
�m

◆
(19)

This system of equations can be solved for [AMP ], [ADP ], [ATP ] and [For] as a function of the rate
of serine catabolism to formate (fSCF ) and the extracellular concentration of formate ([Forx]). We can
also make predictions for the formate release rate, the lactate release rate and the ATP linked respiration
rate

fFormate = kF ([For]� [Forx]) (20)

fLactate = eg
[ADP ]

Eg + [ADP ]
(21)

fO2,ATP =
eo

2PO

[ADP ]

Eo + [ADP ]
(22)

where PO is the P/O ratio.

1.5 Numerical solution
To obtain the plots reported in Fig. 1A we solve the system of equations (13-19) numerically using the
octave script provided in this submission, including all parameter estimates and sources.
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2 Methematical model of orotate metabolism
We assume that the production and consumption of orotate are balanced resulting in a steady state
concentration of orotate. We assume that the orotate production is limited by the ATP dependent activity
of carbamoyl-phosphate synthetase and we model its kinetics by a Hill equation with Hill coefficient
2. We assume that the orotate turnover follows a Miachalis-Menten equation with respect to the orotate
concentration. Putting all together we obtain the flux balance equation

V1
[ATP ]2

K1 + [ATP ]2
= V2

O

K2 + [O]
(23)

where [ATP ] and [O] denote the ATP and orotate concentrations. Solving the latter equation for orotate
we obtain

[O] =
✓K2[ATP ]2

K1 + (1� ✓)[ATP ]2
(24)

where
✓ =

V1

V2
(25)

For ✓ < 1 this solution is basically a Hill equation with Hill coefficient 2. That is, the concentration
of orotate will saturate to a maximum value. In this case we would expect a modest change in the
orotate concentration that would depend on the magnitude of ✓, the ratio between the maximum activity
of synthesis and turnover of orotate. In contrast, for ✓ > 1 this solution has a divergence when the
concentration of ATP approaches

p
K1/(✓ � 1).

3 Kinetic model of glycolysis
The computational model used for the simulations of glycolysis is a reduced version of the one in Ref.
[2]. It consists of ten ordinary differential equations for the dynamics of the concentrations of the
glycolytic intermediates, starting from glucose transport into the cell and ending in the conversion of
pyruvate to lactate:

d[glc]

dt
= Jglut � Jhk (26)

d[g6p]

dt
= Jhk � Jpgi (27)

d[f6p]

dt
= Jpfk � Jaldo (28)

d[dhap]

dt
= Jaldo + Jtpi (29)

d[gap]

dt
= Jaldo � Jtpi � Jgapdh (30)

d[bpg]

dt
= Jgapdh � Jpgk (31)

d[pg3]

dt
= Jpgk � Jpgm (32)

d[pg2]

dt
= Jpgm � Jeno (33)

d[pep]

dt
= Jeno � Jpk (34)

d[pyr]

dt
= Jpk � Jldh (35)
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where Jreaction denotes a reaction rate and [metabolite] the metabolite concentration.
We list the flux expression and parameter values for all the reactions included in the model as well

as the original references. For reversible reactions where both the maximum forward (Vf ) and backward
(Vb) fluxes appear in the expression (for instance PGI below), the value of Vb was adjusted to obey the
Haldane relation [3]:

Vb = VfKmb/(KeqKmf ) (36)

where Kmf , Kmb are the reactant constants for the forward and backward directions and Keq the equi-
librium constant.

3.1 Glucose uptake
GLCext ⌦ GLC. The uptake of glucose follows a monosubstrate reversible Michaelis-Menten equa-
tion:

Jglut = Vmax,f
[glc]ext � [glc]/keq

Kglc,e(1 + [glc]/Kglc) + [glc]ext
(37)

where [glc]ext is the concentration of extracellular glucose, Vmax,f = 23.03M/min, keq = 1, Kglc =
0.0093M and Kglc,e = 0.01M [2, 4].

3.2 Hexokinase
GLC + ATP ⌦ G6P + ADP , random bi-substrate MichaelisMenten:

Jhk =

Vmf

KaKb

⇣
AB � PQ

Kapp

⌘

1 + A
Ka

+ B
Kb

+ AB
KaKb

+ P
Kp

+ Q
Kq

+ PQ
KpKq

+ AQ
KaKq

+ PB
KpKb

(38)

where A = [glc], B = [atp], P = [g6p], Q = [adp], Vmf = 86.85M/min, Ka = 0.1mM , Kb =
1.1mM , Kp = 0.02mM , Kq = 3.5mM , Kapp = 651 [2, 4].

3.3 Phosphoglucoisomerase
G6P ⌦ F6P . Monoreactant reversible equation with competitive inhibition by E4P, 6PG, and FBP:

Jpgi =
Vmf

[g6p]
Kg6p

� Vmr
[f6p]
Kf6p

1 + [g6p]
Kg6p

+ [f6p]
Kf6p

+ [e4p]
Kery4p

+ [f16p]
Kfbp

+ [pgn]
Kpg

(39)

where Vmr = VmfKf6p/(KeqKg6p), Kg6p = 0.4mM , Kf6p = 0.05mM , Kery4p = 0.001mM , Kfbp =
0.06mM , Kpg = 0.015mM , Keq = 55.6mM [4].

3.4 Phosphofructokinase
F6P + ATP ⌦ F16P + ADP . Flux expression from [4].

Jpfk = Vm

[atp]
Katp

1 + [atp]
Katp

1 + �
↵

[f26bp]
Ka,f26bp

1 + 1
↵

[f26bp]
Ka,f26bp

[f6p]

✓
1+ 1

↵
[f26bp]

Ka,f26bp

◆

Kf6p

✓
1+ [f26bp]

Ka,f26bp

◆

 
1 +

[f6p]

✓
1+ 1

↵
[f26bp]

Ka,f26bp

◆

Kf6p

✓
1+ [f26bp]

Ka,f26bp

◆

!3

L

✓
1+ [cit]

Ki,cit

◆4✓
1+ [atp]

Ki,atp

◆4

✓
1+ [f26bp]

Ka,f26bp

◆4 +

 
1 +

[f6p]

✓
1+ 1

↵
[f26bp]

Ka,f26bp

◆

Kf6p

✓
1+ [f26bp]

Ka,f26bp

◆

!4

� Vm

[adp][fbp]
KadpKfbpKeq

1 + [adp]
Kadp

+ [fbp]
Kfbp

+ [adp][fbp]
KadpKfbp

(40)
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where Vm = 107.6M/s, Katp = 0.021mM , � = 0.98, ↵ = 0.32, Kf26bp = 0.00084mM , Kf6p = 1mM ,
L = 4.1mM , Kcit = 6.8mM , Ki,atp = 20mM , Kadp = 5mM , Kfbp = 5mM , Kapp = 247 [4].

3.5 Fructose bisphosphate aldolase
F16P ⌦ GAP +DHAP . Flux expression from [4].

Jaldo =
Vmf

A
Kfbp

� Vmr
PQ

KdhapKg3p

1 + A
Kfbp

+ P
Kdhap

+ Q
Kg3p

+ PQ
KdhapKg3p

(41)

where Vmf = 14.63M/s, A = [f16p], P = [dhap], Q = [gap], Kfbp = 0.009mM , Kdhap = 0.08mM ,
Kg3p = 0.16mM , Keq = 0.0018 [4].

3.6 Triose-phosphate isomerase
GAP ⌦ DHAP . Flux expression from [4].

Jtpi =
Vf

[gap]
Kms

� Vr
[dhap]
Kmp

1 + [gap]
Kms

+ [dhap]
Kmp

(42)

where Vr = Vf (Kmp/Kms)/Keq, Vf = 5.976M/s, Kms = 0.51mM , Kmp = 1.6mM and Keq = 0.381
[4].

3.7 Glyceraldehyde-3-phosphate dehydrogenase
GAP +NAD + Pi ⌦ BPG+NADH +H . Flux expression from [4].

Jgapdh =
Vmf

ABC
KnadKg3pKp

� Vmr
PQ

KdgpKnadh

1 + A
Knad

+ AB
KnadKg3p

+ ABC
KnadKg3pKp

+ PQ
KdpgKnadh

+ Q
Knadh

(43)

where A = [nad], B = [gap], C = [pi], P = [bpg], Q = [nadh], Vmr = (Vmf/Keq)KdpgKnadh/(Kg3pKnadKp),
Vmf = 109.1M/s, Knad = 0.09mM , Kg3p = 0.19mM , Kp = 29mM , Kdpg = 0.022mM , Knadh =
0.01mM , Keq = 0.3574 [4].

3.8 Phosphoglycerate kinase
BPG+ ADP ⌦ PG3 + ATP . Flux expression from [4].

Jpgk =
Vmf

AB
↵KaKb

� Vmr
PQ

�KpKq

1 + A
Ka

+ B
Kb

+ AB
↵KaKb

+ PQ
�KpKq

+ P
Kp

+ Q
Kq

(44)

where A = [bpg], B = [adp], P = [pg3], Q = [atp], Vmr = VmfKpKq/(KeqKaKb), ↵ = 1, Ka =
0.079mM , Kb = 0.04mM , � = 1, Kp = 0.13mM , Kq = 0.27mM , Keq = 11.369 [4].

3.9 Phosphoglycerate mutase
PG3 ⌦ PG2. Flux expression from [4].

Jpgm =
Vmf

[pg3]
Kms

� Vmr
[pg2]
Kmp

1 + [pg3]
Kms

+ [pg2]
Kmp

(45)

where Vmr = VmfKmp/(KeqKms), Kms = 0.19mM , Kmp = 0.12mM , Keq = 1.6491 [4].
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3.10 Enolase
PG2 ⌦ PEP , monosubstrate simple reversible Michaelis-Menten kinetics,

Jeno =
Vmf

[pg2]
Kms

� Vmr
[pep]
Kmp

1 + [pg2]
Kms

+ [pep]
Kmp

(46)

where Vmr = VmfKmp/(KeqKms), Kms = 0.038mM , Kmp = 0.06mM , Keq = 1.4127 [4].

3.11 Pyruvate kinase
PEP + ADP ⌦ PY R + ATP . Flux expression from [4].

Jpk = Vm

8
>>>>>><

>>>>>>:

[adp]
Kadp

1 + [adp]
Kadp

[pep]
Kpep

⇣
1 + [pep]

Kpep

⌘3

L

✓
1+ [atp]

Ki,atp

◆4

✓
1+ [fbp]

Ka,fbp

◆4 +
⇣
1 + [pep]

Kpep

⌘4

�
[atp][pyr]

KatpKpyrKeq

1 + [atp]
Katp

+ [pyr]
Kpyr

+ [atp]
Katp

[pyr]
Kpyr

9
>>>>>>=

>>>>>>;

(47)

where Vm = 27.81M/s, Kadp = 0.4mM , Kpep = 0.014mM , L = 1, Ki,atp = 2.5mM , Kfbp =
0.0004mM , Katp = 0.86mM , Kpyr = 10mM , Kapp = 195172 [4].

3.12 Lactate dehydrogenase
PY R +NADH ⌦ LAC +NAD. Flux expression from [4].

Jldh =
Vmf

AB
↵KaKb

� Vmr
PQ

�KpKq

1 + A
Ka

+ B
Kb

+ AB
↵KaKb

+ P
Kp

+ Q
Kq

+ PQ
�KpKq

(48)

where A = [nadh], B = [pyr], P = [lac], Q = [nad], Vmr = VmfKpKq/(KeqKaKb), ↵ = 1,
Ka = 0.002mM , Kb = 0.3mM , � = 1, Kp = 4.7mM , Kq = 0.07mM , Keq = 3.4525⇥ 103 [4].

3.13 Simulations
The concentrations of extracellular glucose, lactate, ATP, ADP, AMP, phosphate, NADH and NAD+

were held fixed during the simulation. The original model [2] includes reactions of the pentose phosphate
pathway and generic ATPase and dehydrogenase reactions that represent demands of ATP and NADH by
other cellular processes. These reactions were not considered in our simulations since we are interested
only in the flux through glycolysis and because the concentrations of cofactors are held constant. To
determine what metabolite concentrations control the glycolytic flux, the fixed concentrations of ADP,
AMP, NADH and NAD+ were sampled at random within a physiological range (see Table below). For
each set of concentrations the resulting flux of glycolysis at steady state was recorded.

Metabolite Min. concentration (mM) Max. concentration (mM)
ATP 0.001 0.009
ADP 3⇥ 10�5 0.0015
AMP 0.00156 0.00622
NAD 0.00065 0.0026
NADH 0.00021 0.00086

The code was written in Julia [5]. We used the DifferentialEquations.jl package [6] to perform the
simulations until a steady state was reached.
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4 Kinetic model of oxidative phosphorylation
The kinetic model of oxidative phosphorylation was based on Ref.[7]. It consists of a system of 18
differential equations describing metabolite dynamics in the mitochondrial matrix, the intermembrane
space, and exchanges with the cytosol. We simulated the model as described in the original reference,
with the only change of setting the relative volume of the cytoplasm to infinity to simulate constant
concentrations of metabolites outside the mitochondria. The concentrations of cytosolic ATP, ADP, and
AMP were randomly sampled in the same range as in the glycolysis simulations (Table above). From
the simulations it was concluded that the rate of ATP production by ATP synthase follows approximately
a Michaelis-Menten equation with respect to the ADP concentration (Fig. 1C in teh main text), with a
half-saturation constant of 0.12 mM ADP.
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