
A solution to the learning dilemma for recurrent1

networks of spiking neurons2

Guillaume Bellec1,◦, Franz Scherr1,◦, Anand Subramoney1, Elias Hajek1, Darjan Salaj1,
Robert Legenstein1, Wolfgang Maass1,∗

1Institute of Theoretical Computer Science, Graz University of Technology,
Inffeldgasse 16b, Graz, Austria

◦ First authors.
∗ To whom correspondence should be addressed; E-mail: maass@igi.tugraz.at.

3

Recurrently connected networks of spiking neurons underlie the astounding4

information processing capabilities of the brain. But in spite of extensive re-5

search, it has remained open how learning through synaptic plasticity could be6

organized in such networks. We argue that two pieces of this puzzle were pro-7

vided by experimental data from neuroscience. A new mathematical insight8

tells us how they need to be combined to enable network learning through9

gradient descent. The resulting learning method – called e-prop – approaches10

the performance of BPTT (backpropagation through time), the best known11

method for training recurrent neural networks in machine learning. But in12

contrast to BPTT, e-prop is biologically plausible. In addition, it elucidates13

how brain-inspired new computer chips – that are drastically more energy ef-14

ficient – can be enabled to learn.15
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Introduction16

Networks of neurons in the brain differ in at least two essential aspects from deep networks17

in machine learning: They are recurrently connected by synapses, forming a giant number of18

loops, and they communicate via asynchronously emitted stereotypical electrical pulses, called19

spikes, rather than bits or numbers that are produced in a synchronized manner by each layer.20

Models that capture primary information processing capabilities of spiking neurons in the brain21

are well known, and we consider the arguably most prominent one: leaky integrate-and-fire22

(LIF) neurons, where spikes that arrive from other neurons through synaptic connections are23

multiplied with the corresponding synaptic weight, and are linearly integrated by a leaky mem-24

brane potential. The neuron fires – i.e., emits a spike – when the membrane potential reaches a25

firing threshold.26

An important open problem is how recurrent networks of spiking neurons (RSNNs) can27

learn, i.e., how their synaptic weights can be modified by local rules for synaptic plasticity so28

that the computational performance of the network improves. In deep learning this problem is29

solved for feedforward networks through gradient descent for a loss function E that measures30

imperfections of current network performance (LeCun et al., 2015). Gradients of E are prop-31

agated backwards through all layers of the feedforward networks to each synapse through a32

process called backpropagation. Recurrently connected networks can compute more efficiently33

because each neuron can participate several times in a network computation, and they are able34

to solve tasks that require integration of information over time and a suitable timing of network35

outputs according to task demands. But since a synaptic weight can affect the network compu-36

tation at several time points during a computation, its impact on the loss function (see Fig. 1A)37

is more indirect, and learning through gradient descent becomes substantially more difficult in38

a recurrent network. In machine learning one had solved this problem 30 years ago by unrolling39
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a recurrent network into a virtual feedforward network, see Fig. 1B, and applying the backprop-40

agation algorithm to it (Fig. 1C). This learning method for recurrent neural networks is called41

backpropagation through time (BPTT).42

We show that with a careful choice of the pseudo-derivative for handling the discontinuous43

dynamics of spiking neurons one can apply this learning method also to RSNNs, yielding the44

by far best performing learning algorithm for such networks (see (Huh and Sejnowski, 2018)45

for related preceding results). But the dilemma is that BPTT requires storing the intermediate46

states of all neurons during a network computation, and to merge these in a subsequent offline47

process with gradients that are computed backwards in time (see Fig. 1C and Movie S2). This48

makes it very unlikely that BPTT is used by the brain (Lillicrap and Santoro, 2019). This49

dilemma is exacerbated by the fact that neurons in the brain have a repertoire of additional50

internal dynamic processes on slower time scales that are not reflected in the LIF model, but51

which are likely to contribute to the superior capabilities of RSNNs in the brain to compute in52

the temporal domain. In fact, even in machine learning one uses special types of neuron models,53

called LSTM (Long Short-Term Memory) units, in order to handle such tasks. But any neuron54

model that has additional internal processes, and hence more hidden variables that capture their55

current state, makes learning in a recurrent network of such neurons even more difficult.56

We present an approach for solving this dilemma: e-prop (Fig. 1D and 1E, see Movie S3).57

It can be applied not only to RSNNs, but also to recurrent networks of LSTM units and most58

other types of recurrent neural networks. We focus on the application of e-prop to RSNNs59

that have, besides LIF neurons, also a more sophisticated form of LIF neurons, called ALIF60

neurons. An ALIF neuron has a second hidden variable besides its membrane potential: an61

adaptive firing threshold. The firing threshold of an ALIF neuron increases through each ot its62

spikes and decays back to a resting value between spikes. This models firing rate adaptation, a63

well known feature of a fraction of neurons in the brain (Allen Institute: Cell Types Database,64
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2018) that dampens their firing activity. We refer to an RSNN that contains a fraction of ALIF65

neurons as a Long short-term memory Spiking Neural Network (LSNN), because we show66

that ALIF neurons provide a qualitative jump in temporal computing capabilities of RSNNs,67

allowing RSNNs to approach for the first time the performance of LSTM networks in machine68

learning for temporal processing tasks.69

E-prop is motivated by two streams of experimental data from neuroscience that can be seen70

as providing hints how the brain solves the learning dilemma for RSNNs:71

i) The dynamics of neurons in the brain is enriched by continuously ongoing updates of72

traces of past activity on the molecular level, for example in the form of calcium ions73

or activated CaMKII enzymes (Sanhueza and Lisman, 2013). These traces in particular74

record events where the presynaptic neuron fired before the postsynaptic neuron, which75

is known to induce Hebbian-like STDP (spike timing dependent plasticity) if followed by76

a top-down learning signal (Cassenaer and Laurent, 2012,Yagishita et al., 2014,Gerstner77

et al., 2018). We refer to local traces of this type as eligibility traces in our learning78

model.79

ii) In the brain there exists an abundance of top-down signals such as dopamine and acetyl-80

choline, to name only a few, that inform local populations of neurons about sub-optimal81

performance of brain computations. Interestingly some of these signals are of a predictive82

nature, e.g. they predict upcoming rewards in the case of dopamine or movement errors in83

the case of the error-related negativity (ERN), see (MacLean et al., 2015). Furthermore84

both dopamine signals (Engelhard et al., 2019, Roeper, 2013) and ERN-related neural85

firing (Sajad et al., 2019) are reported to be specific for a target population of neurons,86

rather than global. We refer to such top-down signals as learning signals in our learning87

model.88
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Figure 1: (Caption on the next page.)
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Figure 1: Schemes for RSNNs, BPTT, and e-prop. A) RSNN with network inputs x, neuron
spikes z, and output targets y∗, for each time step t of the RSNN computation. Output neurons y
provide a low-pass filter of network spike z. B) BPTT computes gradient in the unrolled version
of the network. It has a copy of all neurons of the RSNN for each time step t. A synaptic
connection from neuron i to neuron j of the RSNN is replaced by an array of feedforward
connections, one for each time step t, that goes from the copy of neuron i in the layer for time
step t to a copy of neuron j in the layer for time step t + 1. All synapses in this array have
the same weight: the weight of this synaptic connection in the RSNN. C) Loss gradients of
BPTT are propagated backwards in time and retrograde across synapses in an offline manner,
long after the forward computation has passed a layer. D) Online learning dynamics of e-prop.
Feedforward computation of eligibility traces is indicated in blue. These are combined with
online learning signals according to equ. (1). E) Illustration of the dynamics of ALIF neurons
and e-prop. Observable variables (spikes) zt and hidden variables of an ALIF neuron, slow
factor εtji,a (equation (22)) of the eligibility trace etji (equation (23)) of the synapse from neuron
i to neuron j, as well as a learning signal Ltj and the resulting online weight change proposed by
e-prop. In this case a late activation of a learning signal, such as dopamine in the experiments
of (Yagishita et al., 2014), it transforms the eligibility trace into the modification of the synaptic
weight. The dashed curve above the plot of εtji,a shows an easily computable approximation
(see equation (24)) of εtji,a as low-pass filter of STDP-inducing spiking events that can be used
for an approximation of e-prop.

Our re-analysis of the mathematical basis of gradient descent in recurrent neural networks89

in equ. (1) tells us how eligibility traces and learning signals need to be combined to produce90

network learning through gradient descent – without backprogation of signals through time or91

retrograde through synaptic connections. We will show that the resulting new learning method,92

e-prop, approximates the performance of BPTT for RSNNs, thereby providing a solution to the93

learning dilemma for RSNNs. We demonstrate this on tasks for supervised learning (Fig. 2,3)94

and reinforcement learning (Fig. 4). None of these tasks were previously known to be solvable95

by RSNNs.96

The previously described learning dilemma for RSNNs also affects the development of97

new, brain inspired computing hardware, which aims at a drastic reduction in the energy con-98

sumption of computing and learning. Resulting new designs of computer chips, such as Intels99

Loihi (Davies et al., 2018), are usually focused on RSNN architectures. On-chip learning capa-100
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bility for these RSNNs in the hardware is essential. Although it does not matter here whether101

the learning algorithm is biologically plausible, the excessive storage and offline processing de-102

mands of BPTT make this option unappealing for such novel computing hardware also. Hence103

a corresponding learning dilemma exists also there. E-prop does not contain any features that104

make it unlikely to be implementable on such neuromorphic chips, thereby promising a solution105

also for this learning dilemma.106

Results107

Mathematical basis for e-prop108

Spikes are modeled as binary variables ztj that assume value 1 if neuron j fires at time t, oth-109

erwise value 0. It is common to let t vary over small discrete time steps, e.g. of 1ms length.110

The goal of network learning is to find synaptic weights W that minimize a given loss function111

E. E may depend on all or a subset of the spikes in the network. E measures in the case of112

regression or classification learning the deviation of the actual output ytk of each output neuron113

k at time t from its given target value y∗,tk (Fig. 1A). In reinforcement learning (RL), the goal114

is to optimize the behavior of an agent in order to maximize obtained rewards. In this case, E115

measures deficiencies of the current agent policy to collect rewards.116

The gradient dE
dWji

for the weight Wji of the synapse from neuron i to neuron j tells us how117

this weight should be changed in order to reduce E. The key observation for e-prop (see proof118

in Methods) is that this gradient can be represented as a sum over the time steps t of the RSNN119

computation: A sum of products of learning signals Ltj (specific for the post-synaptic neuron j120

of the corresponding synapse) and synapse-specific eligibility traces etji:121

dE

dWji

=
∑
t

Ltj e
t
ji . (1)
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The ideal value of Ltj is the derivative dE
dztj

, which tells us how the current spike output ztj of122

neuron j affects E. In contrast, the eligibility trace etji does not depend on E, but on the internal123

dynamics of neuron j. It tells us how a change of the weightWji would affect its spike output ztj124

via the temporal evolution of the hidden variables of neuron j, without considering recurrent125

loops formed with other neurons (see equation (S2) in supplementary materials).126

We view (1) as a program for online learning: In order to reduce E, change at each step t127

of the network computation all synaptic weights Wji proportionally to −Ltjetji (see Fig. 1E for128

an illustration). There is no need to explicitly compute or store the sum (1), or to wait for later129

signals. Hence e-prop is an online learning method in a strict sense (see Fig. 1D and Movie S3).130

In particular, there is no need to unroll the network as for BPTT. Furthermore, in contrast to131

the previously known real time recurrent learning algorithm (RTRL, see (Williams and Zipser,132

1989) and Methods), which substantially increases the required number of multiplications as133

function of network size, e-prop is – up to a constant factor – not more costly than the RSNN134

computation itself. This is obviously an important issue both for biological plausibility and135

neuromorphic implementations.136

Since the ideal value dE
dztj

of the learning signal Ltj also captures influences which the current137

spike output ztj of neuron j may have on E via future spikes of other neurons, its precise value138

is in general not available at time t. We replace it by an approximation that ignores these139

indirect influences: Only currently arising errors at the output neurons k of the RSNN are taken140

into account, and are routed with neuron-specific weights Bjk to the network neurons j, (see141

Fig. 2A):142

Ltj =
∑
k

Bjk (ytk − y
∗,t
k )︸ ︷︷ ︸

error of output k
at time t

. (2)

Although this signal Ltj only captures errors that arise at the current time step t, it is combined143

in equation (1) with an eligibility trace etji that may reach far back into the past of the target144
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neuron j (see Fig.1E). In this way e-prop alleviates the need to propagate signals backwards in145

time.146

There are several strategies for choosing the weights Bjk for this online learning signal. In147

symmetric e-prop we set it equal to the corresponding output weightW out
kj from neuron j to out-148

put neuron k. This learning signal is closest to the theory, and would be theoretically optimal149

in the absence of recurrent connections. Biologically more plausible are two variants that avoid150

weight sharing: If all network neurons j are connected to output neurons k, we letBjk evolve in151

adaptive e-prop through a simple local plasticity rule that mirrors the plasticity rule applied to152

W out
kj . In random e-prop the values of the weights Bjk are randomly chosen and remain fixed,153

similar to broadcast alignment for feedforward networks (Lillicrap et al., 2016,Nøkland, 2016).154

Resulting synaptic plasticity rules (see Methods) look very similar to previously proposed plas-155

ticity rules (Gerstner et al., 2018). In particular they involve postsynaptic depolarization as one156

of the factors, similarly as the data-based rule in (Clopath et al., 2010), see section S6 in the157

supplement for an analysis.158

We finally would like to mention that the Learning-to-Learn approach can be used to train a159

separate neural network to generate – instead of the previously considered options – tailormade160

learning signals for a limited range of potential learning tasks. This variation of e-prop enables161

for example one-shot learning of new arm movements (Bellec et al., 2019).162

Comparing the performance of e-prop and BPTT on a common benchmark163

task164

The speech recognition task TIMIT (Garofolo et al., 1993) is one of the most commonly used165

benchmarks for temporal processing capabilities of different types of recurrent neural networks166

and different learning approaches (Greff et al., 2017). It comes in two versions. Both use, as167

input, acoustic speech signals from sentences that are spoken by 630 speakers from 8 dialect168
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Figure 2: Comparison of the performance of BPTT and e-prop on TIMIT. A) Network
architecture for e-prop, illustrated for an LSNN consisting of LIF and ALIF neurons. B) Input
and target output for the two versions of TIMIT. C) Performance of BPTT and the three versions
of e-prop for LSNNs consisting of 800 neurons for framewise targets and 2400 for sequence
targets.

regions of the USA (see the top of Fig. 2B for a sample segment). In the simpler version, used169

for example in (Greff et al., 2017), the goal is to recognize which of 61 phonemes is spoken170

in each 10 ms time frame (“frame-wise classification”). In the harder version from (Graves171

et al., 2013), which achieved an essential step toward human-level performance in speech-172

to-text transcription, the goal is to recognize the sequence of phonemes in the entire spoken173

sentence independently of their timing (“sequence transcription”). E-prop approximates the174

performance of BPTT on LSNNs for both versions of TIMIT very well, as shown in Fig. 2C.175

For the more difficult version of TIMIT we trained as in (Graves et al., 2013) a complex LSNN176

consisting of a feedforward sequence of three recurrent networks. Our results show that e-prop177

can also handle learning for such more complex network structures very well. In Fig. S2 we178

show for comparison also the performance of LSTM networks. These data show that for both179

versions of TIMIT the performance of LSNNs comes rather close to that of LSTM networks.180
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This has previously not been demonstrated for any type of RSNN with any learning method181

on a real-world benchmark task for temporal processing. The FORCE method of (Nicola and182

Clopath, 2017) is the best performing previously known learning method for RSNNs. However183

this learning method was not argued to be biologically realistic, since the plasticity rule for each184

synaptic weight required knowledge of the current values of all other synaptic weights in the185

RSNNs. It was applied in (Nicola and Clopath, 2017) to supervised learning of several pattern186

generation task. We show in Figs. S1 and S5 that RSNNs can learn such tasks also with e-prop,187

hence without the biologically unrealistic feature of FORCE. We show in Fig S2 that e-prop can188

not only be applied to RSNNs, but also to LSTM networks – and many other types of recurrent189

networks – that fit under the quite general model discussed in Methods. Furthermore, e-prop190

approximates the performance of BPTT very well for LSTM networks as well (Fig. S2).191

E-prop performance for a task where temporal credit assignment is difficult192

A hallmark of cognitive computations in the brain is the capability to go beyond a purely re-193

active mode, to integrate diverse sensory cues over time, and to wait until the right moment194

arrives for an action. A large number of experiments in neuroscience analyze neural coding195

after learning for such tasks. But it had remained unknown how one can model the underlying196

learning processes in RSNNs of the brain. We wondered whether e-prop can fill this void. As197

an example we consider the task that was studied in the experiments of (Morcos and Harvey,198

2016, Engelhard et al., 2019). There a rodent learnt to run along a linear track in a virtual199

environment, where it encountered several visual cues on the left and right, see Fig. 3A and200

Movie S2. Later, when it arrived at a T-junction, it had to decide whether to turn left or right.201

It was rewarded when it turned to that side from which it had previously received the majority202

of visual cues. This task is not easy to learn since the subject needs to find out that it does203

not matter on which side the last cue was, or in which order the cues were presented. Instead,204
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Figure 3: Solving a task with difficult temporal credit assignment by e-prop. A) Setup of
corresponding rodent experiments of (Morcos and Harvey, 2016, Engelhard et al., 2019), see
Movie S2. B) Input spikes, internal spiking activity of 10 out of 50 sample LIF neurons and 10
out of 50 sample ALIF neurons, softmax output, sample learning signals and samples of slow
components of eligibility traces in the bottom row. C) Learning curves for BPTT and two e-
prop versions. D) Correlation between the broadcast weights Bjk for k = left/right for learning
signals in random e-prop and sensitivity to “left” and “right” input components after learning.
fj,left (fj,right) is the resulting average firing rate of neuron j during presentation of left (right)
cues after learning.
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the subject has to learn to count cues separately for each side and to compare the two resulting205

numbers. Furthermore the cues need to be processed long before a reward is given. We show in206

Fig. S4 that LSNNs can learn this task through reward-based e-prop. But since the LSNNs can207

alleviate there the temporal credit assignment problem through reward prediction, we wondered208

whether an LSNN would also be able to learn via e-prop a supervised learning variation of this209

task, where a teacher tells the subject at the end of each trial what would have been the right210

decision. This yields a really challenging scenario for e-prop since non-zero learning signals Ltj211

arise only during the last 150ms of a trial (Fig. 3B). Hence all synaptic plasticity of e-prop has212

to take place during these last 150ms, long after the relevant computations on input cues had213

been carried out. The result of training an LSNN with BPTT and e-prop for solving this task is214

shown in Fig. 3C (illustrated in Movies S3 and S4). Whereas this task can not even be solved215

by BPTT with a regular RSNN that has no adapting neurons (red curve), all 3 previously dis-216

cussed variations of e-prop can solve it if the RSNN contains adapting neurons. We also explain217

in section S2.4 how this task can be solved for sparsely connected LSNNs when biologically218

inspired stochastic rewiring (Kappel et al., 2018) is integrated into e-prop.219

But how can the neurons in the LSNN learn to record and count the input cues if all the220

learning signals are identically 0 until the last 150ms (5th row of Fig. 3B)? The solution is indi-221

cated in the bottom row of Fig. 3B: The slow component εtji,a (equation (22)) of the eligibility222

traces eji of adapting neurons j decays with the long time constant of firing rate adaptation223

(see equation (27) and Movie S4), that typically lies in the range of seconds. Since these traces224

stretch from the beginning of the trial into its last phase, they enable assignment of credit to225

firing events that happened over 1000 ms ago. Fig. 3D provides insight into the functional role226

of the broadcast weights of random e-prop in this context: The difference of these weights de-227

termines for each neuron j whether it learns to respond in the first phase of a trial more to cues228

from the left or right. This observation suggests that neuron-specific learning signals for RSNNs229
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have the advantage that they can create a variety of feature detectors for task-relevant network230

inputs. Hence a suitable weighted sum of these feature detectors is able to cancel remaining231

errors at the network output, similarly as in the case of feedforward networks (Lillicrap et al.,232

2016).233

Reward-based e-prop234

Deep RL has recently produced really powerful results in machine learning and AI through235

clever applications of BPTT to RL (Mnih et al., 2016). We found that one of the arguably most236

powerful RL methods within the range of deep RL approaches that are not directly biologically237

implausible, policy gradient in combination with actor-critic, can be implemented with e-prop.238

This yields the biologically plausible RL algorithm reward-based e-prop. The LSNN learns239

through reward-based e-prop both an approximation to the value function and a stochastic pol-240

icy. Neuron-specific learning signals are combined in reward-based e-prop with a global signal241

that transmits reward prediction errors (Fig. S3). In contrast to the supervised case where the242

learning signals depend on the deviation from an external target signal, the learning signals here243

are emitted when an action is taken and they express here how much this action deviates from244

the action mean that is currently proposed by the network. We show in Methods that reward-245

based e-prop yields local reward-based rules for synaptic plasticity that are in many aspects246

similar to ones that have previously been discussed in the literature (Gerstner et al., 2018). But247

those previously proposed rules estimated gradients of the policy essentially by correlating the248

noisy output of network neurons with rewards, which is known to be inefficient due to noisy249

gradient estimates. In contrast, reward-based e-prop computes policy- and value-gradients by250

approximating BPTT, which is one of the pillars of modern deep RL.251

We tested reward-based e-prop on a task that captures the essence of numerous learning252

experiments in systems neuroscience: A delayed goal-directed movement has to be learnt, con-253
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Figure 4: Application of e-prop to RL. A) Scheme of the delayed arm movement task. The
red arrow points to the formerly visible goal. The arm always starts moving from the center
of the circle. B) Resulting arm movement in three sample trials after learning. The orange
dot indicates the position of the tip of the arm at the end of the delay period. C) Performance
of reward-based random e-prop and of a control where e-prop is replaced by BPTT, both for
an LSNN consisting of 350 LIF and 150 ALIF neurons. Solid curves show the mean over 5
different runs, and shaded area indicates 1 standard deviation.
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sisting of a sequence of many 2-dimensional continuous motor commands, each of them being254

only loosely linked to rewards. We chose a setup where the agent first receives a spatial goal255

cue (Fig. 4A), then has to control the angles of a two-joint arm during a delay so that its tip256

remains – in spite of motor noise that result from the stochastic policy – within a center region257

(indicated by a dotted circle) in order to avoid small negative rewards, until it receives a go-cue258

(see Movie S5). The agent then has to move the tip of the arm to the location of the initial goal259

cue in order to receive a reward. Note that no forward- or inverse model of the arm was given260

to the LSNN, it had to learn those implicitly. This task had so far been beyond the reach of261

biologically plausible learning, for any type of neural network model.262

Three sample trials after learning are shown in Fig. 4B (and in Movie S6). Fig. 4C shows that263

reward-based e-prop is able to solve this demanding RL task about as well as policy gradient264

with biologically implausible BPTT. We conjecture that variants of reward-based e-prop will265

be able to solve most RL tasks that can be solved by online actor-critic methods in machine266

learning.267

Discussion268

We propose that in order to understand the computational function and neural coding of higher269

brain areas, one needs to understand the organization of the plasticity mechanisms that install270

and maintain the computational functions of the underlying RSNNs. So far BPTT was the only271

candidate for that, since no other learning method provided sufficiently powerful computational272

function to RSNN models. But since BPTT is not viewed to be biologically realistic (Lillicrap273

and Santoro, 2019), it does not help us to understand the organization of synaptic plasticity274

in RSNNs of the brain. E-prop offers a solution to this dilemma, since it does not require275

biologically unrealistic mechanisms, but still enables RSNNs to learn difficult computational276

tasks almost as well as BPTT. In particular, we have shown in Fig. 3 and 4 that e-prop enables277
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us to model for the first time the learning processes in RSNNs of the brain that underlie the278

emergence of complex behaviors in key experiments of systems neuroscience.279

E-prop relies on two types of signals that are abundandly available in the brain, but whose280

precise role for learning have not yet been understood: eligibility traces and learning signals.281

Since e-prop is based on a transparent mathematical principle, it provides a normative model282

for both types of signals, as well as for synaptic plasticity rules. In particular, it suggests a new283

rule for the organization of eligibility traces: that the time constant of the eligibility trace for a284

synapse is correlated with the time constant for the history-dependence of the firing activity of285

the postsynaptic neuron. It also suggests that the experimentally found diverse time constants286

of the firing activity of populations of neurons in different brain areas (Runyan et al., 2017)287

are correlated with their capability to handle corresponding ranges of delays in temporal credit288

assignment for learning. Finally, e-prop theory suggests that learning signals for different pop-289

ulations of neurons should be diverse, rather than uniform and global (see section S6.2), and290

should be correlated with the impact which the activity of these neurons has on the quality of291

the learnt behavior.292

Apart from these consequences of e-prop for research in neuroscience and cognitive science,293

e-prop also provides an interesting new tool for approaches in machine learning where BPTT294

is replaced by approximations in order to improve computational efficiency. For example, the295

combination of eligibility traces from e-prop with synthetic gradients from (Jaderberg et al.,296

2016) substantially improves performance of LSTM networks for difficult machine learning297

problems such as the copy-repeat task and the Penn Treebank word prediction task (Bellec298

et al., 2019).299

Finally, E-prop suggests a viable new approach for on-chip learning of RSNNs on neuro-300

morphic chips. Whereas BPTT is not within the reach of current neuromorphic chip designs,301

an implementation of e-prop appears to offer no serious hurdle. Since we have shown in Fig. 2302
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that e-prop enables RSNNs to learn to understand speech, and in Fig. 4 that e-prop enables303

reward-based learning of the control of complex arm movements, e-prop promises to support a304

qualitative jump in on-chip learning capabilities of neuromorphic chips.305

Methods306

To exhibit the theory around e-prop and preceding related work, we structure the methods sec-307

tion in the following way:308

• Comparison of e-prop with other online learning methods for recurrent neural networks309

(RNNs)310

• Network models311

• Conventions312

• Mathematical basis for e-prop313

• Eligibility traces314

• Eligibility traces for concrete neuron models315

• Derivation of the synaptic plasticity rules resulting from e-prop316

• Reward-based e-prop: application of e-prop to policy gradient RL.317

Comparison of e-prop with other online learning methods for recurrent318

neural networks (RNNs)319

In this section we compare e-prop with other learning algorithms implementing gradient de-320

scent in RNNs without BPTT. A well-known alternative to BPTT is real time recurrent learning321
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(RTRL). RTRL was derived for networks of rate-based (sigmoidal) neurons in (Williams and322

Zipser, 1989). There, the loss gradients are computed forward in time by multiplying the full323

Jacobian Jtkk′ =
dhtk
dht−1
k′

of the network dynamics with the tensor dhtk
dWji

that computes the depen-324

dency of the state variables with respect to the parameters: dhtk
dWji

=
∑

k′ Jtkk′ ·
dht−1
k′

dWji
+

∂htk
∂Wji

325

(see equation (12) in (Williams and Zipser, 1989)). Denoting with n the number of neurons,326

this requires O(n4) multiplications, which is computationally prohibitive. Unbiased Online Re-327

current Optimization (Tallec and Ollivier, 2018) (UORO) used an unbiased estimator of Jtkk′ of328

rank one that can be computed online. The authors report that the variance of this estimator329

increases with the network size and simulations were only carried out for a network size up to330

64. Another unbiased estimator of Jtkk′ (Mujika et al., 2018) based on Kronecker factors solved331

this issue and made it possible to approach the performance of BPTT on harder tasks. Yet this332

method requires O(n3) operations per time step, which is one order more than UORO, e-prop333

or BPTT.334

In e-prop, the eligibility traces are just d × d matrices (d being the dimension of htj), since335

they are restrictions of the full Jacobian Jtkk′ to the internal dynamics of a neuron (k = k′). As a336

consequence, only O(n2) multiplications are required for the forward propagation of eligibility337

traces. Hence their computation is not more costly than BPTT or the simulation of the RNN.338

The learning rule called Superspike (Zenke and Ganguli, 2018) was derived by applying339

RTRL in spiking neural networks without recurrent connections. In the absence of these con-340

nections RTRL is practicable and the resulting learning rule uses eligibility traces similar to341

those arising in e-prop with LIF neurons. Two other algorithms, (Roth et al., 2019) and (Murray,342

2019), were introduced to train recurrent neural networks of sigmoidal units by approximating343

RTRL with another form of eligibility traces. Random Feedback Local Online (RFLO) learn-344

ing (Murray, 2019) is equivalent to random e-prop in the particular case of leaky sigmoidal345

neurons for regression tasks. But the performance of RFLO was not compared to BPTT on346
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published benchmarks for RNNs, or for spiking neurons. In contrast to the eligibility traces in347

e-prop, the eligibility traces in kernel RNN learning (keRNL) (Roth et al., 2019) are viewed as348

components of an estimator of the tensor Jtkk′ , and are not related to the specific definition of349

the neuron model. This approach requires non-local communication within the RNN, which we350

wanted to avoid in e-prop. In contrast to e-prop, none of the papers above (Zenke and Ganguli,351

2018, Murray, 2019, Roth et al., 2019) derived a theory or a definition of eligibility traces that352

can be applied to neuron models with a non-trivial internal dynamics, such as adaptive neurons353

or LSTM units, that appear to be essential for solving tasks with demanding temporal credit354

assignment of errors.355

Network models356

To exhibit the generality of the e-prop approach, we define the dynamics of recurrent neural357

networks using a general formalism that is applicable to many recurrent neural network models,358

not only to RSNNs and LSNNs. Also non-spiking models such as LSTM networks fit under359

this formalism (see Section S4.3 in the Supplement). The network dynamics is summarized by360

the computational graph in Fig. 5. It uses the function M to define the update of the hidden361

state: htj = M(ht−1j , zt−1,xt,W ), and f to define the update of the observable state: ztj =362

f(htj, z
t−1,xt,W ) (f simplifies to ztj = f(htj) for LIF and ALIF neurons).363

RSNNs. RSNNs are recurrently connected networks of leaky integrate-and-fire (LIF) neu-364

rons. Each LIF neuron has a one dimensional internal state htj that consists only of the mem-365

brane potential vtj . The observable state ztj ∈ {0, 1} is binary, indicating a spike (ztj = 1) or no366
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spike (ztj = 0) at time t. The dynamics of the LIF model is defined by the equations:367

vt+1
j = αvtj +

∑
i6=j

W rec
ji z

t
i +
∑
i

W in
ji x

t+1
i − ztjvth (3)

ztj = H

(
vtj − vth

)
, (4)

where xti = 1 indicates a spike from the input neuron i at time step t (xti = 0 otherwise) and368

W rec
ji (W in

ji ) is the synaptic weight from network (input) neuron i to neuron j. The decay factor369

α in (3) is given by e−δt/τm , where δt is the discrete time step size (1 ms in our simulations) and370

τm = 20 ms is the membrane time constant. H denotes the Heaviside step function.371

Due to the term −ztjvth in equation (3), the neurons membrane potential is reduced by372

a constant value after an output spike, which relates our model to the spike response model373

(Gerstner et al., 2014). To introduce a simple model of neuronal refractoriness, we further374

assume that ztj is fixed to 0 after each spike of neuron j for a short refractory period of 2 to 5ms375

depending on the simulation.376

LSNNs. LSNNs are recurrently connected networks that consist of LIF neurons and of adap-377

tive LIF (ALIF) neurons. An ALIF neuron has a time-dependent threshold adaptation atj . As378

a result, their internal state is a 2 dimensional vector htj
def
= [vtj, a

t
j]. Their threshold potential379

Atj increases with every output spike and decreases exponentially back to the baseline threshold380

vth. This can be described by381

Atj = vth + βatj , (5)

ztj = H(vtj − Atj) , (6)

with a threshold adaptation according to382

at+1
j = ρatj + ztj , (7)
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where the decay factor ρ is given by e−δt/τa , and τa is the adaptation time constant that is383

typically chosen to be in the range of the time span of the length of the working memory that384

is a relevant for a given task. This is a very simple model for a neuron with spike frequency385

adaptation. We refer to (Gerstner et al., 2014, Pozzorini et al., 2015, Gouwens et al., 2018) for386

experimental data and other neuron models.387

In relation to the more general formalism represented in the computational graph in Fig. 5,388

equations (3) and (7) define M(ht−1j , zt−1,xt,W ), and equations (4) and (6) define f(htj).389

Gradient descent for RSNNs. Gradient descent is problematic for spiking neurons because390

of the step function H in equation (4). We overcome this issue as in (Esser et al., 2016, Bellec391

et al., 2018): the non-existing derivative
∂ztj
∂vtj

is replaced in simulations by a simple nonlinear392

function of the membrane potential that is called the pseudo-derivative. Outside of the refractory393

period, we choose a pseudo-derivative of the form ψtj = 1
vth
γpd max

(
0, 1−

∣∣∣vtj−Atjvth

∣∣∣) where394

γpd = 0.3. During the refractory period the pseudo derivative is set to 0.395

Network output and loss functions. We assume that network outputs ytk are real-valued and396

produced by leaky output neurons (readouts), which are not recurrently connected:397

ytk = κyt−1k +
∑
j

W out
kj z

t
j + boutk , (8)

where κ ∈ [0, 1] defines the leak and boutk denotes the output bias. The leak factor κ is given398

for spiking neurons by e−δt/τout , where τout is the membrane time constant. Note that for non-399

spiking neural networks (such as for LSTM networks), temporal smoothing of the network400

observable state is not necessary. In this case, one can use κ = 0.401

The loss function E quantifies the network performance. We assume that it depends only402

on the observable states E(z1, . . . , zT ). For instance, for a regression problem we define E as403
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Figure 5: Computational graph and gradient propagations A) Assumed mathematical de-
pendencies between hidden neuron states htj , neuron outputs zt, network inputs xt, and the loss
function E through the mathematical functions E(·), M(·), f(·) are represented by coloured
arrows. B-C) The gradient computation can be represented in similar graphs, where coloured
arrows represent partial derivatives. B) Following equation (19), the derivatives involved in the
computation of eligibility traces etji are shown in blue in the case where i is an input neuron. C)
Unlike the eligibility traces, the ideal learning signals required to back-propagate gradients as
represented here with green arrows.
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the mean square error E = 1
2

∑
t,k(y

t
k− y

∗,t
k )2 between the network outputs ytk and target values404

y∗,tk . For classification or RL tasks the loss function E has to be re-defined accordingly.405

Conventions406

Notation for derivatives. We distinguish the total derivative dE
dzt

(z1, . . . , zT ), which takes407

into account how E depends on zt also indirectly through influence of zt on the other vari-408

ables zt+1, . . . , zT , and the partial derivative ∂E
∂zt

(z1, . . . , zT ) which quantifies only the direct409

dependence of E on zt.410

Analogously ∂M
∂h

denotes for htj = M(ht−1j , zt−1,xt,W ), the partial derivative of M with411

respect to h. It only quantifies the direct influence of htj on ht−1j and it does not take into account412

the dependency of htj on ht−1j via the observable states zt. To improve readability we also use413

the following abbreviations:
∂htj

∂ht−1
j

def
= ∂M

∂h
(ht−1j , zt−1,xt,W ),

∂htj
∂Wji

def
= ∂M

∂Wji
(ht−1j , zt−1,xt,W ),414

and
∂ztj
∂htj

def
= ∂f

∂h
(htj, z

t−1,xt,W ).415

Notation for temporal filters. For ease of notation we use the operator Fα to denote the416

low-pass filter such that, for any time series xt:417

Fα(xt) = αFα(xt−1) + xt , (9)

and Fα(x0) = x0. In the specific case of the time series ztj and etji, we simplify notation further418

and write z̄tj and ētji for Fα(zj)
t and Fκ(eji)t419

Mathematical basis for e-prop420

We provide here the proof of the fundamental equation (1) for e-prop421

dE

dWji

=
∑
t

dE

dztj
etji . (10)

24

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted August 19, 2019. ; https://doi.org/10.1101/738385doi: bioRxiv preprint 

https://doi.org/10.1101/738385


This equation shows that the total derivative of the loss function E with respect to the synaptic422

weights W can be written as a product of learning signals Ltj and eligibility traces etji for the423

“ideal” learning signal Ltj = dE
dzj

. The eligibility traces are defined at the end of the proof below.424

We start from a factorization of the loss gradient that arises in equation (12) of (Werbos,425

1990) to describe BPTT in recurrent sigmoidal neural networks. Using our notation, this clas-426

sical factorization of loss gradient can be rewritten as:427

dE

dWji

=
∑
t′

dE

dht
′
j

·
∂ht

′
j

∂Wji

. (11)

We now show how one can derive from this to the new factorization (10) of the loss gradient428

that underlies e-prop. dE

dht
′
j

can be expressed recursively as a function of the same derivative at429

the next time step dE

dht
′+1
j

by applying the chain rule at the node htj for t = t′ of the computational430

graph shown in Figure 5C:431

dE

dht
′
j

=
dE

dzt
′
j

∂zt
′
j

∂ht
′
j

+
dE

dht
′+1
j

∂ht
′+1
j

∂ht
′
j

(12)

= Lt
′

j

∂zt
′
j

∂ht
′
j

+
dE

dht
′+1
j

∂ht
′+1
j

∂ht
′
j

, (13)

where we defined the learning signal Lt′j as dE

dzt
′
j

. The resulting recursive expansion ends at the432

last time step T of the computation of the RNN, i.e., dE

dhT+1
j

= 0. If one substitutes the recursive433

formula (13) into the definition of the loss gradients (11), one gets:434

dE

dWji

=
∑
t′

(
Lt
′

j

∂zt
′
j

∂ht
′
j

+
dE

dht
′+1
j

∂ht
′+1
j

∂ht
′
j

)
·
∂ht

′
j

∂Wji

(14)

=
∑
t′

(
Lt
′

j

∂zt
′
j

∂ht
′
j

+
(
Lt
′+1
j

∂zt
′+1
j

∂ht
′+1
j

+ (· · · )
∂ht

′+2
j

∂ht
′+1
j

)∂ht′+1
j

∂ht
′
j

)
·
∂ht

′
j

∂Wji

. (15)

The following equation is the main equation for understanding the transformation from BPTT435

into e-prop. The key idea is to collect all terms which are multiplied with the learning signal436

Ltj at a given time t. These are only terms that concern events in the computation of neuron j437
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up to time t, and they do not depend on other future losses or variable values. We collect them438

into an eligibility trace etji for each neuron j and i, which can be computed locally in an online439

manner.440

To this end, we write the term in parentheses in equation (15) into a second sum indexed by441

t and exchange the summation indices to pull out the learning signal Ltj . This expresses the loss442

gradient of E as a sum of learning signals Ltj multiplied by some factor indexed by ji, which443

we define as the eligibility trace etji ∈ R and eligibility vectors εtji ∈ Rd, which have the same444

dimension as the hidden states htji445

dE

dWji

=
∑
t′

∑
t≥t′

Ltj
∂ztj
∂htj

∂htj

∂ht−1j

· · ·
∂ht

′+1
j

∂ht
′
j

·
∂ht

′
j

∂Wji

(16)

=
∑
t

Ltj
∂ztj
∂htj

∑
t′≤t

∂htj

∂ht−1j

· · ·
∂ht

′+1
j

∂ht
′
j

·
∂ht

′
j

∂Wji︸ ︷︷ ︸
def
=εtji

. (17)

Here, we use the identity matrix for
∂htj

∂ht−1
j

· · · ∂h
t′+1
j

∂ht
′
j

if t = t′. After defining the eligibility vector446

εtji, we also define447

etji
def
=

∂ztj
∂htj
· εtji , (18)

so that equation (17) proves the factorization of e-prop in (1).448

Eligibility traces449

Online computation of eligibility traces. The eligibility vectors as defined in (17) can be450

computed recursively for efficiency and in order to avoid the back-propagation of signals through451

time:452

εtji =
∂htj

∂ht−1j

· εt−1ji +
∂htj
∂Wji

, (19)

where · denotes the dot product. The eligibility traces can be computed with their definition in453

equation (18).454
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Derivation of eligibility traces for concrete neuron models455

The eligibility traces for LSTMs are provided in the supplementary materials. Below we provide456

the derivation of eligibility traces for spiking neurons.457

Eligibility traces for LIF neurons. We compute the eligibility trace of a LIF neuron without458

adaptive threshold (equation (3)). Here the hidden state htj consists just of the membrane poten-459

tial vtj and we have
∂ht+1

j

∂htj
=

∂vt+1
j

∂vtj
= α and

∂vtj
∂Wji

= zt−1i (for a derivation of the eligibility traces460

taking the reset into account we refer to section S1.2). Using these derivatives and equation461

(19), one obtains that the eligibility vector is the low-pass filtered pre-synaptic spike-train,462

εt+1
ji = Fα(zti)

def
= z̄ti . (20)

and following equation (18), the eligibility trace is:463

et+1
ji = ψt+1

j z̄ti . (21)

For LIF neurons as well as for ALIF neurons in the following section the derivation applies to464

the input connections by substituting the network spikes zt−1i by the input spikes xti (the time465

index switches from t − 1 to t because the hidden state htj = M(ht−1j , zt−1,xt,W ) is defined466

as a function of the input at time t but the preceding recurrent activity). For simplicity we have467

focused on the case where transmission delays between neurons in the RSNN are just 1ms. If468

one uses more realistic length of delays d, this −d appears in equations (21)–(23) instead of −1469

as the most relevant time point for pre-synaptic firing (see Section S1.3). This moves resulting470

synaptic plasticity rules closer to experimentally observed forms of STDP.471

Eligibility traces for ALIF neurons. The hidden state of an ALIF neuron htj = [vtj, a
t
j] is a472

two dimensional vector to capture the state of the adaptive threshold atj besides the membrane473

potential vtj . Hence a two dimensional eligibility vector εtji
def
= [εtji,v, ε

t
ji,a] is associated with474
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each weight, and the matrix
∂ht+1

j

∂htj
is a 2 × 2 matrix. The derivatives

∂at+1
j

∂atj
and

∂at+1
j

∂vtj
capture475

the dynamics of the adaptive threshold. Hence to derive the computation of eligibility traces476

we substitute the spike zj in equation (7) by its definition given in equation (6). With this477

convention one finds that the diagonal of the matrix
∂ht+1

j

∂htj
is formed by the terms

∂vt+1
j

∂vtj
= α and478

∂at+1
j

∂atj
= ρ − ψtjβ. Above and below the diagonal, one finds respectively

∂vt+1
j

∂atj
= 0,

∂at+1
j

∂vtj
=479

ψtj . One can finally compute the eligibility traces using equation (18). The component of the480

eligibility vector associated with the membrane potential remains the same as in the LIF case481

and only depends on the presynaptic neuron: εtji,v = z̄t−1i . For the component associated with482

the adaptive threshold we find the following recursive update:483

εt+1
ji,a = ψtj z̄

t−1
i + (ρ− ψtjβ)εtji,a , (22)

and this results in an eligibility trace of the form:484

etji = ψtj

(
z̄t−1i − βεtji,a

)
. (23)

Recall that the constant ρ = exp(− δt
τa

) arises from the adaptation time constant τa, which485

typically lies in the range of hundreds of milliseconds to a few seconds in our experiments,486

yielding values of ρ between 0.995 and 0.9995. The constant β is typically of the order of 0.07487

in our experiments.488

To provide a more interpretable form of eligibility trace that fits into the standard form of489

local terms considered in 3-factor learning rules (Gerstner et al., 2018), one may drop the term490

−ψtjβ in equation (22). This approximation ε̂tji,a of equation (22) becomes an exponential trace491

of the post-pre pairings accumulated within a time window as large as the adaptation adaptation492

time constant:493

ε̂t+1
ji,a = Fρ

(
ψtj z̄

t−1
i

)
. (24)
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The eligibility traces are computed with equation (22) in most experiments but the performance494

obtained with symmetric e-prop and this simplification were indistinguishable on the evidence495

accumulation task of Fig. 3.496

Synaptic plasticity rules resulting from e-prop497

An exact computation of the ideal learning signal dE
dztj

in equation (1) requires to back-propagate498

gradients through time (see Fig. 5C). To compute the loss gradients with e-prop we replace it499

with the partial derivative ∂E
∂ztj

which can be computed online. Implementing the weight updates500

with gradient descent and learning rate η, all the following plasticity rules are derived from the501

formula502

∆W rec
ji = −η

∑
t

∂E

∂ztj
etji . (25)

Note that the weight updates derived for the recurrent weights W rec
ji also applies to the inputs503

weights W in
ji . For the output weights and biases the derivation does not rely on the theory of504

e-prop, and the weight updates can be found in the Section S3.1.505

Case of regression tasks. In the case of a regression problem with targets y∗,tk and outputs ytk506

defined in equation (8), we define the loss function E = 1
2

∑
t,k(y

t
k − y

∗,t
k )2 which results in a507

partial derivative of the form ∂E
∂ztj

=
∑

kW
out
kj

∑
t′≥t(y

t′

k − y
∗,t′
k )κt

′−t. This seemingly provides508

an obstacle for online learning, because the partial derivative is a weighted sum over future509

errors. But this problem can be resolved as one interchange two sum indices in the expression510

of the weight updates (see section S3.1). It results that the sum over future events transforms511

into a low-pass filtering of the eligibility traces ētji = Fκ(etji), and the resulting weight update512

can be written as513

∆W rec
ji = −η

∑
t

(∑
k

Bjk(y
t
k − y

∗,t
k )
)

︸ ︷︷ ︸
=Ltj

ētji . (26)
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Here, Bjk denote broadcast weights in analogy to (Lillicrap et al., 2016), where we note that514

Bjk = W out
kj as the ideal values.515

Case of classification tasks. We assume thatK target categories are provided in the form of a516

one-hot encoded vector π∗,t with K dimensions. We define the probability for class k predicted517

by the network as πtk = softmaxk(y
t
1, . . . , y

t
K) = exp(ytk)/

∑
k′ exp(ytk′), and the loss function518

for classification tasks as the cross-entropy error E = −
∑

t,k π
∗,t
k log πtk. The plasticity rule519

resulting from e-prop reads (see derivation in Section S3.1):520

∆W rec
ji = −η

∑
t

(∑
k

Bjk(π
t
k − π

∗,t
k )
)

︸ ︷︷ ︸
=Ltj

ētji . (27)

Reward-based e-prop: application of e-prop to policy gradient RL521

For reinforcement learning, the network interacts with an external environment. Based on the522

observations xt that are perceived, the network has to commit to actions at0 , . . . ,atn , . . . at523

certain decision times t0, . . . , tn, . . . . Each action atn is sampled from a probability distribution524

π(atn ;ytn) which is also referred to as the policy of the RL agent. The policy is defined as525

function of the network output ytn , and is chosen here to be a vector of Gaussians with means526

yt and variance σ2 (see section S5.1 for discrete actions). At any time t the environment can527

provide a positive or negative reward rt.528

The goal of reinforcement learning is to maximize the expected sum of discounted future529

rewards (also called a return): Rt =
∑

t′≥t γ
t′−trt, where γ ≤ 1 is a discount factor. That is,530

we want to maximize E[Rt], where the expectation is taken over the agent actions at and all531

stochastic variables of the agent and the environment. We approach this optimization problem532

using the theory of the actor-critic variant of policy gradient algorithms (Sutton and Barto,533

2018). It involves the policy π (the actor) and an additional output neuron V t which predict the534
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value function E[Rt] (the critic). The loss function of this algorithm is defined as535

E = Eπ + CVEV , (28)

where Eπ = −
∑

nR
tn log π(atn ;ytn) measures the performance of the stochastic policy π,536

and EV =
∑

t
1
2
(Rt − V t)2 measures the accuracy of V t. Unlike in the supervised learning537

case, we do not derive the weight update using the derivative ∂Eπ
∂ztj

as in equation (25), because538

it is known to have a high variance in this setting. Instead, we replace it with the estimator ∂̂E
∂ztj

539

which has the same value in expectation but a lower variance, as in (Mnih et al., 2016):540

∂̂E

∂ztj
= −

∑
n

(Rtn − V tn)
∂ log π(atn ;ytn)

∂ztj
+ CV

∂EV
∂ztj

. (29)

We describe below the resulting synaptic plasticity rule in the case of multiple continuous ac-541

tions as needed to solve the task of Fig. 4. For the case of a single discrete actions as used in542

Fig. S4 we refer to section S5.1.543

Case of continuous actions. This task is more difficult when there is a delay between the544

action and the reward or, even harder, when a sequence of many actions lead together to a545

delayed reward. There the loss function E cannot be computed online because the evaluation of546

Rtn requires knowledge of future rewards. To overcome this, we introduce temporal difference547

errors δt = rt + γV t+1 − V t (see Fig. S3), and use the equivalence between the forward and548

backward view in reinforcement learning (Sutton and Barto, 2018) to arrive at the following549

synaptic plasticity rules for a general actor-critic algorithm with e-prop (see Section S5.1):550

∆W rec
ji = −η

∑
t

δtFγ
(
Ltj ē

t
ji

)
for (30)

Ltj = −CVBV
j +

∑
k

Ba
jk

ytk − atk
σ2

, (31)

where we define the term ytk − atk to have value zero when no action is taken at time t. The551

combination of reward prediction error and neuron-specific learning signal was also used in552
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a plasticity rule for feedforward networks inspired by neuroscience (Roelfsema and Holtmaat,553

2018), here it arises from the approximation of BPTT by e-prop in RSNNs solving RL problems.554

Note that the filtering Fγ requires an additional eligibility trace per synapse. This arises from555

the temporal difference learning in RL (Sutton and Barto, 2018). It depends on the learning556

signal and does not have the same function as the eligibility trace etji.557
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S1 Eligibility traces40

Eligibility traces have been introduced in Section “Mathematical basis for e-prop” in Results.41

Here, we provide further information on eligibility traces. In Section S1.1, we discuss an alter-42

native view on eligibility traces as derivatives. Second, we extend in Section S1.3 our treatment43

of eligibility traces for LSNNs in Methods to include non-uniform synaptic delays.44

S1.1 Viewing eligibility traces as derivatives45

There exists an alternative definition of the eligibility traces that is perhaps more intuitive than46

the recursive equation in (19). For this we need to define a notion of derivative
∂̃ht

j

∂Wji
that quan-47

tifies the influence of an infinitesimal change of Wji on the hidden state htj through the internal48

processes of neuron j. Unlike the partial derivative
∂ht

j

∂Wji
it takes the full neuron history into49

account and not only the update of the hidden state at time step t. In comparison to the to-50

tal derivative
dht

j

dWji
it ignores that a spike of neuron j might influence its future self through51

the recurrent connections. Defining the derivative
∂̃ztj
∂Wji

according to the same principles, the52

eligibility traces and eligibility vectors can be defined by:53

εtji =
∂̃htj
∂Wji

(S1)

etji =
∂̃ztj
∂Wji

. (S2)

More formally,
∂̃ht

j

∂Wji
is the total derivative computed in the computational graph where the cross54

neuron dependencies are ignored, i.e. where
∂ht

j

∂zt−1
i

and
∂ztj

∂zt−1
i

are assumed to be zero for all i, j55

and t. This definition is equivalent to the previous one because, when inter neuron dependencies56

are ignored, the gradient
∂̃ht′

j

∂Wji
is given by the sum

∑
t≤t′

∂̃ht′
j

∂ht
j

∂htj
∂Wji

and one recognizes here the57

eligibility vector given in equation (17). Equation (S2) follows since etji =
∂ztj
∂ht

j
· εtji =

∂̃ztj
∂Wji

. By58

extension of this notation of derivative to other quantities one can summarize symmetric e-prop59
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as the replacement of dE
dWji

by ∂̃E
∂Wji

in stochastic gradient descent.60

S1.2 Eligibility traces for LSNNs with membrane potential reset61

The eligibility traces derived in the methods do not take the reset term into account. We derive62

here the eligibility traces that can correct for this. Note however that we did not observe an63

improvement when using this more complex model on the speech recognition and evidence64

accumulation tasks.65

Eligibility traces for LIF neurons. When taking into account the reset, the partial derivative66

∂ht+1
j

∂ht
j

becomes α − vthrψtj instead of α and, accordingly to equation (19), the eligibility vector67

can be computed with the recursive formula: εt+1
ji = (α− βψtj)εtji + ztj .68

Eligibility traces for ALIF neurons. According to the dynamics of the ALIF neurons defined69

in equations (3)–(7) one coefficient differs in the matrix
∂ht+1

j

∂ht
j
∈ R2×2 as soon as one takes the70

reset into account. The coefficient
∂vtj
∂atj

was 0 without reset and becomes now vthrβψ
t
j . Overall71

the full derivative
∂ht+1

j

∂ht
j

is then equal to:72

∂ht+1
j

∂htj
=

(
α− vthrψtj vthrβψ

t
j

ψtj ρ− βψtj

)
. (S3)

Even-though this algorithm in still practicable, the recursive propagation of the eligibility vector73

in equation (19) cannot be written in the form of two separable equations as done in equations74

(22) and (23). We preferred to ignore the reset in Methods to provide more interpretable equa-75

tions for eligibility traces.76

S1.3 Eligibility traces for LSNNs with non-uniform synaptic delays77

In our derivation of eligibility traces for LSNNs, we used uniform synaptic delays to ease no-78

tation. Here, we detail how e-prop can be extended to non-uniform delays. Resulting rules79
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for synaptic plasticity favor then corresponding larger delays of several ms between pre- and80

post-synaptic firing. Let the delay of a synapse from neuron i to j be denoted by c(j, i) > 0.81

Similarly, let d(j, i) ≥ 0 be the delay of a synapse that connects an input neuron i with neuron82

j. Using this definition, the dynamics of the membrane potential, see equation (3), is written as:83

vt+1
j = αvtj +

∑
i6=j

W rec
ji z

t+1−c(j,i)
i +

∑
i

W in
ji x

t+1−d(j,i)
i − ztjvth . (S4)

Like in the uniform delay case, we obtain
∂vt+1

j

∂vtj
= α. The difference for arbitrary delays be-84

comes visible in
∂vtj
∂W rec

ji
= z

t−c(j,i)
i and in

∂vtj
∂W in

ji
= x

t−d(j,i)
i . For recurrent weights, the component85

of the eligibility vector associated to the membrane potential is hence:86

εtji,v =
∑

t′≤t−c(j,i)

zt
′

i = z̄
t−c(j,i)
i . (S5)

As the dynamics of the threshold adaptation is unchanged, the update of εtji,a remains as given87

in equation (22). We obtain an eligibility trace88

etji = ψtj

(
z̄
t−c(j,i)
i − βεtji,a

)
. (S6)

Analogously, we obtain the corresponding eligibility trace for input synapses by replacing zti89

and c(j, i) with xti and d(j, i) respectively.90

S2 Optimization and regularization procedures91

Here, we discuss how optimization of networks was implemented and techniques that were used92

to regularize networks.93

S2.1 Optimization procedure94

For e-prop and for BPTT, the weights were updated once after a batch of training trials. For95

simplicity, all the weight updates ∆W rec
ji are written for the most basic version of stochastic96
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gradient descent (∆W rec
ji = −η d̂E

dW rec
ji

, where d̂E
dW rec

ji
is the gradient estimate) in this article. In97

practice, we used Adam (Kingma and Ba, 2014) to boost stochastic gradient descent. We refer98

to (Kingma and Ba, 2014) for the computation of the weight updates that result from the gradient99

estimates.100

S2.2 Firing rate regularization for LSNNs101

To ensure a low firing rate in LSNNs, we added a regularization term Ereg to the loss function102

E. This regularization term had the form:103

Ereg =
1

2

∑
j

(
f av
j − f target

)2
, (S7)

where f target is a target firing rate and f av
j = 1

ntrialsT

∑
t z

t
j is the average firing rate of neuron104

j. Here, the sum runs over the time steps of all the ntrials trials between two weight updates.105

To derive the plasticity rule that implements this regularization, we follow equation (25) in106

Methods. The partial derivative of the regularization loss has the form:107

∂Ereg

∂ztj
=

1

ntrialsT

(
f av
j − f target

)
. (S8)

Inserting this expression into equation (25), we obtain the plasticity rule that implements the108

regularization:109

∆W rec
ji = η Creg

∑
t

1
ntrialsT

(
f target − f av

j

)
etji , (S9)

whereCreg is a positive coefficient that controls the strength of the regularization. This plasticity110

rule is applied simultaneously together with the plasticity rule that minimizes the loss E. Note111

that this weight update fits the e-prop framework provided by equation (1) with a learning signal112

Lreg,t
j proportional to f target − f av

j available locally at neuron j. This learning signal Lreg,t
j can113

simply be added to the task-specific learning signal Ltj .114
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S2.3 Weight decay regularization115

When using adaptive e-prop, readout and broadcast weights were regularized using L2 norm116

weight decay regularization. This was implemented by subtracting Cdecay ·W from each weight117

W that was regularized at each weight update, where Cdecay > 0 is the regularization factor118

(see specific experiments for the value of Cdecay). This weight decay in combination with the119

mirroring of the weight updates has the effect that, despite different initialization, the output120

weights and the adaptive boradcast weights converge to similar values. The remaining differ-121

ence of performance between symmetric and adaptive e-prop reported in Fig. 2 and Fig. S2 may122

be explained by the different initializations.123

S2.4 Optimization with rewiring for sparse network connectivity124

Due to limited resources, neural networks in the brain and in neuromorphic harware are sparsely125

connected. In addition, the connectivity structure of brain networks is dynamic, with synaptic126

connections being added and deleted on the time scale of hours or days, which was shown to127

help the network to use the limited connectivity resources in an optimal manner (Kappel et al.,128

2018). In order to test whether e-prop is compatible with synaptic rewiring, we combined it with129

DEEP R (Bellec et al., 2018). DEEP R is based on a model for synaptic rewiring in the brain130

(Kappel et al., 2018) and allows to rewire sparse neural network models during training with131

gradients descent. The algorithm minimizes the loss function E subject to a constraint on the132

total number of connected synapses. To do so, each synaptic weightWji is assigned a fixed sign133

sji (it is defined to be excitatory or inhibitory) and an amplitude wji. Each potential synaptic134

connection can either be “active”, i.e., the synaptic connection is realized, or “dormant”, i.e.,135

this potential connection is not realized.136

For a dormant synaptic connection, the weight Wji is set to be zero and the gradients and137

weight updates of the connection i → j are not computed. It means in e-prop that dor-138
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mant synapses do not require eligibility traces. For an active connection, the weight is de-139

fined as Wji = sjiwji and the weight amplitude is updated according to the update ∆wji =140

sji∆Wji − ηCL1 where ∆Wji is the weight update given here by e-prop and CL1 = 0.01 is an141

L1 regularization coefficient. To update the network structure such that the set of active con-142

nections is optimized along side their synaptic weights, DEEP R proceeds as follows after each143

weight update:144

• every active connection for which the amplitude becomes negative is set to be dormant,145

• and some dormant connections are selected randomly and set to be active with wji = 0146

such that the total number of active connection remains constant.147

We define the synapse signs sji such that 80% of the neurons are excitatory and 20% are in-148

hibitory. Despite the constraint on the neuron signs and the constraint that 90% of the synapses149

should remain dormant throughout the learning process, e-prop and rewiring solve the evidence150

accumulation task of Fig. 3.151

S3 Supervised learning with e-prop152

S3.1 Synaptic plasticity rules for e-prop in supervised learning153

Here, we derive synaptic plasticity rules that result from e-prop for supervised learning. We154

consider two cases: First, we derive plasticity rules for regression tasks, and second, for classi-155

fication tasks.156

We follow the scheme described by equation (25) in Methods. Hence the loss gradients dE
dWji

157

are estimated using the approximation d̂E
dWji

def
=
∑

t
∂E
∂ztj
etji. Given the eligiblity traces that are158

derived in Methods and Section S4.4, what remains to be derived for each task is the expression159

of the relevant derivative ∂E
∂ztj

and show that it can be computed online.160
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Regression tasks: Consider a regression problem with loss function E = 1
2

∑
t,k(y

t
k − y

∗,t
k )2,161

targets y∗,tk and outputs ytk as defined in equation (8). The partial derivative ∂E
∂ztj

takes the form:162

E =
1

2

∑
t,k

(ytk − y
∗,t
k )2 (S10)

∂E

∂ztj
=

∑
k

W out
kj

∑
t′≥t

(yt
′

k − y
∗,t′
k )κt

′−t . (S11)

This seemingly provides an obstacle for online learning, because the partial derivative is a163

weighted sum over future errors. But this problem can be resolved. Following equation (1),164

the approximation d̂E
dWji

of the loss gradient is computed with e-prop as follows (we insert ∂E
∂ztj

165

in place of the total derivative dE
dztj

):166

d̂E

dWji

=
∑
t′

∂E

∂zt
′
j

et
′

ji (S12)

=
∑
k,t′

W out
kj

∑
t≥t′

(ytk − y
∗,t
k )κt−t

′
et
′

ji (S13)

=
∑
k,t

W out
kj (ytk − y

∗,t
k )
∑
t′≤t

κt−t
′
et
′

ji︸ ︷︷ ︸
def
=ētji

, (S14)

where we changed the order of summations in the last line. The second sum indexed by t′ is167

now over previous events that can be computed online. It is just a low-pass filtered version168

of the eligibility trace etji. With this additional filtering of the eligibility trace with a time169

constant equal to that of the leak of output neurons, we see that e-prop takes into account the170

latency between an event at time t′ and its impact on later errors at time t within the integration171

time window of the output neuron. Hence, implementing weight updates with gradient descent172

and learning rate η, the plasticity rule resulting from e-prop is given by the equation (26). The173

gradient of the loss function with respect to the output weights dE
dW out

kj
can be implemented online174

without relying on the theory of e-prop. The plasticity rule resulting from gradient descent is175
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directly:176

∆W out
kj = −η

∑
t

(ytk − y
∗,t
k )Fκ(ztj) . (S15)

Similarly the update of the bias of the output neurons is ∆boutk = −η
∑

t(y
t
k − y

∗,t
k ).177

Classification tasks: We assume that K target categories are provided in the form of a K-178

dimensional one-hot encoded vector π∗,t. To train recurrent networks in this setup, we replace179

the mean squared error by the cross entropy loss:180

E = −
∑
t,k

π∗,tk log πtk , (S16)

where the probability for class k predicted by the network is given as πtk = softmaxk(y
t
1, . . . , y

t
K)181

= exp(ytk)/
∑

k′ exp(ytk′). To derive the modified learning rule that results from this loss func-182

tion E, we replace ∂E
∂ztj

of equation (S11) with the corresponding one resulting from (S16):183

∂E

∂ztj
=
∑
k

W out
kj

∑
t′≥t

(πt
′

k − π
∗,t′
k )κt

′−t. (S17)

Following otherwise the same derivation as in equations (S12)-(S14), the plasticity rule in the184

case of classification tasks is given by equation (27).185

Similarly, one obtains the plasticity rule for the output connections, where the only differ-186

ence between the cases of regression and of classification is that the output ytk and the target y∗,tk187

are replaced by πtk and π∗,tk respectively: ∆W out
kj = −η

∑
t(π

t
k− π

∗,t
k )Fκ(ztj). The update of the188

bias of the output neurons is ∆boutk = −η
∑

t(π
t
k − π

∗,t
k ).189

S3.2 Simulation details: speech recognition task (Fig. 2)190

S3.2.1 Frame-wise phoneme classification191

The goal of the frame-wise setup of the task is to classify audio-frames into phoneme classes.192

Every input sequence of audio-frames has a corresponding sequence of class labels of the same193
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length, hence the model does not need to align the input sequence to the target sequence. This194

task has been widely adopted as a speech recognition benchmark for recurrent neural networks195

(RNNs).196

Details of the network model: We used a bi-directional network architecture (Graves and197

Schmidhuber, 2005), where the output of an LSNN was augmented by the output a second198

LSNN that received the input sequence in reverse time order. Each of the two networks con-199

sisted of 300 LIF neurons and 100 ALIF neurons. The neurons in the LSNNs had a membrane200

time constant of τm = 20 ms, an adaptation time constant of τa = 200 ms, an adaptation201

strength of β = 0.184, a baseline threshold vth = 1.6, and a refractory period of 2 ms.202

We used 61 output neurons in total, one for each class of the TIMIT dataset. The mem-203

brane time constant of the output neurons was τout = 3 ms. A softmax was applied to their204

output, resulting in the corresponding class probabilities. The network model had≈ 0.4 million205

weights.206

Details of the dataset preparation and of the input preprocessing: We followed the same207

task setup as in (Greff et al., 2017,Graves and Schmidhuber, 2005). The TIMIT dataset was split208

according to Halberstadt (Glass et al., 1999) into a training, validation, and test set with 3696,209

400, and 192 sequences respectively. The input xt was given as preprocessed audio that was210

obtained by the following procedure: computation of 13 Mel Frequency Cepstral Coefficients211

(MFCCs) with a frame size of 10 ms on an input window of length 25 ms, computation of the212

first and the second derivatives of MFCCs, concatenation of all computed factors. The 39 input213

channels were mapped to the range [0, 1] according to the minimum/maximum values in the214

training set.215

In order to map the inputs into the temporal time domain of LSNNs, each preprocessed216

audio frame was fed as inputs xt to the LSNN for 5 consecutive 1 ms steps.217
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Details of the learning procedure: All networks were trained for a maximum of 80 epochs,218

where we used early stopping to report the test error at the point of the lowest error on the219

validation set. Weight updates were implemented using Adam with default hyperparameters220

(Kingma and Ba, 2014) except for εAdam, which was set to 10−5. Gradients were computed221

using batches of size 32. We used L2 regularization in all networks by adding the term 10−5 ·222

‖W‖2 to the loss function, where W denotes all weights in the network. The learning rate was223

initialized to 0.01 and fixed during training. For random e-prop and adaptive e-prop, broadcast224

weights Bjk were initialized using a Gaussian distribution with a mean of 0 and a variance of225

1 and 1/n respectively. In adaptive e-prop, we used in addition to the weight decay described226

above L2 weight decay on readout and broadcast weights according to S2.3 using a factor227

of Cdecay = 10−2. Firing rate regularization, as described in Section S2.2, was applied with228

Creg = 50.229

S3.2.2 Phoneme sequence recognition with CTC230

We compared e-prop and BPTT on the task and the network architecture used in (Graves et al.,231

2013). The essential building blocks of this architecture were also used in (Amodei et al.,232

2016) for developing commercial software for speech-to-text transcriptions. In this architecture233

Connectionist Temporal Classification (CTC) is employed. This enabled us to train networks on234

unaligned sequence labeling tasks end-to-end. We considered the results of (Graves et al., 2013)235

that were obtained with three layers of bi-directional LSTMs, CTC, and BPTT as a reference.236

We are aware that this configuration cannot be adapted to an online implementation easily, due237

to the usage of a bi-directional LSTM and the CTC loss function. However, we believe that this238

task is still relevant to compare BPTT and e-prop because it is a well established benchmark for239

RNNs.240
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Details of the network model: The neurons were structured into 3 layers. The network was241

recurrently connected within a layer and had feedforward connections across layers. Each layer242

consisted of 80 LIF neurons and 720 ALIF neurons (9.1 million weights). The neurons in243

LSNNs had a membrane time constant of τm = 20 ms, an adaptation time constant of τa = 500244

ms, an adaptation strength of β = 0.074, a baseline threshold vth = 0.2, and a refractory period245

of 2 ms. Synaptic delays were randomly chosen from {1, 2} ms with equal probability. The246

membrane time constant of output neurons was τout = 3 ms.247

E-prop with many layers of recurrent neurons: If one naively applies e-prop in such a248

configuration, the partial derivative ∂E
∂ztj

is non-zero only if j belongs to the last layer, whereas249

earlier layers would not receive any learning signal. To avoid this, we connected all neurons in250

all layers of the RNN to the output neurons. Therefore, the outputs ytk of the RNN was given as251

ytk =
∑

t′≤t κ
t−t′∑

l

∑
iW

out,(l)
kj z

(l),t′

j , where z(l),t
′

j denotes the visible state of a neuron j within252

the layer l. As a result, the learning signals in the case of e-prop were non-zero for neurons in253

every layer.254

E-prop with the CTC loss function: ECTC is defined based on the log-likelihood of obtaining255

the sequence of labeled phonemes given the network outputs ytk. We refer to (Graves et al.,256

2006) for the formal definition of the probabilistic model. Equation (7.27) in (Graves, 2012)257

shows the gradient of the loss function ECTC with respect to the activity of the outputs ytk that258

we denote as dE
dytk

. Using the linear relationship between the visible state z(l),tj and the outputs259

ytk, we obtain that the partial derivative ∂ECTC

∂z
(l),t
j

that we need in order to find the learning signals260

used in e-prop are defined as
∑

t′≥t κ
t′−t∑

k
dE

dyt
′

k

B
(l)
jk . Here, B(l)

jk denote the broadcast weights261

to the layer l.262
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Details of the dataset preparation and of the input preprocessing: The TIMIT dataset263

was split in the same manner as in (Graves et al., 2013) and in the frame-wise version of the264

task. The raw audio was preprocessed before it was provided as an input xt to the network.265

This included the following steps: computation of a Fourier-transform based filter-bank with 40266

coefficients and an additional channel for the signal energy (with step size 10 ms and window267

size 25 ms), computation of the first and the second derivatives, concatenation of all computed268

factors, which totals to 123 input channels. Normalization over the training set was done in the269

same manner as in the frame-wise version of the task.270

In order to map the inputs into the temporal time domain of LSNNs, each preprocessed271

audio frame was fed as inputs xt to the LSNN for 5 consecutive 1 ms steps.272

Details of the learning procedure: All models were trained for a total of 60 epochs, where273

gradients were computed using batches of 8 sequences. The learning rate was initialized to274

10−3 and decayed every 15 epochs by a factor of 0.3. We used early stopping to report the275

test error, as in the previous task. Dropout was applied during training between the hidden276

layers and at the output neurons with a dropout probability of 0.3. As in the frame-wise setup,277

the weight updates were implemented using Adam with the default hyperparameters (Kingma278

and Ba, 2014) except for εAdam = 10−5. For random e-prop and adaptive e-prop, broadcast279

weights Bjk were initialized using a Gaussian distribution with a mean of 0 and a variance of280

1 and 1/n respectively. In adaptive e-prop, we used L2 weight decay on readout and broadcast281

weights according to S2.3 using a factor of Cdecay = 10−4. When the global norm of gradients282

Nclip = ‖ d̂E
dW in

ji
‖2 +‖ d̂E

dW rec
ji
‖2 +‖ d̂E

dW out
ji
‖2 was larger then 1, we scaled the gradients by a factor of283

1
Nclip

. We used beam search decoding with a beam width of 100. As in (Graves et al., 2013), the284

networks were trained on all 61 phoneme labels but were then mapped to a reduced phoneme285

set (39 classes) for testing.286
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S3.3 Applying e-prop to an episodic memory task287

The FORCE training method (Nicola and Clopath, 2017) arguably defines the state-of-the-art288

for training methods for RSNNs that do not need to backpropagate gradients through time.289

FORCE learning uses a synaptic plasticity rule that required knowledge of the values of all290

synaptic weights in the network. This rule was not argued to be biologically plausible, but no291

other method for training an RSNN to solve the task described below was known so far.292

In order to compare e-prop to FORCE learning, we tested e-prop on the task to replay a293

movie segment that had been repeatedly presented to the network (Nicola and Clopath, 2017).294

Specifically, it had to generate at each time step the values of all pixels that described the video295

frame of the movie at that time step. This episodic memory task was arguably the most difficult296

task for which an RSNN was previously trained in (Nicola and Clopath, 2017),297

Here, we considered an extension to this task: the RNN had to replay 1 out of 3 possible298

movies, where the desired movie index was provided as a cue to the network, see Fig. S1A. As299

in (Nicola and Clopath, 2017), the RNN received also a clock-like input signal to indicate the300

current position in the movie. We show in Fig. S1B that an LSNN can be trained to solve this301

task by either one of the e-prop versions (see Movie S1), and that e-prop performs almost as302

well as BPTT.303

Details of the network model: We used an LSNN that consisted of 700 LIF neurons and 300304

ALIF neurons. Each neuron had a membrane time constant of τm = 20 ms and a refractory305

period of 5 ms. ALIF neurons had a threshold adaptation time constant of 500 ms, and a306

threshold adaptation strength of β = 0.07. All neurons had a baseline threshold of vth = 0.62.307

All 5544 output neurons had a membrane time constant of τout = 4 ms.308
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Details of the dataset preparation and of the input scheme: We manually chose three309

movie clips from the Hollywood 2 dataset (Marszałek et al., 2009), which contained between 0310

and 2 scene cuts∗, see Movie S1. The movie clips were clipped to a length of 5 seconds and spa-311

tially subsampled to a resolution of 66×28 pixels. Since our simulations used 1 ms as a discrete312

time step, we linearly interpolated between the frames of the original movie clips, which had a313

framerate of 25 frames per second. In total, we obtained a target signal with 66×26×3 = 5544314

dimensions, whose values were divided by a constant of 255, such that they fit in the range of315

[0, 1].316

The network received input from 115 input neurons, divided into 23 groups of 5 neurons.317

The first 20 groups indicated the current phase of the target sequence, similar to (Nicola and318

Clopath, 2017). Neurons in group i ∈ {0, 19} produced regular spike trains with a firing rate319

of 50 Hz during the time interval [250 · i, 250 · i + 250) ms and were silent at other times. The320

remaining 3 groups encoded which movie had to be replayed, where each group was assigned321

to one of the three movies. To indicate a desired replay of one specific movie, each neuron322

in the corresponding group produced a Poisson spike train with a rate of 50 Hz and was silent323

otherwise.324

Details of the learning procedure: For learning, we carried out 5 second simulations, where325

the network produced a 5544 dimensional output pattern. Gradients were accumulated for 8326

successive trials, after which weight updates were applied using Adam with a learning rate of327

2 · 10−3 and default hyperparameters (Kingma and Ba, 2014). The movie to be replayed in each328

trial was selected with uniform probability. After every 100 weight updates (iterations), the329

learning rate was decayed by a factor of 0.95. For random e-prop, we used random broadcast330

weights Bjk that were sampled from a Gaussian distribution with a mean of 0 and a variance331

∗sceneclipautoautotrain00019.avi, sceneclipautoautotrain00061.avi, sceneclipautoautotrain00071.avi
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of 1. In adaptive e-prop we used L2 weight decay (see Section S2.3) for the broadcast weights332

Bjk and the output weights W out
ji with a factor of Cdecay = 0.001. To avoid an excessively high333

firing rate, regularization, as described in Section S2.2, was applied with Creg = 0.1 and a target334

firing rate of f target = 10 Hz.335

S3.4 Simulation details: evidence accumulation task (Fig. 3)336

This task was inspired by the task performed by mice in (Morcos and Harvey, 2016). Each trial337

was split into three periods: the cue period, the delay period, and the decision period. During338

the cue period, the agent was stimulated with 7 successive binary cues (“left” or “right”), and339

had to take a corresponding binary decision (“left” or “right”) during the decision period. The340

trial was considered a success if the decision matched the side that was most often indicated by341

the 7 cues. No action was required during the delay period. Each cue lasted for 100 ms and342

the cues were separated by 50 ms. The duration of the delay was distributed uniformly between343

500 ms and 1500 ms, and the decision period lasted for 150 ms.344

Details of the network model and input scheme: We used an LSNN that consisted of 50345

LIF neurons and 50 ALIF neurons. All neurons had a membrane time constant of τm = 20346

ms, a baseline threshold of vth = 0.6, and a refractory period of 5 ms. The time constants of347

the threshold adaptation was set to τa = 2000 ms, and its impact on the threshold was given as348

β = 1.74 · 10−2.349

Input to this network was provided by 4 populations of 10 neurons each. The first two input350

populations encoded the cues as follows: when a cue indicated the “left” side (resp. the “right”351

side), all the neurons within the first (resp. the second) population produced Poisson spike trains352

with a firing rate of 40 Hz. The third input population spiked randomly throughout the decision353

period with a firing rate of 40 Hz and was silent otherwise. All the neurons in the last input354
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population produced stationary Poisson spike trains of 10 Hz throughout the trial, which was355

useful in particular to avoid that the network becomes quiescent during the delay.356

Details of the learning procedure: For learning, we used e-prop for classification tasks, see357

Section S3.1. The target label π∗,tk was given as the correct output during the decision period at358

the end of a trial. To help the network solving the task, we used a curriculum with an increasing359

number of cues. We first trained with a single cue, and increased the number of cues to 3, 5 and360

finally 7. The number of cues increased each time the network achieved less than 8% error on361

512 validation trials. The same criterion is used to stop training once 7 cues are reached.362

Independent of the learning algorithm that was used (BPTT, e-prop), a weight update was363

applied once every 64 trials and the gradients were accumulated during those trials additively.364

All weight updates were implemented using Adam with default parameters (Kingma and Ba,365

2014) and a learning rate of 5 · 10−3. In the cases of random e-prop and adaptive e-prop,366

broadcast weights Bjk were initialized using a Gaussian distribution with mean 0 and variance367

1. In adaptive e-prop we used L2 weight decay (see Section S2.3) for the broadcast weights368

Bjk and the output weights W out
ji with a factor of Cdecay = 0.001. In addition, firing rate369

regularization, as described in Section S2.2, was applied with Creg = 1. and a target firing rate370

of f target = 10 Hz.371

S4 Applying supervised learning with e-prop to artificial neu-372

ral networks (LSTMs)373

Here we show that e-prop can also be applied to artificial neural networks. We chose long short-374

term memory (LSTM) neworks (Hochreiter and Schmidhuber, 1997) for this demonstration,375

whose performance defines the standard for RNNs in machine learning. We demonstrate in376

Section S4.1 that LSTM networks can achieve competitive results on TIMIT when trained with377
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e-prop, followed by details on these simulations (Section S4.2). In the following sections, we378

provide details on the LSTM model used (Section S4.3) and on eligibility traces for LSTM units379

(Section S4.4).380

S4.1 Speech recognition with LSTM networks and e-prop381

In Results, we have used e-prop to train LSNNs on the speech recognition task TIMIT (see382

Fig. 2). To test whether e-prop is effective also for artificial neural networks, we applied it383

to LSTM network on the very same task in its two flavors of frame-wise classification and384

sequence transcription.385

Supplementary figure S2 shows that E-prop approximates the performance of BPTT in both386

versions of TIMIT also for LSTM networks very well. As for LSNNs, we trained as in (Graves387

et al., 2013) an LSTM network consisting of a feedforward sequence of three recurrent networks388

in the more difficult version of TIMIT involving sequence transcription.389

S4.2 Simulation details: speech recognition task with LSTMs (Fig. S2)390

The data preparation in the two setups (frame-wise phoneme classification and phoneme se-391

quence recognition) were identical to the LSNN case. They are described in Section S3.2. The392

details on the network models and training procedures are described next for the two task setups393

separately.394

S4.2.1 Frame-wise phoneme classification with LSTM networks395

Details of the network model: We used a bi-directional network architecture (Graves and396

Schmidhuber, 2005), where the output of an LSTM network was augmented by the output a397

second LSTM network that received the input sequence in reverse time order. Each of the two398

networks consisted of 200 LSTM units.399
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We used a 61-fold softmax output, one for each class of the TIMIT dataset. The LSTM had400

≈ 0.4 million weights, which matched the number of weights in the LSNN for the same task.401

Details of the learning procedure: LSTM networks were trained in the same way as LSNNs,402

see Section S3.2, except for the following differences in training hyper parameters: We decayed403

the learning rate after every 500 weight updates by a factor of 0.3. For L2 weight decay on404

readout and broadcast weights according to S2.3 we used a factor of Cdecay = 10−3 for LSTMs.405

As LSTM units are not spiking, we did not use firing rate regularization.406

S4.2.2 Phoneme sequence recognition with CTC and LSTM networks407

We compared e-prop and BPTT on the task and the network architecture used in (Graves et al.,408

2013). As for LSNNs, we employed Connectionist Temporal Classification (CTC) to achieve409

phoneme sequence recognition (see Section “Phoneme sequence recognition with CTC” in Sec-410

tion S3.2). This enabled us to train networks on unaligned sequence labeling tasks end-to-end.411

Details of the network model: The neurons of were structured into 3 recurrent layers. In412

each layer there were 250 LSTM units. All neurons in all layers of the RNN were connected to413

the output layer (see “E-prop with many layers of recurrent neurons” in Section S3.2).414

Details of the learning procedure: LSTM networks were trained in the same way as LSNNs,415

see Section S3.2. In the case of BPTT, we also used the peephole feature in the LSTM model.416

S4.3 LSTM network model417

We use a standard model for LSTM units (Hochreiter and Schmidhuber, 1997), for which the418

hidden state at time step t is a one dimensional vector containing only the content of the memory419

cell ctj , such that htj
def
= [ctj], and ztj is the value of its output. The memory cell can be viewed as a420
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register which supports writing, updating, deleting and reading. These operations are controlled421

independently for each cell j at each time t by input, forget and output gates (denoted by itj , f
t
j422

and ℴtj respectively). The new cell state candidate that may replace the cell state ct−1j at each423

time step t is denoted c̃tj . The input, forget, and output sigmoidal gates as well as the cell state424

candidate of an LSTM unit j are defined by the following equations:425

itj = σ
(∑

i

W rec,i
ji zt−1i +

∑
i

W in,i
ji xti

)
(S18)

ft
j = σ

(∑
i

W rec,f
ji zt−1i +

∑
i

W in,f
ji xti

)
(S19)

ℴtj = σ
(∑

i

W rec,ℴ
ji zt−1i +

∑
i

W in,ℴ
ji xti

)
(S20)

c̃tj = tanh
(∑

i

W rec,c
ji zt−1i +

∑
i

W in,c
ji xti

)
, (S21)

where all the weights used here are parameters of the model (we also used biases that were426

omitted for readability). Using these notations, one can now write the update of the state of an427

LSTM unit j in a form that we can relate to our general formalism:428

ctj = ft
jc
t−1
j + itj c̃

t
j (S22)

ztj = ℴtjc
t
j . (S23)

In terms of the computational graph in Fig. 5 equation (S22) defines M(ct−1j , zt−1,xt,W ) and429

(S23) defines f(ctj, z
t−1,xt,W ).430

S4.4 Eligibility traces for LSTM units431

Eligibility traces for LIF neurons and ALIF neurons were derived in Section “Derivation of432

eligibility traces for concrete neuron models” in Methods. Here, we derive eligibility traces for433

the weights of LSTM units.434

To obtain the eligibility traces, we note that the state dynamics of an LSTM unit is given by:435

∂ht+1
j

∂ht
j

=
∂ct+1

j

∂ctj
= ft

j . For each weight WA,B
ji with A being either “in” or “rec” and B being i,f,436
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or c, we compute a set of eligibility traces. For example, the eligibility vectors for the recurrent437

weights to the input gate W rec,i
ji , are updated according to equation (19), leading to:438

εi,tji = ft−1
j εi,t−1ji + c̃tji

t
j(1− itj)z

t−1
i , (S24)

resulting in eligibility traces:439

ei,tji = ℴtjε
i,t
ji . (S25)

Similarly, the eligibility traces for the input weights to the input gate are obtained by replacing440

zt−1i with xti.441

Output gates: The gradients with respect to the parameters of the output gate do not require442

additional eligibility traces. This is because the output gate contributes to the observable state443

but not to hidden state, see equations S22 and S23. Therefore, one can use the standard fac-444

torization of the error gradient as used in BPTT. For the recurrent weights to the output gates445

W rec,ℴ
ji , the gradient is given by:446

dE

dW rec,ℴ
ji

=
∑
t

dE

dztj

∂ztj
∂W rec,ℴ

ji

=
∑
t

dE

dztj
ctjℴ

t
j(1− ℴtj)z

t−1
i . (S26)

Hence, when applying e-prop to LSTM units, we use the same approximation of the ideal447

learning signal dE
dztj

as for other parameters and the remaining term is local, depends only on t448

and t− 1 and does not require eligiblity traces. For input weights to the output gate W in,ℴ
ji , the449

gradient is obtained by replacing zt−1i with xti.450

S5 Reward-based e-prop: Application of e-prop to policy gra-451

dient RL452

S5.1 Synaptic plasticity rules for reward-based e-prop453

Here, we derive the synaptic plasticity rules that result from gradients of the loss function E, as454

given in equation (28), see Fig. S3 for the network architecture. As a result of the general actor-455
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critic framework with policy gradient, this loss function additively combines the loss function456

for the policy Eπ (actor) and the value function EV (critic).457

We consider two cases: First, a simplified case where in each trial, one out of K discrete458

actions is taken at a single time point. In particular this action is taken at the end of the trial. This459

is the setup of the reward-based version of the evidence accumulation task of Fig. 3, see Fig. S4460

for performance results. Second, we analyse a more general case where continuous actions are461

taken throughout the trial. This is the setup of the delayed arm reaching task (Fig. 4). For both462

cases, we derive the gradients for the parts Eπ and EV of the loss function E, and express the463

plasticity rules resulting from these gradients.464

Task setup with a discrete action at the end of the trial (Fig. 3): In this setup, a discrete465

action a ∈ {1, . . . , K} from a set of K possibilities needs to be taken at the last time step T466

of a trial, leading to a binary-valued reward rT . As a result, the return RT (denoted here for467

notational simplicity as R) is equal to rT . We assume that the agent chooses action k with468

probability πk = softmaxk(y
T
1 , . . . , y

T
K) = exp(yTk )/

∑
k′ exp(yTk′). Therefore, we can write Eπ469

as:470

Eπ = −R
∑
k

1a=k log πk . (S27)

Here and in subsequent equations, we suppress the dependence of the term on the left hand side471

on the stochastic action a that is actually chosen and the resulting reward R. 1a=k is the one-hot472

encoded action and assumes a value of 1 only if a = k and is 0 otherwise. Hence, although we473

sum over all possible actions, only the term corresponding to the action a that was taken is non474

zero. Interestingly, in the discrete action case, the loss function Eπ is reminiscent of the one475

used for supervised classification, see equation (S16). But it exhibits two differences: firstly,476

the indicator of the selected action 1a=k replaces the target label π∗k, and secondly, the loss is477

multiplied by the reward R.478
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In order to optimize E, as given in (28), we also need to consider EV = 1
2
(R − V )2, for479

which we can reuse the result for regression (S14). By application of gradient descent using480

equation (1), and using the estimator ∂̂E
∂ztj

given in (29), we obtain the synaptic plasticity rule481

that implements reward-based e-prop in this case:482

∆W rec
ji = −η

[
(R− V )

∑
k

Bπ
jk(πk − 1a=k)− CV (R− V )BV

j

]
︸ ︷︷ ︸

Lj

ēTji , (S28)

where we denote with Bπ
jk the broadcast weights from output neurons yk, and with BV

j the483

broadcast weights from the output neuron that produces the value prediction V . The choice484

of these broadcast weights then defines which variant of reward-based e-prop is employed485

(reward-based symmetric e-prop, reward-based adaptive e-prop, or reward-based random e-486

prop).487

For the synaptic connections of output neurons, the loss gradient can be computed directly488

from the loss function (28). We also subtract the value prediction to reduce variance of the489

gradient estimate as in (29), and obtain for the update rules: ∆W π,out
kj = −η(R − V )(πk −490

1a=k)Fκ(zTj ), and ∆W V
j = ηCV (R− V )Fκ(zTj ). Similarly, the updates of the biases of output491

neurons are: ∆bπ,outk = −η(R− V )(πk − 1a=k), and ∆bV = ηCV (R− V ).492

Continuous actions throughout the trial (Fig. 4A-C): In this setup, we assume that the493

agent can take at certain decision times t0, . . . , tn, . . . real-valued actions a. We also assume494

that each component k of this action vector follows independent Gaussian distributions, with a495

mean given by the output yk and a fixed variance σ2.496

We consider first the regression problem defined by the loss function EV , and note that497

a major difference to the previous case is that the return Rt integrates future rewards arrive498

long after an action was taken. We begin with the result for regression from equation (S14).499
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Substituting the relevant variables, we obtain an estimation of the loss gradient:500

d̂EV
dW rec

ji

= −
∑
t′

(Rt′ − V t′)W V,out
j ēt

′

ji , (S29)

where W V,out
j are the weights of the output neuron V t

j predicting the value function E[Rt]. In501

order to overcome the obstacle that an evaluation of the return Rt′ requires to know future502

rewards, we introduce temporal difference errors δt = rt + γV t+1 − V t, and use that Rt′ − V t′
503

is equal to the sum
∑

t≥t′ γ
t−t′δt. We then reorganize the two sums over t and t′ (note that the504

interchange of the summation order amounts to the equivalence between forward and backward505

view of RL (Sutton and Barto, 2018)):506

d̂EV
dW rec

ji

= −
∑
t′

(∑
t≥t′

γt−t
′
δt
)
W V,out
j ēt

′

ji (S30)

= −
∑
t

δt
∑
t′≤t

γt−t
′
W V,out
j ēt

′

ji (S31)

= −
∑
t

δt Fγ
(
W V,out
j ētji

)
. (S32)

For the other part Eπ in the loss function E, we consider the estimator ∂̂E
∂ztj

given in (29), and use507

our previous definition that each component k of the action follows an independent Gaussian,508

which has a mean given by the output yk and a fixed variance σ2. The estimator then becomes:509

∂̂Eπ
∂ztj

= −
∑
k

W π,out
kj

∑
{n | tn≥t}

κtn−t(Rtn − V tn)
atnk − y

tn
k

σ2
, (S33)

where W π,out
kj are the weights onto the output neurons ytk defining the policy π, and κ is the510

constant of the low-pass filtering of the output neurons. Following a derivation similar to equa-511
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tions (S12) to (S14), we arrive at an estimation of the loss gradient of the form:512

d̂Eπ
dW rec

ji

=
∑
t

∂̂Eπ
∂ztj

etji (S34)

= −
∑
t,k

W π,out
kj

∑
{n | tn≥t}

(Rtn − V tn)
atnk − y

tn
k

σ2
κtn−tetji (S35)

= −
∑
n,k

(Rtn − V tn)W π,out
kj

atnk − y
tn
k

σ2

∑
t≤tn

κtn−tetji︸ ︷︷ ︸
ētnji

. (S36)

Like in the derivation of the gradient of EV , this formula hides a sum over future rewards in513

Rtn that cannot be computed online. It is resolved by introducing the backward view as in514

equation (S32). We arrive at the loss gradient:515

d̂Eπ
dW rec

ji

= −
∑
t

δtFγ
(∑

k

W π,out
kj

atk − ytk
σ2

ētji

)
. (S37)

Importantly, an action is only taken at times t0, . . . , tn, . . . , hence for all other times, we set the516

term (atk − ytk) to zero.517

Finally, the gradient of the loss function E is the sum of the gradients of Eπ and EV , equa-518

tions (S32) and (S37) respectively. Application of stochastic gradient descent with a learning519

rate of η yields the synaptic plasticity rule given in the equations (30) and (31).520

The gradient of E with respect to the output weights can be computed directly from equa-521

tion (28) without the theory of e-prop. However, it also needs to account for the sum over future522

rewards that is present in the term Rt − V t. Using a similar derivation as in equations (S30)-523

(S32) the plasticity rule for these weights becomes:524

∆W π,out
kj = −η

∑
t

δtFγ
(ytk − atk

σ2
Fκ(ztj)

)
(S38)

∆WV,out
j = ηCV

∑
t

δtFγ
(
Fκ(ztj)

)
. (S39)

Similarly, we also obtain for the update rules of the biases of the output neurons: ∆bπ,outk =525

−η
∑

t δ
tFγ
(
ytk−a

t
k

σ2

)
, and ∆bV,out = ηCV

∑
t δ

t.526
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S5.2 Simulation details: evidence accumulation task (Fig. S4)527

The task considered in this experiment was the same as in Section S3.4, but while the task was528

there formulated as a supervised learning, the network is trained here using a reinforcement529

learning setup. In this setup, the agent had to choose a side at the end of the trial, which530

represented the two discrete action possibilities. A reward of 1 was given at the end of the trial531

if the agent selected the side on which more cues than on the other had previously been given,532

otherwise no reward was given. The network model remained the same as in the supervised533

setup. The result is shown in Fig. S4: The task can be learnt by reward-based e-prop.534

Details of the decision process: In the reinforcement learning setup of the task, one binary535

action formalizes the decision of the agent (“left” of “right”) at the end of the trial. This decision536

was sampled according to probabilities πk that are computed from the network output using a537

softmax operation, see “Case of a discrete action at the end of a trial” in Section S5.1.538

Details of the learning procedure: For learning, we simulated batches of 64 trials, and ap-539

plied weight changes at the end of each batch. Independent of the learning method, we used540

Adam to implement the weight update, using gradients that were accumulated in 64 trials using541

a learning rate of 5 · 10−3 and default hyperparameters (Kingma and Ba, 2014). For random542

e-prop, we sampled broadcast weights Bjk from a Gaussian distribution with a mean of 0 and543

a variance of 1. To avoid an excessively high firing rate, regularization, as described in Sec-544

tion S2.2, was applied with Creg = 0.1 and a target firing rate of f target = 10 Hz.545

S5.3 Simulation details: delayed arm reaching task (Fig. 4)546

Details of the arm model: The arm consisted of two links, with one link connected to the547

other link by a joint, which is itself connected by a joint to a fixed position in space. The548
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configuration of this arm model at time t can be described by the angles φt1 and φt2 of the two549

joints measured against the horizontal and the first link of the arm respectively, see Fig. 4A.550

For given angles, the position yt = (xt, yt) of the tip of the arm in Euclidean space is given by551

xt = l cos(φt1) + l cos(φt1 + φt2) and yt = l sin(φt1) + l sin(φt1 + φt2). Angles were computed by552

discrete integration over time: φti =
∑

t′≤t φ̇
t′
i δt+ φ0

i using δt = 1 ms.553

Details of the delayed arm reaching task and of the input scheme: The agent could control554

the arm by setting the angular velocities of the two joints to a different value at every ms. There555

was a total of 8 possible goal locations, which were evenly distributed on a circle with a radius556

of 0.8. The arm was initially positioned so that its tip was equidistant from all the goals. In557

each trial, one of the 8 goals was chosen randomly, and indicated as the desired goal location558

in the first 100 ms of the trial. Each possible goal location was associated with a separate input559

channel, consisting of 20 neurons. They produced a Poisson spike train with a rate of 500560

Hz while the corresponding goal location was indicated. After this cue was provided, a delay561

period of a randomly chosen length between 100 − 500 ms started, during which the subject562

was penalized with a negative reward of −0.1 if it moved outside a central region of radius 0.3.563

After this delay period, a go cue instructed the subject to move towards the goal location. This564

cue was provided in a separate input channel of 20 neurons, which produced a Poisson spike565

train with a rate of 500 Hz for 100 ms. Once the tip of the arm had moved closer than a distance566

of 0.1 to the goal location, a positive reward of 1 was given to signal a success. A negative567

reward of −0.01 was given for every ms after the go cue started while the arm did not yet reach568

the goal, in order to encourage an efficient movement. Going far off the region of interest – a569

circle of radius 1 – was penalized with a negative reward of −0.1 at each ms. One trial lasted570

for a total of 1.5 seconds – i.e. the subject had 900 ms from the start of the go cue to reach the571

goal.572
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The agent also received its current configuration (angles of the arms φ1 and φ2, see Fig. 4A)573

as input at each time step in the following way: each one of the angles was encoded by a574

population of 30 neurons, where each neuron had a Gaussian tuning curve centered on values575

distributed evenly between 0 and 2π, with a firing rate peak of 100 Hz. The tuning curve had a576

standard deviation of 4
30

.577

In addition, if the goal position was successfully reached, the network received this infor-578

mation using a separate input channel consisting of 20 neurons that produced a Poisson spike579

train with a rate of 500 Hz.580

Details of the network model: The network consisted of 350 LIF neurons and 150 ALIF581

neurons. The membrane time constant of all neurons was τm = 20 ms, with a baseline threshold582

vth = 0.6 and a refractory period of 3 ms. All synaptic delays were 1 ms. The adaptation time583

constant of ALIF neurons was set to τa = 500 ms, and the adaptation strength was βj = 0.07.584

The membrane time constant of output neurons was given by τout = 20 ms.585

Actions (angular velocities for the 2 joints) were sampled from a Gaussian distribution with586

a mean of ytk, and a standard deviation of σ = 0.1, which was exponentially decayed over587

iterations so that it reached σ = 0.01 at the end.588

Details of the learning procedure: The network was trained for a total of 16000 weight589

updates (iterations). In each iteration, a batch of 200 trials was simulated, and we applied590

weight changes at the end of each batch. Independent of the learning method, we used Adam to591

implement the weight update, with a learning rate of 10−3 and default hyperparameters (Kingma592

and Ba, 2014). For training with BPTT, gradients were computed for the loss function given in593

equation (28) (using the variance reduction that is made explicit in equation (29)). In the case594

of e-prop, we used equations (30) and (31). For random e-prop, the broadcast weights Bjk were595

initialized using a Gaussian distribution with mean 0 and variance 1. To avoid an excessively596
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high firing rate, regularization, as described in Section S2.2, was applied with Creg = 100 and a597

target firing rate of f target = 10 Hz.598

S6 Evaluation of four variations of e-prop (Fig. S5)599

We evaluate here the performance of four variations of random e-prop. In these variations, we600

used601

• truncated eligibility traces for LIF neurons,602

• global broadcast weights,603

• temporally local broadcast weights, and604

• a replacement of the eligibility trace by the corresponding term of the Clopath rule,605

respectively. The considered task, whose implementation details are described in Section S6.5,606

is an extension of the task used in (Nicola and Clopath, 2017). In this task, an RSNN was607

trained to autonomously generate a 3 dimensional target signal for 1 second. Each dimension608

of the target signal was given by the sum of four sinusoids with random phases and amplitudes.609

Similar to (Nicola and Clopath, 2017), the network received a clock input that indicated the610

current phase of the pattern.611

In Fig. S5A, we show the spiking activity of a randomly chosen subset of 20 out of the612

600 neurons in the RSNN along with the output of the three output neurons after application613

of random e-prop for 1, 100, and 500 seconds, respectively. In this representative example, the614

network achieved a very good fit to the target signal (normalized mean squared error 0.01).615

S6.1 A truncated eligibility trace for LIF neurons616

A replacement of the term z̄ti with zti in equation (21) yields a performance that is reported in617

panel B of Fig. S5 as “Trunc. e-trace”. Its performance is for the considered task only slightly618
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worse than that of random e-prop.619

S6.2 Global broadcast weights620

Since 3-factor rules have primarily been studied so far with a global 3rd factor, we asked how the621

performance of e-prop would change if the same broadcast weight would be used for broadcast622

connections between all output neurons k and network neurons j. We set this global broadcast623

weight equal to 1√
n

. Fig. S5B shows that the performance for the considered task is much worse624

than that of random e-prop. We have also tested this on TIMIT with LSNNs and found there an625

increase of the frame-wise error rate from 36.9% to 52% when replacing the broadcast weights626

of random e-prop with a global one. On the harder version of same task, the error rate at the627

sequence level increased from 34.7% to 60%.628

S6.3 Temporally local broadcast weights629

One can train RNNs also by applying the broadcast alignment method of (Lillicrap et al., 2016)630

and (Nøkland, 2016) for feedforward networks to the unrolled version (see Fig. 1B) of the RNN.631

In contrast to e-prop, this approach suggests to draw new random broadcast weights for each632

layer of the unrolled network, i.e., for each time step of the RNN. Fig. S5C shows that this633

variation of random e-prop performs much worse. However an intermediate version where the634

random broadcast weights are redrawn every 20 ms performs about equally well as random635

e-prop for the considered task.636

S6.4 Replacing the eligibility trace by the corresponding term of the Clopath637

rule638

The dependence of the synaptic plasticity rules from e-prop on the postsynaptic membrane639

potential through the pseudo-derivative in the eligibility traces yields some similarity to some640

previously proposed rules for synaptic plasticity, such as that of (Clopath et al., 2010), which641
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were motivated by experimental data on the dependence of synaptic plasticity on the postsy-642

naptic membrane potential. We therefore tested the performance of random e-prop, where the643

eligibility trace was replaced by the corresponding term from the “Clopath rule”:644

[vtj − v+th]+[v̄tj − v−th]+z̄t−1i , (S40)

where v̄tj is an exponential trace of the post synaptic membrane potential, with a time constant645

of 10 ms chosen to match their data. [·]+ is the rectified linear function. The thresholds v−th646

and v+th were vth
4

and 0 respectively. Fig. S5B shows that the resulting synaptic plasticity rule647

performed quite well.648

S6.5 Simulation details: pattern generation task649

The performance in this task is reported as a normalized mean squared error (nmse) that we650

defined for this task as: nmse =
∑

t,k(y
t
k−y

∗,t
k )2∑

t,k(y
∗,t
k −ȳ

∗
k)

2
, where we set ȳ∗k = 1

T

∑
t y
∗,t
k .651

Details of the network model and of the input scheme: We used a network that consisted of652

600 LIF neurons. Each neuron had a membrane time constant of τm = 20 ms and a refractory653

period of 3 ms. The firing threshold was set to vth = 0.41. Output neurons used a membrane654

time constant of τout = 20 ms. The network received input from 20 input neurons, divided655

into 5 groups, which indicated the current phase of the target sequence similar to (Nicola and656

Clopath, 2017). Neurons in group i ∈ {0, 4} produced 100 Hz regular spike trains during the657

time interval [200 · i, 200 · i+ 200) ms and were silent at other times.658

Details of the target pattern: The target signal had a duration of 1000 ms and each compo-659

nent was given by the sum of four sinusoids, with fixed frequencies of 1 Hz, 2 Hz, 3 Hz, and660

5 Hz. At the start of learning, the amplitude and phase of each sinusoid in each component661
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was drawn uniformly in the range [0.5, 2] and [0, 2π] respectively. This signal was not changed662

afterwards.663

Details of the learning procedure: For learning, we computed gradients after every 1 second664

of simulation, and carried out the weight update using Adam (Kingma and Ba, 2014) with a665

learning rate of 3 · 10−3 and default hyperparameters. After every 100 iterations, the learning666

rate was decayed by a factor of 0.7. For random e-prop, the broadcast weightsBjk were sampled667

from a Gaussian distribution with a mean of 0 and a variance of 1
n

, where n is the number of668

network neurons.669

Firing rate regularization, as described in Section S2.2, was applied with Creg = 0.5 and a670

target firing rate of f target = 10 Hz.671
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Figure S1: Performance comparison of BPTT and e-prop on the episodic memory task
from (Nicola and Clopath, 2017). A) Input spikes, network activity (for 20 sample neurons),
learning signals, and network outputs (at 1s and 4s, shown at the top) of an LSNN after 1000
training iterations. For comparison we also show learning signals after just 100 iterations, where
their amplitude is still large. B) Performance of BPTT and e-prop.
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Figure S2: LSTM trained with BPTT and e-prop on the TIMIT task. Performance of BPTT
and the three versions of e-prop frame-wise phoneme classification (left) and for phoneme se-
quence recognition (right).
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Figure S3: Learning architecture for reward-based e-prop: The network input xt consists
of the current joint angles and input cues. The network produces output yt which is used to
stochastically generate the actions at. In addition, the network produces the value prediction,
which, along with the reward from the environment, is used to calculate the TD-error δt, The
learning signals and the TD-errors are used to calculate the weight update, as denoted by the
green dotted lines.

39

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted August 19, 2019. ; https://doi.org/10.1101/738385doi: bioRxiv preprint 

https://doi.org/10.1101/738385


Figure S4: Performance of reward based random e-prop and BPTT for the RL version of the
task from Fig. 3, applied to an LSNN consisting of 50 LIF and 50 ALIF neurons.
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Figure S5: Evaluation of several variants of random e-prop A) The task is a classical bench-
mark task for learning in recurrent SNNs: learning to generate a target pattern, extended here
to the challenge to simultaneously learn to generate 3 different patterns, which makes credit
assignment for errors more difficult. Learning performance with random e-prop is shown after
training for 1, 100, 500 s. B) Normalized mean squared error of several learning algorithms for
this task after 500 s of training. “Clopath rule” denotes a replacement of the eligibility trace of
random e-prop by a corresponding term proposed in (Clopath et al., 2010) based on experimen-
tal data. C) Learning curves for variations of random e-prop with temporally local broadcast
weights.
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Movie S1730

Rodent task from (1, 2) that requires long-term credit assignment for learning: a rodent has731

to learn to run along a linear track in a virtual environment, where it encounters several cues732

on the left and the right side along the way. It then has to run through a corridor without cues733

(giving rise to delays of varying lengths). At the end of the corridor, the rodent has to turn to734

either the left or the right side of a T-junction, depending on which side exhibited more cues735

along the way.736
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Movie S2737

Dynamics of (BPTT) for the evidence accumulation task: First, a simulation of the network738

has to be carried out in order to produce the network state of all neurons for all time steps.739

After that the loss function E can be evaluated. Then the simulated network activity is replayed740

backwards in time to assign credit to particular spikes that occurred before the loss function741

became non-zero. One sees that the slow time constants that are present in the dynamics of742

adapting thresholds of ALIF neurons result in slowly decaying non-vanishing gradients during743

the backpropagation through time. In contrast, for LIF neurons the backpropagated gradients744

vanish rather quickly.745
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Movie S3746

The computation of the LSNN is accompanied by the computation of synapse specific eligi-747

bility traces. An error in the computation only becomes apparent during the so-called decision748

period at the end of a trial. In this last phase, a learning signal (Lj) that transmits deficiencies749

of the network output is provided separately to each neuron. As can be seen from the video750

that synapses that project to neurons with adapting thresholds (ALIF neurons) still have non-751

vanishing eligibility traces during the last phase, and hence can be combined with the learning752

signals at that time to implement long-term credit assignment.753
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Movie S4754

Episodic memory task from (25) trained with random e-prop. The top row presents the755

actual movie clip, and the output produced by the trained LSNN. The middle row shows the756

input that is presented to the network: a channel that indicates which of the three learned clips757

had to be replayed, and an array of input neurons that indicate the current timing in the clip.758

The bottom row shows the spiking activity of a subset of the neurons in the LSNN (20 neurons759

out of 1000). As can be seen, the network learned via e-prop to distinguish well between the760

different clips and also, the LSNN was able to deal with scene cuts, which require the network761

to change its output abruptly.762
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Movie S5763

Illustration of the delayed arm-reaching task from Fig. 4: The agent gets the position of the764

goal as the GOAL CUE during the first 100ms of a trial. This is followed by a delay period of765

variable length during which the arm receives a negative reward for moving outside the area in766

the center denoted by the dotted line. Noisy arm movements arise from the stochastic action767

selection of policy gradient, and the arm needs to be actively steered back into the circle to768

avoid further negative penalties. After the delay period, the agent gets a GO cue (the screen769

turns yellow), after which no further negative rewards occur. The agent gets a large positive770

reward if it reaches the small circle that was initially marked by the GOAL CUE.771

46

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted August 19, 2019. ; https://doi.org/10.1101/738385doi: bioRxiv preprint 

https://doi.org/10.1101/738385


Movie S6772

A trial of the delayed arm-reaching task after training with random e-prop: One sees that773

the arm moves to the goal immediately after the GO cue is received. The spike encoding of all774

the inputs including the position of the arm (top), the GOAL CUE (bottom left), and the GO cue775

(middle right) is shown in the middle panel of the video. The instantaneous rewards are shown776

in the bottom panel of the video.777
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